
BigDebug: Interactive Debugger for Big Data Analytics in Apache Spark
Muhammad Ali Gulzar, Matteo Interlandi, Tyson Condie, Miryung Kim

University of California, Los Angeles

Problem

• Debugging the massive parallel computations that run in today’s
datacenters is time consuming and error-prone.

• The use of cloud computing makes application development feel
more like batch jobs and the nature of debugging is therefore
post-mortem.

• Developers are notified of runtime failures or incorrect outputs after
many hours of wasted computing cycles on the cloud.

Contributions of Our Work

• BigDebug’s simulated breakpoint enables program state
inspection without actually pausing the entire computation.

• Its on-demand watchpoints retrieve intermediate data using a
dynamic guard predicate.

• BigDebug provides data provenance capability, which can help
understand how errors propagate through data processing steps.

• BigDebug enables users to change program logic in response to
an error at runtime through a realtime code fix feature and
selectively replay the execution from that step.

Motivating Example

• Alice intends to compute the average age of all college students
in each year (freshman, sophomore, junior, and senior).

• She starts by reading the data into key-value pairs and then
groups the records for each category.

• Once she has all related records grouped together, she computes
the average and then collects the final results.

Spark Application
val log = "s3n://xcr:wJY@ws/logs/enroll.log"
val text_file = spark.textFile(log)
val avg = text_file
 .map(line=>(line.split()[2],line.split([3].toInt))
 .groupByKey()
 .map(v => (v._1 , average(v._2))) .collect()

Input Data

 1 Michael Sophomore 21
 2 Justin Freshman 19
 3 Thomas Senior 24
 ……

• Using this interface, a user can view the DAG of the data flow
program. On the right hand side, a user can use the code editor
window to see the Spark program in execution.

Crash Culprit Remediation

• These alerts turn the corresponding transformation node of the
DAG to be red.

• When Alice clicks on the red node in the DAG, she is redirected
to the crash culprit page where Alice may skip or modify the
crash inducing intermediate record.

Forward and Backward Tracing
• Alice can invoke the tracing query using “Trace to Input” button to

perform step-by-step backward tracing, showing all
intermediate records tracing back to crash-inducing input records.

Fine-Grained Latency Monitoring

• BigDebug alerts Alice on the
intermediate record responsible for
the crash.

• To localize performance
anomalies at the record level,
BigDebug reports the top “k”
straggler records to the
debugger UI.

Interactive Debugging Primitives

Simulated Breakpoint and On Demand Watchpoint
• When a breakpoint is in place, a program state is regenerated,

on-demand, from the last materialization point, while the original
process is still running in the background.

• Alice can perform realtime code fix using code editor in
BigDebug’s UI.

• Alice can resume and step-over
i ns t ruc t ions us ing s imu la ted
breakpoint controls.

• On-demand guarded watchpoint
allows Alice to retrieve intermediate
data matching a user-defined
dynamic guard and transfer the
selected data on demand.

Performance Evaluation and Time Savings
Performance	Impact	[ICSE	‘16]

1

10

100

1000

10000

0.5 0.9 4 8 30 70 200 1000

Ti
m
e	
(s
)

Dataset	Size	(GB)

BigDebug	Scale	Up

BigDebug Spark

With	maximum	instrumentation,	BigDebug takes	2.4X	the	
time	of	baseline	Spark	while	the	average	case	is	at	1.34X	

Time	Saving	[ICSE	’16]	

BigDebug finds	a	crash	inducing	record	with	100%	accuracy	and
saves	upto 100%	time	saving	through	runtime	crash	remediation

0

50

100

150

200

250

S1 S2 S3 S4

Ti
m
e	
(s
)

Location	of	crash	(Stage)

BigDebug
Arthur

Performance Evaluation
• With the maximum instrumentation

setting, BigDebug takes 2.5 times
longer than the baseline Spark.

• If we disable the most expensive
record-level latency profiling,
overhead is less than 34%, on
average.

Time Saving
• BigDebug saves upto 100% time

saving over baseline through
runtime crash remediation.

