
A Journey through Searching Similar
Code

Miryung Kim
Professor and Vice Chair of Graduate Studies at UCLA
Amazon Scholar, Amazon Web Services

Outline: A Journey through Searching Similar
Code

What motivated us?
What were early attempts?
How serious is this problem?
How can we automate?
How can we examine variations at scale?
How to search with a human in the loop?

A Study of Copy and Paste
Programming Practices [ISESE 2004]

• To understand programmers’ copy and paste coding behavior, we
built an Eclipse plug-in that records edits and replays the
captured edits at IBM

• Programmers often create and manage code clones with clear
intent

*

An Empirical Study of Code Clone
Genealogies [FSE 2015]

• We developed an approach that automatically reconstructs the
history of code clones from a source code repository

• We studied clone evolution in several Java open source projects.

*

Clone Genealogy

Clone genealogy is a representation that captures clone change
patterns over a sequence of program versions

A

B

A

B

C

D

A

B

C

D

A

B

D

ADD
CONSISTENT_
CHANGE

INCONSISTENT_
CHANGE

Version i Version i+1 Version i+2 Version i+3

Dagstuhl: Multiversion Program
Analysis in 2005

Time

P P’

Code Element

Mining Software Repositories

Systematic Changes
(similar updates to similar code)

Consistent updates to clones
Managing multiple products, forked projects and versions
API evolution and ripple effects on client applications
Refactoring

8

public class CmiRegistry implements
NameService {

 public void setPort (int p) {
 ...
- SQL.exec(query)
+ SafeSQL.exec(query)

 }

 }
 ...

public class JacORB implements NameService
{
 public void setPort (int p) {
- if (TraceCarol. isDebug()) {
 ...
- SQL.exec(query)
+ SafeSQL.exec(query)

 }

 ...

public class LmiRegistry extends
AbsRegistry implements NameService {
- private int port = ...
- private String host = null
 public void setPort (int p) {
 ...
- SQL.exec(query)
+ SafeSQL.exec(query)
 }
 public int getPort() {
 return port;
 }
 public void setHost(String host)

Miryung’s PhD @ U of Washington
Automated Change Rule Inference

David Notkin
(1 Jan 1955 – 22 Apr 2013)

API Change Rule Inference [ICSE 2007]

.

Factory.createChart()
Factory.createBarChart()
...
Factory.createPieChart()
Factory.createLineChart()

Factory.createChart(int)
Factory.createBarChart(int)
...
Factory.createPieChart()
Factory.createLineChart(int)

P P’

FOR ALL x:method-header IN
Factory.create*Chart(*)

argAppend(x, [int])
except {Factory.createPieChart()}

LSDiff Rule Inference [ICSE 2009]

• “Replace all calls to SQL.exec with SafeSQL.exec”

• “All setHost methods in Service’s subclasses in the old
version deleted calls to SQL.exec except the setHost
method in the NameSvc class.

past_subtype(“Service”, t) ∧ past_method(m,
“setHost”, t)
⇒ deleted calls(m, “SQL.exec”)
except t=“NameSvc

deleted_calls(m,“SQL.exec”)=>
added_calls(m,“SafeSQL.exec”)

Baishakhi’s PhD @ UT Austin
Cross-system co-evolution

Co-Evolution of Forked Projects
Software Eco-Systems

API Stability and Adoption in Android
Ecosystem

Repertoire: Cross-System Porting
Analysis in Forked Projects [FSE 2012]

0

20

40

60

80

1996 1998 2000 2002 2004 2006 2008 2010
%

 p
or

te
d

ed
its

release years

FreeBSD (avg. = 13.77%)

NetBSD (avg. = 15.52%)

OpenBSD (avg. = 10.74%)

Porting consists of a significant portion of the BSD family evolution and a
significant portion of active committers port changes

Net4.0Net3.0
(Dec., ‘04)

Net2.0Net1.0 NetBSD

OpenBSDOpen3.7 Open4.0

Net5.0

Open4.4
(Nov.,
’08)

47 monthsA patch propagation latency =
target patch release date –
source patch release date.

SPA: Detecting Semantic Inconsistencies in
Ported Code in Linux [ASE 2013]

Control
Flow
(13%)

Inconsistent
Renaming

(41%)

Redundancy
(26%)

Other
(13%)

Data
Flow
(14%)

Linux

44

potential
errors

Tarold

Refold

1. AST difference
to find edited node

Tarnew

Refnew

3. select
Impacted nodes

Tarnew

Refnew

Tarnew

Refnew

2. detect
copied nodes

4. compare
Impacted nodes

Tarnew

Refnew

13% to 25% changes are reused in Linux and Microsoft
projects

API Stability and Adoption in the Android
Ecosystem [ICSME 2013]

▪ Android is evolving fast at a rate of 115 API updates per month.
▪ 28% of API references in client apps are outdated with a median

lagging time of 16 months.
▪ API usage adaptation code is defect prone than other code.

Android API

API Version: 4
Release Date: September 15, 2009
Added Method:
void setButton2(charSequence)

API Version: 7
Release Date: October 26, 2009
Changed Method:
void setButton2(charSequence)
now deprecated

Client Code

Client Code
Commit Date: December 20, 2009
Method Use:
setButton2(charSequence)

Lag Time: 2 months
Android API

API Version: 1
Release Date: September 23, 2008
Added Method:
Method getMethod(String)

API Version: 9
Release Date: December 6, 2010
Changed Method:
Method getMethod(String, Class)

Client Code

Client Code
Commit Date: March 18, 2009
Method Use:
getMethod(String)

Client Code
Commit Date: March 8, 2011
Method Use:
getMethod(String, Class)

Propagation Time: 3 months

Most Influential Paper Award from ICSME 2013

Microsoft: Quantifying Benefits of
Windows Re-architecting [FSE ‘12, TSE ‘14]

Refactoring churn is less
defect-prone than regular
churn.

winmain

refactor

refactor_dev

media_core

perf_dev_foo

Categorize all Windows 7 commits into refactorings vs. non-refactorings

Refactoring branches

Non-refactoring branches

Program
differencing

Aold

Anew

Abstract edit script
application

Context
extraction

Identifier &
edit position
abstraction

Bold

Bnew

Cold
DELETE: config =

(ILaunchConfiguration)iter.next();

DELETE: v1 = (t1)v2.m1();
Cnew

21

method_
decl

iter_decl

config_decl

T1 v1 = m1().m2()

while
while(v1.m3())

T2 v2 = (T2)v1.m4()

method_
decl

then

iter_decl
T1 v1 = m1().m2()

while
while(v1.m3())

cfg_decl
T4 v3 = (T4)v1.m4()

if
if(v4!=null && v4.m6().m7(v5))

cfgs.mi
v2.m8(v4)

cfgs_decl
T2 v2 = new T2()

return
return v2

file_decl

T5 v4 = v3.m5()

Variable Map Method Map Type Map
v1 <-> v1 m1 <-> m1 T1 <-> T1
v2 <-> v3 m2 <-> m2 T2 <-> T4

m3 <-> m3
m4 <-> m4 22

SEARCH TRANSFORM

Dold

Dsuggested

LASE selects methods & suggests edits

Aold

Anew

Bold

Bnew

User selects examples

Iold

Isuggested

Xold

Xsuggested

… …

24

Comment[] getLeadingComments(ASTNode node){
- if (this.leadingComments != null) {
+ if (this.leadingPts >= 0) {
- int[] range = (int[]) this.leadingComments.get(node);
+ int[] range = null;
+ for (int i = 0; range == null && i <= this.leadingPtr; i++) {
+ if (this.leadingNodes[i] == node) range = this.leadingIndexes[i];
+ }
 if (range != null) {
 int length = range[1] – range[0] + 1;
 Comment[] leadComments = new Comment[length];
 System.arraycopy(this.comments, range[0], leadComments, 0,
length);
 return leadComments;
 }
 }
}

Comment[] getTrailingComments(ASTNode node){
- if (this.trailingComments != null) {
+ if (this.trailingPts >= 0) {
- int[] range = (int[]) this.trailingComments.get(node);
+ int[] range = null;
+ for (int i = 0; range == null && i <= this.trailingPtr; i++) {
+ if (this.trailingNodes[i] == node) range =
this.trailingIndexes[i];
+ }
 if (range != null) {
 int length = range[1] – range[0] + 1;
 Comment[] trailComments = new Comment[length];
 System.arraycopy(this.comments, range[0], trailComments, 0,
length);
 return trailComments;
 }
 }
}

public int getExtendedEnd (ASTNode node){
 int end = node.getStartPosition() + node.getLength();
- if (this.v$_1_ != null) {
+ if (this.trailingPts >= 0) {
- int[] range = (int[]) this.trailingComments.get(node);
+ int[] range = null;
+ for (int i = 0; range == null && i <= this.v$_1_; i++) {
+ if (this.v$_2_[i] == node) range = this.v$_3_[i];
+ }
 if (range[0] == -1 && range[1] == -1) {
 … …
 } else {
 … …
 }
 }
 return end - 1;
}

!

!!
!

!

Iterator e = fActions.values().iterator();
DELETE:print(event.getReplaceText());
DELETE:print(event.getText());
while(e.hasNext()){
UPDATE: MVAction action=
(MVAction)e.next();
 TO: Object next = e.next();

INSERT: if(next instanceof MVAction){
 INSERT: MVAction action =
(MVAction)next;

 }

 if(action.isContentDependent()){
 … …
 }
!

!

MOVE

Iterator iter =
factions.values().iterator();

while(e.hasNext()){
UPDATE: MVAction action=
(MVAction)iter.next();
 TO: Object next = iter.next();

INSERT: if(next instanceof MVAction){
 INSERT: MVAction action =
(MVAction)next;

 }

 if(action.isDependent()){
 … …
 }

INSERT:if(next instanceof FRAction){
 INSERT:FRAction action =
(FRAction)next;
 INSERT:if(action.isDependent())
 INSERT:action.update();
}

!

!

MOVE

Iterator e = fActions.values().iterator();
DELETE:print(event.getSelection());

while(e.hasNext()){
UPDATE: MVAction action=
(MVAction)e.next();
 TO: Object next = e.next();

INSERT: if(next instanceof MVAction){
 INSERT: MVAction action =
(MVAction)next;

 }

 if(action.isSelectionDependent()){
 … …
 }
!

!

MOVE

Iterator v$_0 =
u$_0_FieldAccess_MethodInvocation_.val
ues().iterator();
while(v$_0.hasNext()){
UPDATE: MVAction action=
(MVAction)v$_0.next();
 TO: Object next = v$_0.next();

INSERT: if(next instanceof MVAction){
 INSERT: MVAction action =
(MVAction)next;

 }

 if(action.m$_0()){
 … …
 }
!

!

MOVE

Iterator e =
fActions.values().iterator();
DELETE:print(event.m$_0());
while(e.hasNext()){
UPDATE: MVAction action=
(MVAction)e.next();
 TO: Object next = e.next();

INSERT: if(next instanceof MVAction){
 INSERT: MVAction action =
(MVAction)next;

 }

 if(action.m$_1()){
 … …
 }
!

!

MOVE

Iterator v$_0 =
u$_0_FieldAccess_MethodInvocation_.val
ues().iterator();
while(v$_0.hasNext()){
UPDATE: MVAction action=
(MVAction)v$_0.next();
 TO: Object next = v$_0.next();

INSERT: if(next instanceof MVAction){
 INSERT: MVAction action =
(MVAction)next;

 }

 if(action.m$_0()){
 … …
 }
!

!

MOVE

Iterator v$_0 =
u$_0_FieldAccess_MethodInvocation_.val
ues().iterator();
while(v$_0.hasNext()){
UPDATE: MVAction action=
(MVAction)v$_0.next();
 TO: Object next = v$_0.next();

INSERT: if(next instanceof MVAction){
 INSERT: MVAction action =
(MVAction)next;

 }

 if(action.m$_0()){
 … …
 }
!

!

MOVE

!! ! !

!

!

! !

!

!"#$!"%$!"&$

'"#("%$ '"#("&$ '"%("&$

'"#("%("&$

A chicken and egg problem:
Users needs to find patch examples

generalize from.

Critics: Interactive Code Search and Review [ICSE
2015]

A chicken and egg problem:
Users need hints on what to generalize.

27

AST
Traversal

Program
Slicing

Call Sequence
Extraction

Structured
API call
sequences

Frequent
Sequence Mining

SMT-based Guard
Condition Mining

API
usage
patterns

380K Java Repositories on GitHub

28

29

� A Stack Overflow code example of interest

� Adaptation-aware code template

� A list of similar GitHub snippets
� GitHub snippet link & metrics

� Undo the previous selection
� Copy the template

� Colors of different
adaptation categories

Focal API
new FileInputStream()

Many code examples
using this call

crawl

Interactive visualization
showing common usage
and frequency

label and
collate into
code skeleton

30

What other methods are called before and after?

What exception(s) are thrown?

Code Search Results

Query ∧ a ∧ b
Input: More instance labels
ALICE: Keep refining the query
Output: A smaller set of method locations that
match the new query

public void getUserName(String id) {
 try {

ResultSet set = db.executeQuery(
 "select name from users where id=” + id);

while (set.next()) { … }
 } catch (SQLException e) { …}
}

public void queryDatabase() {
 try {

ResultSet result = s.executeQuery("select * from customers”);
while (result.next()) { … }

 } catch (SQLException e) { …}
}

public List get() {
ResultSet set = stmt.executeQuery("select * from t”);

 List l = new List();
while (set.next()) { … }

 return l;
}

methodDec (i0, m) ∧
type (i1, ResultSet) ∧
contains (i0, i1) ∧
methodCall(i2, executeQuery) ∧
contains (i0, i2) ∧
looplike (i3, "*.next()") ∧
contains (i0, i3) ∧
exception (i4, SQLException),
contains (i0, i4)

Refined Query

Query Refinement Optimization

Tool Screenshot

A chicken and egg problem:
Users need hints on how to pick a

discriminatory atom.

Developer Tools for Big Data Systems
& Heterogeneous Hardware

…
Amazon Scholar

37

“Should I include updateAAD or Base64.decode?”

updateAAD(…)
Base64.decode(…)

updateAAD(…)
Base64.decode(…) println(…)

. . .
Rest of
population

¡ Matching on Program Dependence Graphs
¡ Simultaneous overlay
¡ Global distribution
¡ Impact Analysis, and
¡ What-if Analysis

matched againstThe inferred pattern

Population of
graphs

39

Support:
Number of times a statement appears,
regardless of label

S I

Information gain:
Improvement in entropy for
separating positive from negative instances

40

• Focuses attention to which
instances will be
included/excluded for each
statement choice

“If I include this specific code line,
how many will I match?”

Explore trade-offs involved in selecting one statement over another

4141

“Which code statement is better to include?”

¡ What motivated us? Systematic changes
¡ What were early attempts? Rule-based change abstraction
¡ How serious is this problem? Pretty serious
¡ How can we automate? Generalized patch synthesis

¡ How can we examine variations at scale? Simultaneous overlay
¡ How to construct a search pattern with a human in the loop? Hints

on global distribution and interactive what-if analysis

Several chicken and egg problems: Users need example patches, hints on
what to generalize, and hints on how to pick a discriminatory atom.

¡ DSL
¡ Code embeddings
¡ LLM
¡ Information retrieval
¡ Search with multi-modality: text, video, etc.

Thanks to Baishakhi Ray, Na Meng, Tianyi Zhang, HongJin Kang,
Myoungkyu Song, David Notkin, Elena Glassman, Dan
Grossman, John Jacobellis, Björn Hartmann, Cristina Lopes,
Tyler McDonnell, Nachiappan Nagappan, Mihir Mathur, Kathryn
McKinley, Suzette Person, Joseph Pinedo, Hridesh Rajan,
Anastasia Reinhardt, Neha Rungta, Aishwarya Sivaraman,
Ganesha Upadhyaya, Guy Van den Broeck, Christopher Wiley,
Gary Wilson Jr., Di Yang, Thomas Zimmermann

For each change example, a user
can view AST edit operations

Edit
Operation
View

A user can view a hierarchy of
edit scripts and select one of them

Edit
Script
Hierarchy
View

A User can inspect a
generalized edit script

Generalized Edit Script
View

A user can correct suggested edits
before applying the suggestion

Edit Customization View

On average, Lase finds edit locations with 99% precision, 89%
recall, and applies edits with 91% accuracy.

For three bugs, Lase suggests in total 9 edits that developers
missed and later confirmed.

Index Bug(patches) mi

Edit Location Operations

Σ ✔ P% R% A% E C EA%
2 82429(2) 16 13 12 92 75 81 9 9 100

4 139329(3) 6 2 2 100 33 74 6 3 50

7 103863(5) 7 7 7 100 100 100 34 34 100

8 129314(3) 3 4 4 100 100 100 2 2 100

16 95409(3) 7 9 9 100 100 78 4 4 100

24 98198(2) 9 15 15 100 100 95 3 3 100

50

Lab Study Results

Represent Code as Logic Facts

Fact Predicate

if (ID, CONDITION)

loop (ID, CONDITION)

parent (ID, ID)

next (ID, ID)

methodCall (ID, NAME)

type (ID, NAME)

exception (ID, NAME)

methodDec (ID, NAME)

public void queryDB() {
 try {
 Connection con = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/db","root","root");
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("select * from emp");
 while (rs.next()) {
 System.out.println(rs.getInt(1));
 }
 con.close();
 } catch (SQLException e) {
 System.out.println(e);
 }
}

methodDec (0, queryDB),
type (1, Connection),
parent (0, 1),
methodCall(2, getConnection),
parent (0, 2),
next (2, 1),
…
loop (7, "rs.next()"),
methodCall (8, getInt),
parent (7, 8),
…
exception (10, SQLException),
parent (0, 10),
…

Extracted Logic Facts

Formulate a Search Query

public void queryDB() {
 try {
 Connection con = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/db","root","root");
 Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("select * from emp");
while (rs.next()) {

 System.out.println(rs.getInt(1));
 }
 con.close();
 } catch (SQLException e){
 System.out.println(e);
 }
}

methodDec (i0, m) ∧
type (i1, ResultSet) ∧
contains (i0, i1) ∧
methodCall(i2, executeQuery) ∧
contains (i0, i2) ∧
looplike (i3, "*.next()") ∧
contains (i0, i3)

A code example with user annotations search query

• A user selects a code example and annotate important features.

Logic-based Code Search

methodDec (i0, m) ∧
type (i1, ResultSet) ∧
contains (i0, i1) ∧
methodCall(i2, executeQuery) ∧
contains (i0, i2) ∧
looplike (i3, "*.next()") ∧
contains (i0, i3)

Search Query Fact Base

public void getUserName(String id) {
 try {

ResultSet set = db.executeQuery(
 "select name from users where id=” + id);

while (set.next()) { … }
 } catch (SQLException e) { …}
}

Matched Code

public void queryDatabase() {
 try {

ResultSet result = s.executeQuery("select * from customers”);
while (result.next()) { … }

 } catch (SQLException e) { …}
}

public List get() {
ResultSet set = stmt.executeQuery("select * from t”);

 List l = new List();
while (set.next()) { … }

 return l;
}

Fact Rules

and 32 other matched locations

Align and aggregate structured call sequences
into a single view

55

Glassman* and Zhang* et al. CHI 2018

Explore less frequent but critical API usage features

56

Interactively building your own patterns

57

58

A within-subject user study
RQ1. Does the bird’s-eye view help build robust API knowledge?

Key Result: Users with the bird’s-eye view answered API usage questions
more correctly and comprehensively.

Number of questions that are
answered correctly

Number of correct answers per
question

6

4.6

0

1

2

3

4

5

6

7

Bird's-Eye View Web Search

1.8

1.2

0

0.5

1

1.5

2

Bird's-Eye View Web Search

(paired t-test: t=3.02, df=15, p-value=0.0086) (paired t-test: t=3.84, df=15, p-value=0.0016)

Design 1: Infer Common PDG Subgraph

59

matched againstThe inferred pattern

Population of
graphs

Design 2:
Simultaneous
Overlay

60

“What constructors are
called?”

“What exceptions are
caught?”

Design 2:
Simultaneous
Overlay

61

Statement Choice 1
Statement Choice 2
Statement Choice 3

Challenge 1: Instance-level feedback provides
too little information

62

Cipher.getInstance(AES)
Cipher.init(…)
System.println(…)

Cipher.getInstance(AES)
Cipher.init(…)
System.println(…)

Cipher.getInstance(DES)

Cipher.getInstance(..) ?

?Cipher.getInstance(AES)

?Cipher.getInstance(AES)
System.println(…)

. . . Rest of
population

20%
less time required

30%
more correct answers

Improvements are statistically significant (p < 0.001) following a mixed-effects linear model
accounting for ordering, tool, and task.

1.8X
more likely to construct the target pattern

63

