
Detecting and Characterizing Semantic
Inconsistencies in Ported Code

Baishakhi Ray, Miryung Kim
The University of Texas at Austin

Austin, USA
rayb@utexas.edu, miryung@ece.utexas.edu

Suzette Person
NASA Langley Research Center

Hampton, USA
suzette.person@nasa.gov

Neha Rungta
NASA Ames Research Center

Mountain View, USA
neha.s.rungta@nasa.gov

Abstract—Adding similar features and bug fixes often requires
porting program patches from reference implementations and
adapting them to target implementations. Porting errors may
result from faulty adaptations or inconsistent updates. This paper
investigates (1) the types of porting errors found in practice,
and (2) how to detect and characterize potential porting errors.
Analyzing version histories, we define five categories of porting
errors, including incorrect control- and data-flow, code redun-
dancy, inconsistent identifier renamings, etc. Leveraging this
categorization, we design a static control- and data-dependence
analysis technique, SPA, to detect and characterize porting
inconsistencies. Our evaluation on code from four open-source
projects shows that SPA can detect porting inconsistencies with
65% to 73% precision and 90% recall, and identify inconsistency
types with 58% to 63% precision and 92% to 100% recall. In a
comparison with two existing error detection tools, SPA improves
precision by 14 to 17 percentage points.

I. INTRODUCTION

Developers often port code from one implementation to
another in order to implement similar features or bug fixes.
A recent case study of OpenBSD, NetBSD, and FreeBSD
found that 11% to 16% code changes are ported from peer
projects [18]. Also, when libraries and frameworks evolve their
APIs, client applications make similar updates to use the new
APIs correctly [3]. In a large code base, typically 10% to
30% of the code is considered as code clones [11], which
often require similar updates during software evolution [13].
When porting changes from one implementation to another,
developers generally need to adapt the ported changes to fit
the new context. The code in the reference often serves as
a template that is pasted into the target implementation, and
then later adapted [12].

The process of adapting a change to fit another context
can be error-prone, often resulting in porting errors. Chou
et al. report that a significant portion of operating system
bugs comes from ported edits [4]. In a case study of clone
related bugs, Juergens et al. discover that “nearly every
second, unintentional inconsistent changes to clones lead to
a fault” [10]. Li et al. identify errors in Linux and FreeBSD
resulting from developers forgetting to rename identifiers after
porting code [15]. Jiang et al. [9] present evidence of porting
errors when similar code appears in different contexts. Porting
errors can also happen when developers evolve ported code
differently [6], [10].

When developers port code from a reference to a target con-
text, they usually expect the ported code to behave similarly.

Existing tool support for detecting semantic inconsistencies in
ported code is limited. For example, Li et al. and Juergens
et al. find inconsistent clones using a lexical clone detection
analysis [10], [15]. Jiang et al. and Gabel et al. report clone
related bugs by comparing the syntax tree structures for two
clones [6], [9]. Such syntactic and lexical analyses are not
sufficient to detect the semantic inconsistencies arising from
updates to the ported code in different contexts.

The goal of this work is to assist developers in porting
edits from one context to another, by detecting semantic
inconsistencies that may indicate a porting error. As a first
step towards this goal, we study the extent and characteristics
of porting errors that occur in practice to better understand
the types of porting errors and their fixes. In our study,
we work backwards by first mining the version histories of
Linux and FreeBSD to detect commit messages containing
porting error related keywords. We then analyze three types
of source code commits—fix-inducing, error-inducing, and
reference—and their corresponding patches. A patch is the set
of program statements that are added, deleted, or modified in
a program version with respect to its previous version. Note
that modified statements can also be represented as deleted
statements in the old version and added statements in the
new version. We use Sliverski et al.’s fix-inducing change
identification method [21] to identify the patch that originally
introduced the porting error. We then use Repertoire [18] to
find a reference patch that served as the template for the error-
inducing patch. Through manual investigation of the reference
patch, the error-inducing patch, and the fix patch, we find that
many of the porting errors result from incorrect adaptation of
the ported code, including inconsistent identifier renamings,
different control- and data-flow contexts in the reference and
target implementations, and code redundancy.

Leveraging this characterization of porting errors, we design
and implement SPA, an algorithm to detect and characterize
porting inconsistencies. SPA detects semantic inconsistencies
that arise due to the interactions between program statements
in the ported code and program statements surrounding the
ported code. SPA takes two code patches as input: a reference
patch (Refold and Refnew) and a target patch (Tarold and
Tarnew). SPA analyzes the reference and target patches to
identify the ported code, and then uses static control- and data-
dependence analyses to identify the impact of the ported code
on the reference and target contexts. Finally, SPA compares the

impact of the ported code on the reference and target semantics
to detect and characterize porting inconsistencies.

To evaluate the accuracy of SPA, we perform an empirical
evaluation on four large open-source codebases: FreeBSD,
Linux, Eclipse CDT, and Mozilla, and compare the results with
two state-of-the-art tools, DejaVu [6] and Jiang et al.’s clone
related bug detection tool [9]. The results of our study show
that SPA identifies semantic porting inconsistencies with 65%
to 73% precision and 90% recall and identifies inconsistency
types with 58% to 63% precision and 92% to 100% recall. SPA
outperforms two related error detection tools with a precision
improvement of 14 to 17 percentage points.

We make the following contributions:
• We conduct a comprehensive study of the extent and

characteristics of porting errors reported for real-world
systems. We identify categories of common porting errors
related to inconsistent control flow, inconsistent data flow,
inconsistent identifier renaming, and code redundancy.

• Leveraging information about commonly found porting
errors, we design and implement a novel algorithm, SPA,
to detect potential porting errors based on inconsistent
semantics of ported code between the reference and target
contexts.

• We conduct an empirical evaluation of SPA’s ability to
detect and characterize porting inconsistencies in four
large open-source codebases.

The rest of the paper is organized as follows. Section II
discusses an empirical study of porting errors in Linux and
FreeBSD. Section III discusses SPA’s methodology for de-
tecting and characterizing porting inconsistencies. Section IV
presents an empirical evaluation of SPA’s capability to detect
and characterize porting inconsistencies. Section V discusses
related work. Finally, Section VI summarizes our work and
directions for future work.

II. AN EMPIRICAL STUDY OF PORTING ERRORS

We conduct an empirical study of porting errors documented
in real world projects to better understand the extent and
characteristics of porting errors found in practice. In this study,
we focus on porting errors that arise when porting a patch to
a similar, but not identical, context within the same project.
We first identify porting errors that are reported and fixed by
developers using the version histories from two large, open-
source projects. We then manually analyze these errors to
understand the characteristics of the errors as well as the
fixes. Most of the errors found in the artifacts used in our
study can largely be characterized into five categories. In the
remainder of this section, we present the study setup, results,
and a description of the five categories of porting errors. We
first define several key terms used in this work.

Definition 2.1: A program patch, p := ∆(v1, v2), is the
set of syntactic program differences between two program
versions, v1 and v2, where each element in the set is an atomic
program statement that corresponds to an edit operation, e.g.,
insert, delete, move, and update.

Definition 2.2: Ported code is a pair of atomic program
statements sr and st in patches pr and pt respectively, such
that sr and st are syntactically similar and are also edited
similarly.

Definition 2.3: Context of ported code is the set of program
statements in a method that are not part of the ported code.

A. Study Method

We mine the commit logs and analyze version histories for
Linux and FreeBSD. Table I shows the size of the two projects
in KLOC, the evolution period under study, and the number
of unique developers who made commits during that period.

Developers often document fixes to porting errors in com-
mit messages. To detect how many bug fixes are related to
porting, we find commit logs that contain at least one porting
related keyword: copy, cut, paste, or porting, and at
least one error related keyword: error, bug, mistake,
fix, or defect. A sample commit message in FreeBSD
is “Fix cut&paste bug which would result in
a panic...” The corresponding code patch fixes the port-
ing error.

To understand the nature of porting errors, we work back-
wards from a porting error fix by extracting three patches:
(a) the fix patch, pf , where the porting error is fixed, (b) the
target patch, pt, where the porting error is introduced into the
codebase, and (c) the reference patch, pr, which contains edits
that serve as the template for the ported code. A fix patch pf is
the program patch associated with the mined commit message.
For example, the fix patch corresponding to the commit
message shown above, is represented by the colored lines in
the IR-1 example in Table II. From the program locations
edited in pf , we use cvs annotate or git blame, to
identify the target patch, pt, which introduced the porting error.
This process is similar to how Sliwerski et al. [21] identify
a fix-inducing patch. We then use the REPERTOIRE tool to
identify a set of candidate reference patches that may serve as
the template for the target patch pt [19]. The reference patch,
by definition, has a commit date prior to the revision date of
a target patch; hence, we consider patches available until the
target patch date as candidate reference patches. Finally, we
select the reference patch, pr, through a manual inspection of
the possible candidates. For example, in the IR-1 example in
Table II where the developer forgot to update an identifier bp
to rabp after porting code fragments from the reference patch,
we expect the reference patch to contain the unaltered code
fragment related to bp. When multiple patches contain similar
unaltered code fragments, we select a patch with the maximum
number of similar lines.

B. Porting Errors Characterization

In our study we were able to identify 113 and 182 porting
errors documented in FreeBSD and Linux version histories
over the course of 18 years and 3 years respectively. Based
on the porting errors analyzed in our study, we were able to
classify the errors into five different categories. We use the

code snippets in Table II to discuss each of the categories of
porting errors below.

TABLE I
STUDY SUBJECTS

KLOC developers years
Linux 14,998 6,839 3
FreeBSD 4,479 405 18

ICF: Inconsistent Control Flow. Many porting errors arise
from edits that are ported to a different control flow context
and are not adapted correctly with respect to the context. In
the ICF example shown in Table II, there is an extra for
loop, highlighted in gray , in the reference context. Thus,
the continue statement in the reference code is intended to
match the inner for loop. In the target context, however,
there is only one for loop. Thus, the continue statement
(marked in red) unintentionally matches the wrong for loop.
The corresponding fix patch removes the continue state-
ment in the target context to fix the error.
IR: Inconsistent Renaming. Developers often forget to adapt
variable, type, and constant names according to the target
context and these inconsistent renamings lead to porting errors.
This type of porting error is further split into two sub-
categories:

IR-1: Inconsistent renamings of identifiers. Developers re-
name some occurrences of an identifier i, but forget to update
all occurrences of the identifier i consistently. For example,
pointer bp is updated to pointer rabp three times, missing
the instances marked in red in the IR-1 example in Table II.

IR-2: Inconsistent renamings of related identifiers. Develop-
ers consistently rename an identifier, but forget to update all
related identifiers. In the IR-2 example in Table II, all instances
of the OFDM related macro IWL_FIRST_OFDM_RATE are
updated to the CCK related macro IWL_FIRST_CCK-
_RATE. However, the variable ofdm and the related macro
lowest_present_ofdm are not updated to cck and the
related macro lowest_present_cck. The corresponding
fix patch replaces the token ofdm with the token cck to fix
this error.
IDF: Inconsistent Data Flow. This inconsistency occurs when
developers mistakenly insert code to a different data initializa-
tion context. In the IDF example in Table II, the first argument
of the strcmp method optarg is initialized differently in the
reference and target edits. optarg is an environment variable
initialized by the getopt() call that parses the command
line arguments and stores the next argument to optarg.
Hence, the function call getopt() and the use of variable
optarg should occur as a pair. In the reference context,
optarg is used after getopt() and thus is initialized
properly. In the target context, however, there is no call to
getopt(). Thus, optarg is not initialized properly.
RDN: Redundant operations. Developers may inadvertently
introduce redundant operations when they port code to the
wrong place, e.g., where it already performs the same opera-
tion, or they may not update ported edits correctly to ensure

ICF	
(23)	

IR	
(74)	

RDN	
(47)	

OTH	
(25)	

IDF	
(26)	 3

5
3 1

1

Linux

ICF	
(23)	

IR	
(54)	

RDN	
(14)	

OTH	
(28)	

IDF	
(32)	 20

2 1 1

FreeBSD

Fig. 1. Relationship between different types of porting errors

there are no redundant computations in the target context.
In the RDN example in Table II, a code fragment related
to memcpy was ported to the same function body twice under
the same scope in FreeBSD. The corresponding patch removes
memcpy and the buffer initialization statements to correct
the redundant operations.
OTH: Others. Other porting errors we identified include
incorrect formatting, e.g., indentation, that does not match with
the rest of the target code structure, or unadapted comments
that do not describe the target code correctly. For example,
in FreeBSD file src/sys/geom/stripe/g_stripe.h,
version 1.3, a comment related to “Concat Name” was
updated not to “Stripe Name”.

C. Distribution of Porting Errors in FreeBSD and Linux

TABLE III
DISTRIBUTION OF PORTING ERRORS

ICF IR IDF RDN OTH Total
Linux 23 74 26 47 25 182

12.64% 40.66% 14.29% 25.82% 13.74%
FreeBSD 9 54 32 14 28 113

7.96% 47.78% 28.31% 12.39% 24.78%

By manually inspecting the sets of reference patch, pr,
target patch, pt, porting error fix patch, pf , associated commit
messages, and bug descriptions, we categorize the porting
errors into the five categories described above. Table III shows
a distribution of the 113 cases of FreeBSD and 182 cases of
Linux across the five categories of porting errors. The results
show that a majority of porting errors are due to inconsistent
renaming of identifiers (IR)—47.78% and 40.66% in FreeBSD
and Linux respectively. The errors related to control (ICF) and
data (IDF) flow inconsistency make up more than 25% of the
total porting errors. The rest of the errors are either due to
redundant operations (RDN)—12.39% and 25.82%, or wrong
indentation and comments (OTH)—24.78% and 13.74% in
FreeBSD and Linux respectively.

The error categories are not mutually exclusive. For exam-
ple, an inconsistent renaming error (IR) may also cause an
inconsistent data initialization error (IDF)—17.7% and 1.6%
of the porting errors in FreeBSD and Linux respectively are
both types IR and IDF. An inconsistent data initialization error
(IDF) may also generate redundant operations (RDN)—1.8%
in FreeBSD and 2.7% in Linux. Sometimes, an inconsistent
control flow (ICF) may also initialize the data erroneously

TABLE II
EXAMPLES OF PORTING ERRORS OF DIFFERENT TYPES

ICF : Inconsistent Control Flow
FreeBSD commit: src/sys/kern/sched_4bsd.c, version 1.90, Author: davidxu, Date: 2006/11/14
Log: Fix a copy-paste bug in NON-KSE case.
Reference File: src/sys/kern/sched_4bsd.c Target File: src/sys/kern/sched_4bsd.c
FOREACH_KSEGRP_IN_PROC(p, kg) {

awake = 0;

FOREACH_THREAD_IN_GROUP(kg, td) {

...
+ if (ke->ke_cpticks == 0)
+ continue;

...
+ if(FSHIFT >= CCPU_SHIFT) {
+ ke->ke_pctcpu += (realstathz == 100)
+ ? ((fixpt_t) ke->ke_cpticks) <<
+ ... } ... } ... }

FOREACH_THREAD_IN_PROC(p, td) {
awake = 0;
...

+ if (ke->ke_cpticks ==!= 0)
+ continue;

{
...

+ if(FSHIFT >= CCPU_SHIFT) {
+ ke->ke_pctcpu += (realstathz == 100)
+ ? ((fixpt_t) ke->ke_cpticks) <<
+ ... } ... }

IR-1. Inconsistent renamings of identifiers
FreeBSD commit: src/sys/kern/vfs_bio.c , version 1.351, Author: phk, Date: 2003-01-05
Log: Fix cut&paste bug which would result in a panic because buffer was being biodone’ed multiple times.
Reference File: src/sys/kern/vfs_bio.c Target File: src/sys/kern/vfs_bio.c

+ if ((bp ->b_flags & B_CACHE) == 0) {

...

+ bp ->b_iocmd = BIO_READ;

+ bp ->b_flags &= ˜B_INVAL;

...
+ if (vp->v_type == VCHR)

+ VOP_SPECSTRATEGY(vp, bp);

+ else

+ VOP_STRATEGY(vp, bp);

...
}

+ if ((rabp >b_flags & B_CACHE) == 0) {

...

+ rabp ->b_flags |= B_ASYNC;

+ rabp ->b_flags &= ˜B_INVAL;

...
+ if (vp->v_type == VCHR)
+ VOP_SPECSTRATEGY(vp, bp rabp);
+ else
+ VOP_STRATEGY(vp, bp rabp);
...
}

IR-2. Inconsistent renamings of related identifiers
Linux commit: 5edd0b946a0afeb1d0364a3654328b046fb818a2, Author: Emmanuel Grumbach, Date: 2013-11-20
Log: Fix a copy paste error in iwl calc basic rates which leads to a wrong calculation of CCK basic rates.
Reference File: ../wireless/iwlwifi/dvm/rxon.c Target File: ../wireless/iwlwifi/dvm/rxon.c
...

+if (IWL_RATE_24M_INDEX < lowest_present_ ofdm)

+ ofdm |= IWL_RATE_24M_MASK >> IWL_FIRST_

OFDM _RATE;
...

...
+ if (IWL_RATE_11M_INDEX < lowest_present_ofdmcck)
+ ofdmcck |= IWL_RATE_11M_MASK >> IWL_FIRST_

CCK _RATE;
...

IDF: Inconsistent Data Flow
FreeBSD commit: src/sbin/gpt/gpt.c, version 1.16, Author: marcel, Date: 2006-07-07
Log: Fix cut-n-paste bug: compare argument s against known aliases, not the global optarg.
Reference File: src/sbin/gpt/gpt.c Target File: src/sbin/gpt/gpt.c
main(int argc, char *argv[]) {
...
while ((ch = getopt(argc, argv,...)) != -1)

switch (ch) {
...

+ case ’o’:
+ if (strcmp(optarg, "space") == 0) {
+ opt = FS_OPTSPACE;

... } ... }

parse_uuid(const char *s, uuid_t *uuid) {
...
switch (*s) {

+ case ’e’:
+ if (strcmp(optarg s, "efi") == 0) {
+ uuid_t efi = GPT_ENT_TYPE_EFI;

... } ... } }

RDN: Redundant operations
Linux commit: f9c2fdbab1f1854f2bfcc75c326d0f4537ec2a7e, Author: John W. Linville, Date: 2011-04-29
Log: Looks like a copy-n-paste error, identical lines are a few lines below the ones removed, ...
Reference File: src/sys/dev/mxge/if_mxge.c Target File: src/sys/dev/mxge/if_mxge.c
memset(&tsf_tlv, 0x00, sizeof(struct

mwifiex_ie_types_tsf_timestamp));
...
+ memcpy(*buffer, &tsf_tlv, sizeof(tsf_tlv.header));
+ *buffer += sizeof(tsf_tlv.header);

+ memcpy(*buffer, &tsf_val, sizeof(tsf_val));
+ *buffer += sizeof(tsf_val);

memcpy(&tsf_val,bss_desc->time_stamp,sizeof(tsf_val))
;

..
+ memcpy(*buffer, &tsf_val, sizeof(tsf_val));
+ *buffer += sizeof(tsf_val);

Ported lines start with “+”. The errors are marked in red. The fixes are highlighted in green

(IDF)—0.9% in FreeBSD and 1.6% in Linux. Figure 1 shows
the distribution of the five porting error types in FreeBSD and
Linux.

D. Threats to Validity

Construct Validity. We rely on the method of mining for
porting error related keywords in the commit messages. It is
possible that developers may not document porting errors in
commit messages when fixing porting errors.
Internal Validity. We assume that porting mistakes happen due
to poor adaptation, which may not be always true. The five
types of common porting errors are derived from the analyzed
data and thus are subject to the experimenter’s interpretation
or categorization bias.
External validity. We study porting errors in FreeBSD and
Linux. Both of these projects are written in C. Thus our
categorization of porting errors may be biased towards C
language features. Also, we study porting bugs within a
project boundary. Our observations may differ for cross-system
porting errors. Though our results may not generalize to other
systems, we believe our study of two long-surviving, large
scale operating systems provides meaningful insights.

III. SPA APPROACH

This section presents a semantic porting analysis algorithm,
SPA. It detects and categorizes inconsistencies in sequential
program-flow and incorrect identifier renaming within the
scope of a single method. Our key intuition is that semantic
inconsistencies in porting arise due to the interactions between
ported code and the impacted context, when the contexts differ
between the reference and the target implementations.

A. Overview

An overview of the SPA process is shown in Figure 2.
To detect potential semantic inconsistencies, SPA takes as
input a reference patch that specifies the syntactic differences
between Refold and Refnew and a target patch that specifies
the syntactic differences between Tarold and Tarnew. We
first extract the set of edit operations, such as insertion and
deletion of program statements, from the target (Etar) and
reference (Eref) patches. In step 2 of Figure 2, we estimate
which of the edit operations correspond to the set of program
statements that are ported from Refnew to Tarnew. The AST
nodes corresponding to the ported statements are stored in
the ported node pairs (PNP) set. We then compute the
statements impacted by the ported statements in the reference
(Iref) and the target (Itar) in step 3. We use standard control
and data dependence analyses to compute the impact of the
ported statements on the other statements (the context). In
step 4, the information computed in the previous steps is used
to detect and categorize the potential porting inconsistencies
according to the types presented in Section II1. Finally, the
inconsistencies are reported in step 5.

1Type OTH (unadapted indentation or comments) is not included in the
scope of our diagnosis as this requires textual or lexical analysis and does not
involve the semantics of code fragments.

We illustrate the SPA approach with an example shown in
Table IV. The example is an adapted version of code fragments
from FreeBSD. The code is ported from a reference method,
freebsd4_getfsstat, to a target method, osf1_get-
fsstat. Lines marked with “+” are the ported code. The
reference and target contexts are syntactically different. In
osf1_getfsstat, the ported lines T9 and T10 appear after
two if statements at lines T4 and T6. No such if statements
are present in freebsd4_getfsstat. Also, the variable
buf is initialized at line T12. Thus, T13 is in a different
data initialization context in the target than its corresponding
line R6 in the reference.

The program statements that are changed between the old
and new versions are highlighted in gray and the ported edits
are marked with “+” in Table IV. Ported edits T9, T10 and
T13 in Tarnew correspond to R4, R5 and R6 in Refnew

respectively. The ported edits in Tarnew are control-dependent
on T4 and data-dependent on T1, T2 and T12. Also T11,
T14, and T15 are data-dependent on the ported edits T10
and T13. All of these statements are treated as impacted
statements. Similarly, R1, R2, and R8 are marked as impacted
statements in Refnew. Next, we present the details of how
impacted ported nodes are generated.

B. Identify the Impact of the Ported Code

We present the three main steps to identify the porting con-
text that may impact or may be impacted by the ported code.
The inputs to SPA are two patches specifying the syntactic
differences between Refold and Refnew and between Tarold

and Tarnew: ptar := ∆(Tarold, Tarnew) and pref := ∆(Refold,
Refnew).

Step 1. Identify Edits in the Reference and Target: SPA
computes the syntactic edit operations (insert, delete, move,
or update) required on the abstract syntax trees (ASTs) to
transform Refold to Refnew and Tarold to Tarnew [5]. This
algorithm is inspired by Meng et al.’s edit script generation
and extends its implementation [16], [17]. For the code shown
in Table IV, three edit (insert) operations are identified in the
reference patch, and five edit operations are identified in the
target patch. SPA uses the edit operations to generate the edited
nodes Eref and Etar, corresponding to Refnew and Tarnew

respectively. An edited node ep is an AST node corresponding
to an edited statement in a program patch p. The source lines
corresponding to the edited nodes are highlighted using a gray
background in Table IV.

Step 2. Identify Ported Nodes: SPA determines the cor-
respondence of statements in the ported code between the
reference and the target. It is possible that when a developer
adapts ported code from one context to another, she may also
insert or delete additional code; hence, there may be edited
nodes that do not correspond to ported code. A ported node
pair is a pair of AST nodes (r, t), where r ∈ Eref and
t ∈ Etar, and r and t have a unique correspondence with
each other. This unique correspondence is determined by a
function clone that takes two arbitrary AST nodes as input
and outputs true if the AST node types are identical and their

Refold ,
Refnew

Tarold ,
Tarnew

(1)	
Iden)fy	 Edits	 in	
Reference	 and	

Target	

(2)	
Iden)fy	 Ported	

Nodes	 Target Edit
(Etar)

Reference Edit
(Eref)

(3)	

Iden)fy	 Nodes	
Impacted	 by	
Ported	 Nodes	

Ported Node
 Pairs (PNP)

(5)	 	
Report	

Inconsistencies	

(4)	
Detect	 and	
Categorize	

Inconsistency	 	

Inconsistent Nodes
(ICref ,ICtar)

Nodes Control and
Data Dependent on
Ported Nodes
 (Iref ,Itar)

Fig. 2. SPA Workflow

TABLE IV
EXAMPLE ADOPTED AND SIMPLIFIED PORTING EXAMPLE TAKEN FROM FREEBSD

Refnew Tarnew

R1.int freebsd4_getfsstat(int flags, int bufsize
, ostatfs osb) {

R2. statfs buf = null;
R3. int error = 0;

T1.int osf1_getfsstat(int flags, int bufsize,
osf1statfs osb) {

T2. statfs buf = null;
T3. int error = 0;
T4. if (flags == GETFSSTAT)
T5. return 0;
T6. if (flags == WAIT)
T7. flags = MNT_WAIT;
T8.

R4.+ int count = bufsize / ostatfs.sizeof();
R5.+ int size = count * statfs.sizeof();
R6.+ error = copyout(osb, buf, size);

T9.+ int count = bufsize / ostatfsosf1statfs.
sizeof();

T10.+ int size = count * statfs.sizeof();
T11. if(size > 0)
T12. buf = new statfs();
T13.+ error = copyout(osb, buf, size);

R7.
R8. return error;
R9.}

T14. error = copyout(osb, buf, size);
T15. return error;
T16.}

Edited lines in a new version w.r.t. the old version are presented in dark background. The ported lines begin with +. The red lines are inconsistent statements
detected by SPA.

labels are also similar above a certain threshold based on bi-
gram similarity [20]. A bi-gram similarity detects the ratio of
the total number of bi-grams common between two strings
to the average number of bi-grams representing the strings.
The output ranges from 0 to 1. A high value indicates that
strings are either identical or very similar i.e., when developers
rename identifiers after porting. We set the similarity threshold
to a high value of 0.8 to ensure that the matched labels are
very similar to each other, indicating truly ported nodes. Our
definition of ported node pair is very restrictive to reduce
false positives in the later steps; we only consider one-to-one
correspondences between a reference and a target node, and
ignore node pairs with one-to-many correspondences.

PNP = {(r, t)|r ∈ Eref ∧ t ∈ Etar ∧ clone(r, t)} (1)

PNP is a set of ported node pairs where each pair (r, t) ∈
PNP represents a node ported from a reference patch to a tar-
get patch as defined in Equation 1. Each node in the pair (r, t)
is referred to as a ported node. For example, the nodes corre-
sponding to statements R5 and T10 in Table IV have the same
AST node type (declaration) and label (size= count
+ statfs.size()), hence clone(R5, T10) is true and
(R5,T10) is a ported node pair. However, no AST nodes in
Eref are syntactically similar to the AST node corresponding
to statement T11 in Etar. Therefore, T11 is not a member
of any ported node pairs. All of the statements identified with
“+” in Table IV have corresponding AST nodes in PNP .

Step 3. Identify Impacted Nodes: Next, SPA identifies the
AST nodes in Refnew and Tarnew that are either impacted by
or impact the semantics of the ported nodes. The impacted
nodes include all of the ported nodes, and the subset of
the context nodes that may affect the porting semantics or
may be affected by the ported nodes. SPA identifies the
impacted nodes using static intra-procedural data- and control-
dependence analyses [22] with respect to the ported nodes.
This step bears resemblance to how Sydit identifies the context
of edit operations using control and data analysis [16].
Data Dependence. Statement S2 is data dependent on S1, if
S1 defines a variable v and S2 uses v, such that there exists
a path from S1 to S2 along which v is not killed (redefined).
Control Dependence. Statement S2 is control dependent on
S1, if execution of S2 depends on the decision made at S1.

Definition 3.1: A program dependence graph, PDG :=
〈DN,DE〉, is a set of vertices DN representing program
statements, and a set of edges, DE ⊆ DN×DN , representing
the control and data dependencies between statements.

A control dependence graph (CDG) is a sub-graph of a
PDG, where the edges represent control dependencies between
vertices (program locations), whereas a data dependence graph
(DDG) is a sub-graph of the PDG where the edges represent
data dependencies between vertices.

In SPA, we construct the PDG vertices using AST nodes,
each of which represents an atomic program statement, and the
edges correspond to the control and data dependences between
statements. The impacted nodes in Refnew and Tarnew are

derived from their respective program dependence graphs,
PDGref and PDGtar . Given a set of vertices mapping to
ported nodes Vp ⊆ Refnew and the PDG for Refnew, we
generate the impacted nodes Iref . The impacted nodes map
to vertices in the PDG reachable from Vp along the control
and data dependence edges. Similarly, we find Itar from Vp ⊆
Tarnew. The vertices corresponding to statements T6 and T7
in Table IV are not control or data dependent on ported code,
hence they are not in the impact set.

C. Detect and Categorize Porting Inconsistencies

SPA categorizes porting inconsistencies according to the
types presented in Section II, using ported node pairs, PNP ,
impacted nodes, Iref and Itar, and the data- and control-
dependence information computed in the previous steps.

ICF: Inconsistent Control Flow. To detect ICF inconsis-
tencies, SPA performs the following steps:
• Given a pair of ported nodes, (r, t), we construct isomor-

phic sub-graphs starting from r in CDGref and from t in
CDGtar . A pair of vertices (vr, vt), where vr ∈ CDGref

and vt ∈ CDGtar , is isomorphic if (i) the vertex labels
have identical AST types and similar syntactic structures
(e.g., nodes ‘a = a + b’ and ‘x = y + z’ have same AST
type and syntactic structure), and (ii) the vertices have the
same relative position with respect to the ported nodes.
We extend Komondoor et al.’s program slicing based
clone detection algorithm [14] to construct the isomorphic
sub-graphs.

• Detect inconsistent nodes in the context with respect to
(r, t) and add them to the respective inconsistent sets,
ICref and ICtar . A node in Iref (Itar) is inconsistent if
it is reachable from r (t) in CDGref (CDGtar), but it
is not contained in the respective isomorphic subgraph.

The nodes corresponding to statements R4 and T9 in Ta-
ble IV are a ported node pair. R4 is not control dependent
on any node within the method body, while T9 is control
dependent on T4 along the true control edge. T4 is then added
to ICtar , as it is reachable from ported node T9 although it
does not have a corresponding node in the reference.

IR: Inconsistent Renaming. To detect this inconsistency,
we first construct the isomorphic sub-graphs on CDGref and
CDGtar with respect to the ported node pairs, as described
earlier. For each isomorphic node pair in CDGref and CDGtar,
we extract the corresponding identifiers, i.e., variables, types,
and method names, and align them based on their syntactic
similarity. For example, given two isomorphic nodes with
labels ‘a = b + c’ and ‘x = y + z’, variable a is aligned with
x, variable b is aligned with y, and variable c is aligned with
z. We rank each identifier mapping with a confidence value
based on the number of times the mapping is encountered.
Using these alignments, we generate two identifier maps:
(a) IdMapref , a map from each reference identifier to its
corresponding target identifiers, and (b) IdMaptar, a map
from each target identifier to its corresponding reference
identifiers. If a one–to–many or a many–to–one relation is
found in the maps, then an IR inconsistency is detected. We

consider identifier mappings with the lowest (or, all when
there is a tie) confidence values as the incorrect mappings,
and characterize the vertices in the isomorphic sub-graphs
corresponding to the incorrect mappings as inconsistent.

Table V shows an example of IdMapref generated
from Table IV. SPA generates a map entry (osf1statfs
→ostatfs) from the method signatures and (osf1statfs
→osf1statfs) from the isomorphic nodes R4 and T9.
Since the reference variable osf1statfs maps to two target
variables, osf1statfs and ostatfs, an IR inconsistency
is detected.

TABLE V
IDENTIFIER MAPPING FROM TABLE IV

Isomorphic Nodes Identifier Map (IdMapref)

(R1,T1) flags → flags (1), bufsize → bufsize (1)
osf1statfs → ostatfs (1), osb → osb (1)

(R4,T9) count → count (1) , bufsize → bufsize (2)
osf1statfs → ostatfs (1), osf1statfs (1)

The inconsistent mapping is highlighted in red.

Sometimes developers forget to update related identifiers,
as shown in the IR-2 example in Table II. To detect this
inconsistency, we carry out a similar process at the granularity
of tokens as opposed to identifiers after separating identifier
names using separators ‘-’, ‘ ’, or a camel case convention.
For example, OFDM is mapped to CCK once, while ofdm is
mapped to ofdm twice.

IDF: Inconsistent Data Flow. IDF inconsistency detection
is similar to our ICF diagnosis but uses data dependence
graphs (DDG) instead of CDGs.

In Table IV, R6 and T13 are statements corresponding
to a ported node pair. In the reference implementation, R6
is data dependent on R2 for the definition of variable buf.
However, statement T13 in the target implementation is data
dependent on the definition of buf at T2 and T12. Although
R2 and T2 are isomorphic, the dependence on T12 creates an
additional data dependence in the target implementation that
is not present in the reference implementation. Therefore, the
node corresponding to T12 is added to ICtar.

Similarly, R5 and T10 are statements corresponding to a
ported node pair, and both define variable size. However, in
the reference implementation, size is used at statement R6,
while in the target implementation, size is used at statements
T11, T13, and T14. Although R6 and T13 are isomorphic,
T11 and T14 create additional data dependences in the
target implementation that are not present in the reference
implementation. Therefore, the nodes corresponding to T11
and T14 are added to ICtar.

RDN: Redundant operations. To detect redundant ported
code, SPA checks for pairs of vertices in CDGtar that have
identical labels and types and that are control dependent on
the same impacted vertex. Note that we only look for an RDN
inconsistency in Tarnew. In Table VI, statements T13 and T14
in the target implementation have identical syntax, and both
are control dependent on the impacted statement T4. Thus,
SPA characterizes the nodes corresponding to statements T13
and T14 as redundant.

Table VI shows the nodes that are inconsistent with respect
to the ported code in Table IV, along with their corresponding
inconsistency types.

TABLE VI
CHARACTERIZATION OF PORTING INCONSISTENCIES IN TABLE IV

Inconsistent Control Dependent Nodes
(ICF) T4
Inconsistent Identifier Renaming
(IR) T9 (identifier: ostatfs)
Inconsistent Data Dependent Nodes
(IDF) T11,T12,T14
Redundant Nodes
(RDN) T13,T14

D. Implementation

SPA is implemented using several existing tool chains. First,
we extend LASE [17] and Sydit [16], which extract edit scripts
to automate systematic program changes. SPA also extends the
control and data dependence analysis of Sydit to identify the
impact of ported nodes in the reference and target programs
respectively. The dependency analysis uses crystal [2], a static
analysis framework to analyze Java source code.

IV. EXPERIMENTAL RESULTS

In this section, we present an empirical evaluation of
SPA’s ability to detect and diagnose porting inconsistencies
in FreeBSD, Linux, Eclipse CDT, and Mozilla. We compare
the accuracy of the results computed by SPA with the results
computed by two state-of-the-art tools, Jiang et al.’s clone
related error detection tool [9] and DejaVu [6]. Jiang et al.
model the context of ported code in terms of their immediate
preceding lines, even if the context does not have any control
or data dependence on ported code. Though DejaVu extends
Jiang et al. by refining clone detection results to determine
ported code, it still suffers from the same limitation as Jiang
et al., as the context is identified based on physical location
proximity not on control and data flow dependences with the
ported code.

We also compute SPA’s accuracy to characterize potential
inconsistencies based on the categories defined in Section II.
To this end we investigate two research questions:
• RQ1. Can SPA accurately detect porting inconsistencies?
• RQ2. Can SPA accurately categorize different types of

porting inconsistencies?

A. Study Subjects

To evaluate SPA, we use porting examples from four dif-
ferent projects: FreeBSD, Linux, Eclipse CDT, and Mozilla.
Except for Mozilla, the reference and target patches for each
artifact are computed using REPERTOIRE [18]. From these, we
randomly select (a) 20 examples from FreeBSD, (b) 10 exam-
ples from Linux, (c) 60 examples from Eclipse CDT that are
ported from CDT versions CDT_2_0 to CDT_8_1_1, and (d)
42 Mozilla examples from the annotated data set of copy-paste
errors provided by Gabel et al. [6]. The FreeBSD and Linux
artifacts are from the data sets used in Section II. To retrieve
a large number of porting instances, we choose CDT_2_0
and CDT_8_1_1 versions which are 98 months apart. The

Mozilla examples were obtained from DejaVu’s annotated data
set2, because Dejavu is not an open-source tool. In the Mozilla
examples, we treat an entire program as a program patch
whose old version is empty, because SPA works on program
patches as opposed to entire programs. We use a combination
of commit logs and manual inspection to annotate the types of
potential porting errors in selected target patches of the subject
artifacts.

The current version of SPA analyzes only Java source code,
so we convert the C and C++ porting examples from Linux,
FreeBSD and Mozilla examples using a free C/C++ to Java
code converter [1].

B. Study Methodology

We measure SPA’s capability to detect and categorize port-
ing errors in terms of precision and recall. For each error
type e defined in Section II, suppose that S is the set of
examples where a porting inconsistency is detected by SPA and
its error type is reported by SPA to be e. Suppose that A is the
set of examples where a porting inconsistency is manually
determined to be of type e. Then the precision and recall
of SPA in categorizing porting inconsistencies are defined as
follows:

Precision. the percentage of porting inconsistencies of type

e found by SPA that are also known to be type e i.e.,
|A ∩ S|
|S|

Recall. the percentage of the known inconsistencies of type

e, which are also found to be type e by SPA, i.e.,
|A ∩ S|
|A|

To evaluate the accuracy of SPA’s error detection capability,
we calculate precision and recall without considering individ-
ual error types.

C. Study Results and Discussions

RQ1. Can SPA accurately detect porting inconsistencies?
We compare SPA’s ability to detect porting inconsistencies

with Jiang et al.’s clone related bug detection algorithm [9]3

and DejaVu [6]. Table VII summarizes the comparison of SPA
with Jiang et al. using the Eclipse CDT artifact and with
DejaVu on the Mozilla examples. The first row represents the
number of potential porting errors, regardless of error type,
that were detected by the respective tools. We also report the
number of false positives, false negatives, precision, and recall
of the error detection capability of each tool. The results of our
study show that SPA improves the error detection capabilities
considerably over Jiang et al. SPA improves the precision from
48% to 65%, and marginally improves the recall from 87% to
90%.

Out of the 42 randomly selected examples from the DejaVu
annotated Mozilla data set, our manual inspection shows that
only 25 of them contain true porting inconsistencies. Thus,
DejaVu’s precision is 59.52%. For the same data set, SPA
reports inconsistencies for 34 examples. Thus, SPA’s precision

2http://wwwcsif.cs.ucdavis.edu/∼gabel/research/dejavu mozilla.zip
3Jiang et al.’s clone detector Deckard and the associated clone bug detector

were downloaded from https://github.com/skyhover/Deckard.

http://wwwcsif.cs.ucdavis.edu/~gabel/research/dejavu_mozilla.zip
https://github.com/skyhover/Deckard

in detecting errors on the Mozilla data set is 73.53% as
shown in Table VII. Because this data set does not contain
any examples where DejaVu fails to report an inconsistency,
we are unable to assess the number of false negatives for
either DejaVu or SPA. Furthermore, because our comparison
is limited to the data set where DejaVu already found porting
inconsistencies, the precision of SPA could be lower if the
comparison was done on a different data set.

We find that SPA reduces false positives over Jiang et al.’s
tool and DejaVu in 14 and 8 cases respectively. For example,
consider a case when a variable is initialized differently in the
reference and target contexts. Later, both the reference and
the target contexts reinitialize the variable in the same manner
before using it in the ported code. In this case, SPA correctly
does not report any inconsistency unlike other tools, because
there is no data flow between the inconsistent initialization
and the ported code.

The cases where all three tools incorrectly detect inconsis-
tencies include porting code from a while context to a for
context, porting code from an if context to a switch-case
context, etc.

TABLE VII
INCONSISTENCY DETECTION RESULTS FOR ECLIPSE CDT AND MOZILLA

Eclipse CDT Mozilla
SPA Jiang’s Tool SPA DejaVu

Detected 43 56 34 42
False Positive 15 29 9 17
False Negative 3 4 - -
Precision 65.11% 48.21% 73.53%* 59.52%*
Recall 90.32% 87.09% - -

*The comparison is done on the data set where DejaVu already reported
porting errors.

RQ2. Can SPA accurately categorize different types of
porting inconsistencies?

Table VIII shows the precision and recall for SPA in
categorizing potential porting errors in FreeBSD and Linux
for the error types ICF, IR-1, IR-2, IDF, and RDN. SPA
has precision ranging from 50% for ICF to 100% for RDN.
The recall for SPA ranges from 62.5% for RDN to 100% for
ICF and IDF w.r.t. the porting errors reported in the version
histories (see 2nd row in Table VIII). Version history based
evaluation is often conservative in the sense that when there is

TABLE VIII
INCONSISTENCY CHARACTERIZATION RESULTS ON FREEBSD AND LINUX

ICF IR-1 IR-2 IDF RDN
SPA Detected 10 8 6 9 5

From commit logs 5 8 5 6 8
Precision 50% 87.5% 66.66% 66.66% 100%
Recall 100% 87.5% 80% 100% 62.5%

Manually annotated 7 8 5 8 8
Precision 70% 87.5% 66.66% 87.5% 100%
Recall 100% 87.5% 80% 100% 62.5%

no mention of porting errors in the commit messages, it does
not necessarily imply the absence of porting inconsistencies.
To overcome this limitation, we compare SPA results against
the type and location of inconsistencies that were identified
by manual inspection of individual patches. The comparison
against this annotated set is shown in Rows 5-7 in Table VIII.

Table IX summarizes the number of porting inconsistencies
for each error type, and the precision and recall based on the
manually identified error types for Eclipse CDT and Mozilla
data sets. In Eclipse CDT, SPA detects and characterizes 62
porting inconsistencies—77% are ICF, 16% are IR-1, 12% are
IR-2, and 40% are IDF. In Mozilla, SPA detects 54 instances
of porting inconsistencies, of which 28%, 22%, 7%, and 43%
are of type ICF, IR-1, IR-2, and IDF respectively. No RDN
inconsistency is reported in these two data sets. On average,
SPA achieves 58% precision and 92% recall in Eclipse CDT,
and 63% precision and 100% recall in Mozilla data set.

In detecting ICF inconsistencies, SPA may report false
positives when, for example, code is ported from a for
block to an equivalent while block, because these two loops
have different syntaxes. SPA may generate a false positive of
type IR-1 when the relative ordering of program variables is
changed, but the semantics remain unchanged, e.g., a statement
x = x+y in the reference implementation is modified to x = y+x
in the target. When characterizing IR-2 inconsistencies, SPA
may report false positives when, for instance, the names cannot
be tokenized properly due to inconsistent naming conventions.
For example, if a ported node pair contains the variables
fooBar and foobar, SPA correctly splits the first one into
foo and Bar but does not split foobar. Thus, SPA misaligns
the tokens. In the case of IDF inconsistencies, SPA may report
a false positive when, for example, a variable is declared
and defined in a single program statement in the reference,
but the declaration and definition are separate statements in
the target. Here, SPA reports an inconsistency because the
AST node types are different (declaration versus assignment).
With respect to false negatives, SPA is not able to detect
redundancies that require a deeper semantic analysis, such as
redundant locking calls in a concurrency construct.

In spite of these limitations, there are some suc-
cess stories. A bug was fixed in FreeBSD source file:
src/sys/dev/mxge/if_mxge.c, version 1.27, with a
commit message: “Fix an mbuf leak caused by a cut&paste
bug where the small ring’s mbufs were never freed, but the
big ring was freed twice”. A buffer rx_big was mistakenly
freed twice. SPA detects this bug successfully and categorizes
it as an RDN bug, which is also confirmed by the developers
and took 26 releases and 432 days to detect and fix. Jiang et
al’s tool is not able to detect this bug since it does not handle
redundancy.

Another identifier renaming bug was fixed in Linux
at commit id 2b9460. Code was ported from method
mlx4_ib_post_send to mlx4_ib_post_recv, but
variable send_cq was never updated to recv_cq. This bug
caused a queue overflow in the infiniband driver module
(a high-speed network driver) and took 974 days to fix. SPA

TABLE IX
SPA INCONSISTENCY DIAGNOSIS RESULTS

Eclipse CDT Mozilla
ICF IR-1 IR-2 IDF Total ICF IR-1 IR-2 IDF Total

SPA Detected 33 (53%) 7 (11%) 5 (8%) 17 (27%) 62 15(28%) 12 (22%) 4 (7%) 23 (43%) 54
Annotated 23 7 4 5 39 13 6 2 13 34
False Positive 12 2 2 12 26 2 6 2 10 20
False Negative 2 2 1 0 3 0 0 0 0 0
Precision 63.63% 71.43% 60% 29.41% 58.06% 86.66% 50.0% 50.0% 56.52% 62.96%
Recall 91.30% 71.43% 75% 100% 92.31% 100% 100% 100% 100% 100%

we do not detect any RDN inconsistency here.

successfully detected this error. Other tools were unable to
detect this error because they do not check whether related
variables were updated consistently (IR-2).

V. RELATED WORK

Juergens et al. [10] conduct an empirical study on the
impact of inconsistent clones in a code base. They detect
inconsistent clones using a suffix-tree based, lexical clone
detection algorithm. Their interviews with developers confirm
that inconsistencies in the found clones are indeed bugs and
report that “nearly every second, unintentional inconsistent
changes to clones lead to a fault.”

Chou et al. show that porting is an important source of
bugs in operating systems [4]. In 65% of the ported code, at
least one identifier is renamed, and in 27% cases at least one
statement is inserted, modified, or deleted [15]. An incorrect
adaptation of ported code often leads to porting errors [9]. This
observation is aligned with our findings—where we find 113
and 182 porting errors by mining FreeBSD and Linux version
histories respectively.

Using CP-Miner, a mining based clone detection tool, Li et
al. find 28 and 23 errors in Linux and FreeBSD respectively,
which developers created by forgetting to rename identifiers
consistently after copy and paste [15]. Jablonski et al. [7]
detect similar errors by tracking copy-paste code within an
Eclipse IDE and by comparing the corresponding AST rep-
resentations. Though the results of these studies are aligned
with our findings of IR inconsistencies, we observe that such
inconsistent renaming is a special case of a more general cate-
gory of porting inconsistencies—forgetting to adapt identifiers
according to the target context (IR-1 and IR-2).

SPA detects a broader scope of inconsistent renamings by
tokenizing function names, file names, and identifier names us-
ing a camel case naming convention and mapping correspond-
ing tokens. Our algorithm detects an inconsistency when a
token in one context maps to multiple tokens in the other con-
text. For example, when code is ported from Export.java
to Import.java, SPA checks whether all names related
to export are updated to import.

Jiang et al. show that an inconsistent context can also
cause porting errors [9]. However, their definition of context is
limited to the innermost control flow construct surrounding the
cloned code. They identify syntactic clones using AST level
similarity [8], and then detect inconsistencies by comparing
the contexts. While their diagnosis partially overlaps with our

categorization of porting errors (ICF and IR-1), they do not
report renaming errors on groups of identifiers (IR-2), data
flow inconsistencies (IDF), or redundant operations (RDN).
Also, their error detection analysis is purely syntactic, and
thus suffers from a higher rate of false positives than our
semantic, control- and data-flow based approach. SPA reports
17 percentage point better precision and 3 percentage point
more recall in detecting porting inconsistencies than Jiang et
al. on the Eclipse CDT data set.

DejaVu extends the work by Jiang et al. by using several
filtering heuristics, such as assessing textual similarity and
pruning non-cloned contexts, to improve its precision [6].
As shown in our evaluation, SPA’s error detection still out-
performs DejaVu with 14 percentage point better precision.
Also, DejaVu does not report potential error types, while SPA
automatically characterizes the detected inconsistencies to help
developers detect porting errors.

VI. CONCLUSION

When porting code from one context to another, the se-
mantics of the ported code often change due to differences
in the surrounding contexts. Developers may overlook such
subtle differences, inadvertently creating a porting error. By
analyzing the version histories for Linux and FreeBSD, we
identify five common categories of porting errors, and then use
this categorization to design SPA, a novel algorithm to detect
and characterize semantic inconsistencies in ported code. Our
evaluation of SPA on several large open-source code bases
shows that SPA can detect porting inconsistencies with high
precision and recall, and it outperforms the precision of two
state-of-the-art techniques with 14 to 17 percentage point.

As part of our future work, we plan to investigate methods
for further reducing false positives, such as comparing the
dynamic program behaviors of ported code. Based on the
observation that not all inconsistencies lead to an error, we
also plan to investigate heuristics to rank the inconsistencies
based on their error potential. Finally, we plan to integrate SPA
with an integrated development environment so that developers
can detect porting inconsistencies during the porting process.

ACKNOWLEDGMENT

We thank Na Meng for the discussions that inspired the
design of the SPA algorithm and for her help in reusing the
implementation of Sydit and LASE. This work was supported
in part by the National Science Foundation under grants CCF-
1149391, CCF-1117902, SHF-0910818, and CNS-1239498.

REFERENCES

[1] C++ to java converter: http://www.tangiblesoftwaresolutions.com.
[2] Crystal a static analysis framework for education and research:

http://code.google.com/p/crystalsaf/.
[3] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey. Cloning by accident:

an empirical study of source code cloning across software systems. In
Empirical Software Engineering, 2005., page 10 pp., nov. 2005.

[4] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical
study of operating systems errors. In Proceedings of the eighteenth ACM
symposium on Operating systems principles, SOSP ’01, pages 73–88,
New York, NY, USA, 2001. ACM.

[5] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall. Change distilling—
tree differencing for fine-grained source code change extraction. IEEE
Transactions on Software Engineering, 33(11):18, November 2007.

[6] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su. Scalable
and systematic detection of buggy inconsistencies in source code. In
Proceedings of the ACM international conference on Object oriented
programming systems languages and applications, OOPSLA ’10, pages
175–190, New York, NY, USA, 2010. ACM.

[7] P. Jablonski and D. Hou. Cren: a tool for tracking copy-and-paste code
clones and renaming identifiers consistently in the ide. In Proceedings
of the 2007 OOPSLA workshop on eclipse technology eXchange, eclipse
’07, pages 16–20, New York, NY, USA, 2007. ACM.

[8] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and
accurate tree-based detection of code clones. In Proceedings of the 29th
international conference on Software Engineering, ICSE ’07, pages 96–
105, Washington, DC, USA, 2007. IEEE Computer Society.

[9] L. Jiang, Z. Su, and E. Chiu. Context-based detection of clone-related
bugs. In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 55–64,
New York, NY, USA, 2007. ACM.

[10] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code
clones matter? In Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, pages 485–495, Washington, DC,
USA, 2009. IEEE Computer Society.

[11] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic
token-based code clone detection system for large scale source code.
IEEE Transactions on Software Engineering, 28(7):654–670, 2002.

[12] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic
study of copy and paste programming practices in oopl. In ISESE
’04: Proceedings of the 2004 International Symposium on Empirical

Software Engineering, pages 83–92, Washington, DC, USA, 2004. IEEE
Computer Society.

[13] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study
of code clone genealogies. In ESEC/FSE-13: Proceedings of the
10th European Software Engineering Conference held jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 187–196, New York, NY, USA, 2005. ACM.

[14] R. Komondoor and S. Horwitz. Semantics-preserving procedure extrac-
tion. In POPL ’00: Proceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 155–169,
New York, NY, USA, 2000. ACM Press.

[15] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: a tool for finding
copy-paste and related bugs in operating system code. In Proceedings
of the 6th conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, OSDI’04, pages 20–20, Berkeley, CA, USA,
2004. USENIX Association.

[16] N. Meng, M. Kim, and K. S. McKinley. Systematic editing: generating
program transformations from an example. In Proceedings of the
32nd ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’11, pages 329–342, New York, NY, USA, 2011.
ACM.

[17] N. Meng, M. Kim, and K. S. McKinley. Lase: locating and applying
systematic edits by learning from examples. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, pages
502–511, Piscataway, NJ, USA, 2013. IEEE Press.

[18] B. Ray and M. Kim. A case study of cross-system porting in forked
projects. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE ’12, pages
53:1–53:11, New York, NY, USA, 2012. ACM.

[19] B. Ray, C. Wiley, and M. Kim. Repertoire: A cross-system porting
analysis tool for forked software projects. In FSE-20: ACM SIGSOFT

the 20th International Symposium on the Foundations of Software
Engineering. ACM, 2012, to appear.

[20] E. M. Riseman and A. R. Hanson. A contextual postprocessing system
for error correction using binary n-grams. IEEE Trans. Comput.,
23(5):480–493, May 1974.

[21] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? In Proceedings of the 2005 international workshop on Mining
software repositories, MSR ’05, pages 1–5, New York, NY, USA, 2005.
ACM.

[22] M. Weiser. Program slicing. In Proceedings of the 5th international con-
ference on Software engineering, ICSE ’81, pages 439–449, Piscataway,
NJ, USA, 1981. IEEE Press.

	Introduction
	An Empirical Study of Porting Errors
	Study Method
	Porting Errors Characterization
	Distribution of Porting Errors in FreeBSD and Linux
	Threats to Validity

	SPA Approach
	Overview
	Identify the Impact of the Ported Code
	Detect and Categorize Porting Inconsistencies
	Implementation

	Experimental Results
	Study Subjects
	Study Methodology
	Study Results and Discussions

	Related Work
	Conclusion
	References

