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Abstract

Software engineers often inspect program differences
when reviewing others’ code changes, when writing
check-in comments, or when determining why a pro-
gram behaves differently from expected behavior after
modification. Program differencing tools that support
these tasks are limited in their ability to group related
code changes or to detect potential inconsistencies in
those changes. To overcome these limitations and
to complement existing approaches, we built Logical
Structural Diff (LSdiff), a tool that infers systematic
structural differences as logic rules. LSdiff notes
anomalies from systematic changes as exceptions to the
logic rules.

We conducted a focus group study with professional
software engineers in a large E-commerce company; we
also compared LSdiff ’s results with textual differences
and with structural differences without rules. Our
evaluation suggests that LSdiff complements existing
differencing tools by grouping code changes that form
systematic change patterns regardless of their distri-
bution throughout the code, and its ability to dis-
cover anomalies shows promise in detecting inconsis-
tent changes.

1 Introduction

Suppose Alan asks Cathy, his team lead, to review
his most recent software change. Alan’s check-in mes-
sage, “Common methods go in an abstract class. Easier
to extend/maintain/fix,” suggests some questions to
Cathy: “Was it indeed an extract superclass refactor-
ing?” “Did Alan miss any parts of the refactoring?”
and “Did Alan make some other changes along the
way?” Cathy is left to answer these questions by
a tedious investigation of the associated diff output,
which comprises 723 lines across 9 files. She may need

to check some surrounding unchanged code, or perhaps
even the entire codebase to determine if potential
updates have been missed.1

Similar questions arise with respect to code change
in other situations such as when programmers write
check-in comments or when they try to determine why
a program behaves differently from expected behavior.

Existing program differencing approaches gener-
ally try to help programmers answer these kinds of
high-level questions by returning numerous lower-level
changes. In many cases, this collection of lower-level
changes has a latent structure because the programmer
applied a high-level operation such as a refactoring or a
crosscutting modification; existing approaches identify
the low-level changes but not systematic relationships
created by the programmer’s implementation of the
high-level change.

For example, the ubiquitous program differencing
tool diff computes differences per file, obliging the
programmer to read changed-lines file by file, even
when those cross-file changes were done systematically
with respect to the program’s structure. Similarly
other differencing tools that work at different levels of
abstraction (e.g., abstract syntax trees [31] and control
flow graphs [1]) report individual differences without
structure. Some approaches attempt to mitigate this
problem by grouping the differences by physical loca-
tions (directories and files), by logical locations (pack-
ages, classes, and methods), by structural dependencies
(define-use and overriding), or by similarity of names.
However, they generally do not capture systematic
changes along other dimensions. For example, Eclipse
diff and UMLDiff [30] organize differences by logical
locations but do not group changes that are orthogonal
to a program’s containment hierarchy. In contrast,
techniques that identify crosscutting concerns [16] do
not find regularities within a program’s containment

1This scenario is based on a real example found in our
evaluation (carol revision 430) and Ko et al.’s study [22].



hierarchy such as adding similar fields in the same class.
Because existing approaches do not recognize regu-

larities in code changes, the programmer is burdened
with detecting inconsistencies that may lead to poten-
tial bugs.

To overcome these limitations and to complement
existing differencing approaches, we designed Logical
Structural Diff (LSdiff) to concisely infer systematic
changes and report exceptions that deviate from these
systematic changes. LSdiff abstracts a program as code
elements (e.g., methods and fields) and their structural
dependencies (e.g., field-accesses and overriding). This
abstraction is used to identify systematic changes
that are characterized by consistent changes to code
elements that share common structural characteristics
such as accessing the same field or implementing the
same interface.

LSdiff infers logic rules to discover and represent
systematic structural differences. Any differences not
represented by the inferred rules are retained as logic
facts. Consider how LSdiff can help Cathy better
understand Alan’s changes and find answers to her
questions by reporting the following results:2

Fact 1. AbsRegistry is a new class.
Rule 1. All host fields in NameSvc’s subtypes were deleted
except LmiRegistry class.
Rule 2. All setHost methods in NameSvc’s subtypes were
deleted except LmiRegistry class.
Rule 3. All getHost methods in NameSvc’s subtypes deleted
calls to SQL.exec except LmiRegistry class.

The first fact and the first two rules show that Alan
created the AbsRegistry class by pulling up host fields
and setHost methods from the classes implementing the
NameSvc interface except from the LmiRegistry class. The
third rule shows that he deleted calls to the SQL.exec

method again except from the LmiRegistry class. The
result in this form makes it simple for Cathy to double
check with Alan about why LmiRegistry was left out and
why he deleted calls to the SQL.exec method.

This rule-based approach is motivated by our pre-
vious work that identifies systematic refactorings at
a method-header level [20]. LSdiff extends both its
rule representation and inference algorithm to describe
changes within a method body as well as at a field level.
Furthermore, a new rule syntax relies on the use of
conjunctive logic literals instead of regular expressions
to allow programmers to understand shared structural
characteristics, not only a shared naming pattern, e.g.,
“all setHost methods in Service’s subclasses” instead of
“all methods with the name *Service.setHost(*).”

2For presentation purposes, we described the inferred rules in
English. The details on the syntax and semantics of rules appear
in Section 3.

To evaluate LSdiff, we conducted a focus group
study with professional software engineers in a large
E-commerce company. The participants’ comments
show that LSdiff is promising both as a complement
to diff’s file-based approach and also as a way to help
programmers discover potential bugs by identifying
exceptions to inferred systematic changes. We also
compared our results with (1) structural differences
that an existing differencing approach would produce
at the same abstraction level (for an evenhanded
comparison) and (2) textual deltas computed by diff.
These quantitative assessments show that, on average,
LSdiff produces 9.3 times more concise results by
identifying 75% of structural differences as systematic
changes. LSdiff’s outputs contain an average of 9.7 ad-
ditional facts that cannot be found in näıve structural
differences by including contextual information such as
LmiRegistry’s host field not being deleted.

The rest of this paper is organized as follows.
Section 2 presents related work. Section 3 and Sec-
tion 4 describe how LSdiff represents and identifies
systematic changes. Section 5 discusses the focus group
study. Section 6 describes quantitative and qualitative
assessments of LSdiff. Section 7 discusses LSdiff’s
limitations and future work, and Section 8 concludes.

2 Related Work

Program Differencing Tools. These tools compute
the delta between two program versions based on
various underlying representations including text lines,
abstract syntax trees, control flow graphs, program
dependence graphs, program structures, etc. To the
best of our knowledge, in contrast to LSdiff, these tools
do not identify systematic changes nor note anomalies
in them [19].
Systematic Changes. LSdiff relies on the observa-
tion that high-level changes are often systematic at a
code level. This observation arises from our studies of
code clones [21] as well as from numerous other research
efforts, primarily within the domain of refactorings and
crosscutting concerns.

Refactorings are usually systematic in the sense
that multiple code elements with similar structural
characteristics undergo similar transformations [11].
Refactoring reconstruction tools find a collection of
rename and move refactorings that map one program
version to a successive version. (Refactoring recon-
struction tools are described and compared elsewhere
[7, 19]). LSdiff differs from these tools by identifying
a broader class of systematic changes that include
behavior-changing modifications.

Crosscutting concerns [17, 28] can be seen as an-
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other type of systematic change. Tarr et al. [28]
argued that dominant design decisions make secondary
design decisions such as logging be inserted across
a program. Many techniques automatically or semi-
automatically locate crosscutting concerns in a pro-
gram using program structure information, clone de-
tection techniques, natural language processing, or
program change history [16]. For example, Dagenais et
al. [6] automatically infer structural patterns among
the participants of the same concern and represent
such concerns using a rule syntax for tracing concerns
over program versions. LSdiff differs from these by
inferring general kinds of systematic changes that may
or may not be crosscutting concerns and by detecting
anomalies from systematic changes.
Identification of Related Changes. Several ap-
proaches use change history to identify code elements
that tend to change together [12, 32, 33]. Like LSdiff,
these approaches suggest a potential missing change.
However, they do not explicitly group systematic
changes nor report their common structural character-
istics, leaving it to programmers to figure out why some
code fragments change together. For example, Rose
[33] may report that methods foo and bar frequently
changed together in the past but does not report that
both methods are called by the same method fun. Crisp
[4], a part of Chianti change impact analysis tool [26],
computes AST-level structural differences and groups
related differences using four predefined rules. While
Crisp’s goal is to create a compilable intermediate
version for fault localization, LSdiff’s goal is to help
programmers understand code changes by recovering a
latent systematic structure in program differences.
Logic-based Program Representation. Repre-
senting a program’s code elements and structural
dependencies as a set of logic facts has been used for
decades. Approaches such as JQuery [15] or CodeQuest
[13] automatically evaluate logic queries specified by
programmers to assist program investigation. Mens
et al.’s intentional view [24] allows programmers to
specify concerns or design patterns using logic rules.
Eichberg et al. [9] use Datalog rules to continuously
enforce constraints on structural dependencies as soft-
ware evolves. LSdiff differs from these by (1) focusing
on systematic differences between two versions, as
opposed to regularities within a single version and (2)
inferring rules without requiring the programmers to
specify them explicitly.

One could apply fact extractors such as grok [14] to
each of two program versions and use a set-difference
operator to compute fact-level differences. Section
6 shows that although this approach computes ac-
curate structural differences, those deltas would be

quite large, often hundreds of facts, and thus more
demanding on the programmer than LSdiff’s condensed
rule representation.
Source Transformation Languages and Tools. To
automate repetitive and error-prone program update,
several tools allow programmers to write scripts that
systematically modify a program to create a new
version. For example, TXL [5] allows programmers
to write and apply systematic changes to a pro-
gram. Boshernitsan et al.’s iXJ [3] provides a visual
language and a tool for describing and prototyping
source transformations. Erwig and Ren [10] designed
a rule-based language to express systematic updates in
Haskell. Coccinelle [25] allows programmers to safely
apply crosscutting updates to Linux device drivers.
These tools focus on applying systematic changes to a
program, while LSdiff in contrast focuses on recovering
systematic changes from a pair of versions.
Framework Evolution. Dagenais and Robillard’s
SemDiff [7] monitors adaptive changes within a frame-
work to recommend similar changes to its clients.
SemDiff and LSdiff are similar in that both identify
additions and deletions of methods and method-calls.
Consistent with its focus on framework evolution,
SemDiff carries out a partial program analysis to find
changes in the callers of a particular deleted API.
In contrast, LSdiff uses the full logic-based program
representation of two versions to infer change rules.
Schäfer et al. proposed an approach that infers API
usage replacement patterns as change-rules to assist
framework evolution [27]. Although LSdiff infers a
broader class of systematic changes, their underly-
ing technology, developed independently, is similar to
ours. At a more detailed level, LSdiff rules are more
expressive than theirs. First, we infer first order
logic rules with variables as opposed to association
rules (propositional rules without variables). Variables
in our rule representation allow explicit references
to the same code elements, removing the need for
context-based filtering. Second, their predefined rule
patterns limit discovery of systematic changes that
exhibit combination of different types of structural
characteristics such as subtyping and method-calls.

3 Delta Representation

LSdiff represents each program version using a set of
predicates that describe code elements, their contain-
ment relationships, and their structural dependencies:
1. package (packageFullName)

2. type (typeFullName, typeShortName, packageFullName)

3. method (methodFullName, methodShortName, typeFullName)

4. field (fieldFullName, fieldShortName, typeFullName)
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Table 1. A fact-base representation of two program versions and their differences
Po (an old version) Pn (a new version) FBn (a fact-base of the new version) ∆FB

class BMW implements Car class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { void start (Key c) { method(“BMW.start”, “start”, “BMW”)

... Key.chk (null); ... calls(“BMW.start”, “Key.chk”). . . +calls(“BMW.start”, “Key.chk”)
class GM implements Car class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... Key.chk (c ); calls(“GM.start”, “Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . . . . +calls(“GM.start”, “Key.chk”)
class Kia implements Car class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { void start (Key c ) { method(“Kia,start”, “start”, “Kia”)
c.on = true; .... ... . . . -accesses(“Key.on”, “Kia.start”)

class Bus { class Bus { type(“Bus”)
void start (Key c) { void start (Key c); method(“Bus,start”, “start”, “Bus”) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } log(); } } calls(“Bus.start”, “log”) +calls(“Bus.start”, “log”)

class Key { class Key { type (“Key”)
boolean on = false; boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... void chk (Key c) { method (“Key.chk”, “chk”, “Key”)
void out () { ... void output (Key c){ ... method (“Key.output”, “output”, “Key”) . . .
• For presentation purposes, fully qualified names are shortened, and the added and deleted facts in ∆FB are noted with + and − sign respectively.

FBo is omitted to save space; it can be inferred based on FBn and ∆FB.

5. return (methodFullName, returnTypeFullName)

6. fieldoftype (fieldFullName, declaredTypeFullName)

7. typeintype (innerTypeFullName, outerTypeFullName)

8. accesses (fieldFullName, accessorMethodFullName)

9. calls (callerMethodFullName, calleeMethodFullName)

10. subtype (superTypeFullName, subTypeFullName)

11. inheritedfield (fieldShortName, superTypeFullName,

subTypeFullName)

12. inheritedmethod (methodShortName, superTypeFullName,

subTypeFullName)

LSdiff captures only structural differences, which
are used to characterize systematic changes. Other
types of differences, such as differences in control and
temporal logic, are omitted as they have a relatively
small role in discovering systematic changes; omitting
these differences makes it impossible to use LSdiff’s
representation to reconstruct a version from another
version and a delta.

Table 1 shows the fact-base representation of an
example program. It shows two program versions
(Po and Pn), the fact-base representation of the new
version (FBn) and the fact-level differences between
two versions (∆FB). Using ∆FB, which is computed
by taking the set difference of FBo and FBn, has
two weaknesses. First, as an unstructured list of
a potentially large number of facts, it is likely to
be time-consuming to read and understand in many
cases. Second, although it includes dependencies in
the changed code fragments, it does not capture the
surrounding context of those changed fragments. For
example, suppose that a program change involves
removing all accesses to Key.on and invoking the Key.chk

method from Car’s subtypes’ start methods. ∆FB lists
the three deleted accesses facts separately and does not
include contextual information that new method-calls
to Key.chk happened in Car’s subtypes’ start methods.

Our approach overcomes these two weaknesses by
inferring logic rules from the union of all three fact-
bases: FBo, FBn, and ∆FB. To distinguish which fact-
base each fact belongs to, we prefix past and current

to the facts in FBo and FBn respectively and deleted

and added to the corresponding facts in ∆FB. Inferring
rules from all three fact-bases has two advantages:
First, our rule-based delta is concise because a single
rule can imply a number of related facts. Second, by
inferring rules from not only the delta but also from
unchanged code, our approach finds contextual facts,
for example subtype(“Car”, “Kia”) that signals a missing
+calls(“Kia.start”, “Key.chk”).

Each rule describes a systematic change by relating
groups of facts in the three fact-bases. Our rules
follow a Datalog rule syntax—a horn clause where a
conjunction of logic literals in the antecedent implies
a single literal in the consequent and all variables in
the rules are universally quantified.3 LSdiff further
restricts rules to a set of styles that identify regularities
about changes between the two versions rather than
regularities in either of the versions alone. These
restrictions, exhibited in Table 2 include: only deleted *
or added * can appear in the consequent of a rule;
and the antecedent of a rule cannot have predicates
with different prefixes. These rule styles are effective
in expressing general kinds of systematic changes,
including:
• dependency removal or feature deletion by stating
that all code elements with similar characteristics in
the old version were removed (e.g., past * ⇒ deleted *),
• consistent updates to clones by stating that all code
elements with similar characteristics in the old version
added similar code (e.g., past * ⇒ added *),

3We chose Datalog rules because the evaluation of Datalog
rules ensures termination and is faster than full Prolog.
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Table 2. LSdiff rule styles
Rule Styles Example Rule and Its Interpretation

Antecedent ⇒ Consequent
past * ⇒ deleted * past calls(m, “DB.exec”) ⇒ deleted calls(m, “DB.exec”)

All methods that called DB.exec in the old version deleted calls to DB.exec.
past * ⇒ added * past accesses(“Log.on”,m) ⇒ added calls(m, “Log.trace”)

All methods that accessed Log.on in the old version added calls to Log.trace.
current * ⇒ added * current method(m, “getHost”, t) ∧ current subtype(“Svc”, t) ⇒ added method(m, “getHost”, t)

All getHost methods in the Svc’s subtypes are newly added ones.
deleted * ⇒ added * deleted method(m, “getHost”, t) ⇒ added inheritedfield(“getHost”, “Service”, t)
added * ⇒ deleted * All types that deleted getHost method inherit getHost from Service instead.

Table 3. LSdiff rule inference example
∆FB′ ∆FB′′

(after inferring the first rule) (after inferring the second rule)
1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)

⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)
2. added calls(“BMW.start”, “Key.chk”) 2. past method(m, “start”, t)
3. added calls(“GM.start”, “Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”, “log”) ⇒ added calls(m, “Key.chk”)

except t = Kia
3. added calls(“Bus.start”, “log”)

• replacement of API usages by relating deletions and
additions of dependencies (e.g., deleted * ⇒ added *),
• feature addition by stating that all code elements
with particular characteristics in the new version are
added by the change (e.g., current * ⇒ added *), etc.

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s consequent with constants that satisfy
r’s antecedent. A rule r has an exception if there is
no match in ∆FB implied by a true grounding of its
antecedent. We explicitly encode exceptions as a part
of a rule to note anomalies to a systematic change.
Example. Suppose that a programmer removes all
accesses to the Key.on field and adds calls the Key.chk

method from Car’s subtypes’ start methods. Table 1
presents the fact-bases and Table 3 shows the ∆FB
reduction process through rule inference (See Section
4). By inferring a rule, “all accesses to the Key.on field
were deleted from the old version (#1 in ∆FB′),” three
deleted accesses facts are replaced by the rule, reducing
∆FB to ∆FB′. The second rule, “all Car’s subtypes’ start
methods added calls to the Key.chk method (#2 in ∆FB′′),”
has two added calls fact matches and one exception. The
remaining added calls(“Bus.start”, “log”) is output as is,
because it does not form a systematic change pattern.

4 Algorithm

Our algorithm accepts two program versions and
outputs logic rules and facts. It has three parts: (1)
generating fact-bases, (2) inferring rules from the fact-
bases, and (3) post-processing the inferred rules.
Part 1. Fact-base Generation. We create FBo

and FBn from the old and new version respectively by

extracting logic facts using JQuery [15], a logic query-
based program investigation tool. JQuery analyzes
a Java program using the Eclipse JDT Parser. We
first compute ∆FB using set-difference. Using inferred
method-header level refactorings from our previous
work [20], we then remove spurious added and deleted

facts caused by code renaming. For example, ∆FB
in Table 1 does not contain −method(“Key.out”, . . . )

and +method(“Key.output”, . . . ) by accounting for the
renaming.
Part 2. Rule Inference. This step infers rules that
imply a group of added and deleted facts and outputs
remaining unmatched facts in ∆FB.

Four input parameters define which rules to be
considered in the output: (1) m, the minimum number
of facts a rule must match, (2) a, the minimum
accuracy of a rule, where accuracy = # matches / (#
matches + # exceptions), (3) k, the maximum number
of literals in a rule’s antecedent, and (4) β, which as
described below is used to prune the search space. A
rule is considered valid if the number of matches and
exceptions is within the range set by these parameters.

Our rule learning algorithm is a bounded-depth
search algorithm that enumerates rules up to a certain
length determined by k. Increasing k allows our
algorithm to find more contextual information from
FBo and FBn; evaluating rules with k literals in the
antecedent has the same effect as examining surround-
ing contexts that are roughly k dependency hops away
from changed code. Our algorithm enumerates rules
incrementally by extending rules of length i to create
rules of length i + 1. In each iteration, we extend
the ungrounded rules from the previous iteration by
appending each possible literal to the antecedent of
the rules. Then for each ungrounded rule, we try all
possible constant substitutions for its variables. To
determine the validity of each enumerated rule, we use
the Tyruba logic query engine to find constant bindings
to the rule’s variables [29]. After selecting valid rules
in each iteration, we remove all facts matched by rules
from U , the set of unmatched facts in ∆FB, and
proceed to the next iteration.

Some rules do not provide useful information about
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Algorithm 1: LSdiff Rule Inference Algorithm
Input: FBo, FBn, ∆FB, m, a, k, and β
Output: L and U
/* Initialize R, a set of ungrounded rules; L,

a set of learned rules; and U, a set of
facts in ∆FB that are not covered by L. */

R := ∅, L := ∅, U := ∆FB;
U := applyDefaultWinnowingRules (∆FB, FBo,
FBn); /* reduce ∆FB with default winnowing
rules. */
R := createInitialRules (m); /* create rules
with an empty antecedent by enumerating all
possible consequents. */
foreach i = 1 . . . k do

R := extendUngroundedRules (R) ; /* extend
all ungrounded rules in R by adding all
possible literals to their antecedent. */
foreach r ∈ R do

G := createPartiallyGroundedRules (r) ;
/* try all possible constant
substitutions for r’s variable. */
foreach g in G do

if isValid (g) then
L :=L ∪ {g};
U :=U − {g.matches};

end

end

end
R :=selectRules (R, β) ; /* select the best β
rules in R */

end

code changes as they are always true regardless of
change content. For example, deleting a package
deletes all contained types in the package and deleting
a method implies deleting all structural dependencies
involving the method. To prevent LSdiff from learning
such rules, we have written 30 default winnowing
rules by hand ([18], pp. 228–229) and remove the facts
implied by these rules from U before rule inference.

As the size of the rule search space increases expo-
nentially with the number of variables in ungrounded
rules, enumerating rules quickly becomes infeasible for
longer rules. To tame this exponential growth, we use
a beam search heuristic: in each iteration, we save only
the best β number of ungrounded rules and pass them
to the next iteration. The beam search is a widely
used heuristic in first order logic rule learning [23]. As
our tests found no improvement when β was increased
beyond 100, we used this as a default. To select the
best β rules, we rank rules by their number of matches.
The first tie-breaker prefers rules with fewer number
of exceptions, as these rules are worth refining further.
The second tie-breaker prefers rules whose variables are

more general in terms of Java containment hierarchy:
package > type > field = method > name.

Our rule inference algorithm is summarized in Algo-
rithm 1, and the pseudo code of its subroutines appears
in [18], pp. 143–145.
Part 3. Post Processing. Rules with the same
length may still have overlapping matches after Part 2.
To avoid outputting rules that cover the same set of
facts in the ∆FB, we select a subset of the rules using
the SET-COVER algorithm [2] and output the selected
rules and the remaining facts in ∆FB.

5 Focus Group Study

To understand our target users’ perspectives on
LSdiff, we conducted a focus group study with pro-
fessional software engineers from a large E-commerce
company. A focus group is typically carried out in
early stages of product design to seek target users’
feedback on new products, concepts, or messages [8].
We selected this study method as a low-cost way
to assess LSdiff’s potential benefits before investing
further efforts in its development.

The goal of the focus group was to answer: (1)
In which task contexts do programmers need to un-
derstand code changes? (2) What are difficulties of
using program differencing tools such as diff? and (3)
How can LSdiff complement existing uses of program
differencing tools?

With the help of a liaison at the company, we identi-
fied a target group consisting of software development
engineers (including those in testing), technical man-
agers, and architects. A screening questionnaire asked
the target group about their programming and software
industry experience, their familiarity with Java, how
frequently they use diff and diff-based version control
systems, and the size of code bases that they regularly
work with. All sixteen participants responded to the
questionnaire and five out of them attended the focus
group: each had primary development responsibilities;
each had industrial experience ranging from 6 to over
30 years; each used related tools at least weekly; and
each reviewed code changes daily except one who did
only weekly.

For one hour, the first author worked as the moder-
ator and led the focus group through an introduction,
a discussion on current practices for using diff, an
overview, demonstration and brief evaluation of LSdiff,
a hands-on trial of reviewing a sample LSdiff output,
followed by an in-depth evaluation of LSdiff.

The hands-on trial used the output that LSdiff
generated on carol project revision 430.4 We chose

4http://users.ece.utexas.edu/˜miryung/LSDiff/carol429-
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Carol Revision 430. 
SVN check-in message: Common methods go in an abstract class. Easier to extend/maintain/fix 
Author: benoif @ Thu Mar 10 12:21:46 2005 UTC 
723 lines of changes across 9 files (2 new files and 7 modified files)  

Inferred Rules 
1 (50/50) By this change, six classes inherit many methods from AbsRegistry class.  
2 (32/32) By this change, six classes implement NameService interface.  
3 (6/8) All methods that are included in JacORBCosNaming class and NameService interface are deleted except start and stop methods.  
4 (5/6) All host fields in the classes that implement NameService interface got deleted except LmiRegistry class.  
5 (5/6) All port fields in the classes that implement NameService interface got deleted except LmiRegistry class.  
6 (5/6) All getHost methods in the classes that implement NameService interface got deleted except LmiRegistry class.  
7 (5/6) All getPort methods in the classes that implement NameService interface got deleted except LmiRegistry class. 
8 (5/6)  All setConfigProperties methods in the classes that implement NameService interface got deleted except LmiRegistry class.  
9 (5/6) All setHost methods methods in the classes that implement NameService interface got deleted except LmiRegistry class.  
10 (5/6) All setPort methods in the classes that implement NameService interface got deleted except LmiRegistry class. 
11 (3/3) All configurationProperties fields got deleted.  
12 (3/4)  All DEFAULT_PORT_NUMBER fields are added by this change except JacORBCosNaming class.  

Remaining Change Facts 
Added Class AbsRegistry 
Added Class DummyRegistry 

Added Method JRMPRegistry.getRegistry 
Deleted Field  IIOPCosNaming.DEFAUL_PORT  
Deleted Field JacORBCosNaming.started 

Added Field Access CmiRegistry's constructor added accesses to ClusterRegistry.DEFAULT_PORT field. 
Added Field Access JacORBCosNaming's constructor added accesses to JacORBCosNaming.DEFAULT_PORT_NUMBER field. 

 

Figure 1. Overview based on LSdiff rules and facts

“All host fields in the classes that implement NameService
interface were deleted except in LmiRegistry’s host field.”
past field(f,”host”,t) ∧ past subtype(”NameService”,t)
⇒ deleted field(f,”host”,t) except t=”LmiRegistry”
Accuracy: (5/6)
deleted field(”CmiRegistry.host”,”host”,”CmiRegistry”)

deleted field(”IIOPCosNaming.host”,”host”,”IIOPCosNaming”)

deleted field(”JRMPRegistry.host”,”host”,”JRMPRegistry”)

deleted field(”JacCosNaming.host”,”host”,”JacCosNaming”)

deleted field(”JeremieRegistry.host”,”host”,”JeremieRegistry”)

Exception: [t=”LmiRegistry”, f=”LmiRegistry.host”]

Figure 2. Rule description

this revision because it is a conceptually simple change
based on dispersed textual modifications of 723 lines
across 9 files. By identifying the systematic nature of
the change, LSdiff found 12 rules and 7 facts.

We used CSDiff5 to prepare a regular word-level
differencing result as a HTML document, in which each
modified file is presented as a hyperlink to the new
version’s source file, deleted words are presented with
red strike-through, and added words are highlighted
in yellow. Based on the rules found by LSdiff, we
manually created an overview of systematic changes
in the HTML document. Each rule was directly
translated to an English sentence and presented as a
hyperlink (See Figure 1). Upon clicking the hyperlink,
a programmer can see the rule’s accuracy, which code
elements support the rule, and which code elements
violate the rule (See Figure 2).

In addition, by clicking each match, a programmer

430.htm, computed using default parameters m=3, a=0.75,
k=2

5http://www.componentsoftware.com/Products/CSDiff/

40: public class CmiRegistry extends AbsRegistry implements NameService {    
41:  
42:     /** 
43:      * URL 
44:      */    
All port fields in the classes that implement NameService interface got deleted except LmiRegistry class.  
45:     private int port = ClusterRegistry.DEFAULT_PORT; 
46:  
47:     /** 
48:      * Hostname to use 
49:      */    
All host fields in the classes that implement NameService interface got deleted except LmiRegistry class.  
50:     private String host = null;  
51:  

Figure 3. HTML diff augmented with rules

can navigate to corresponding word-level differences
(See Figure 3). The corresponding rule description
is inserted as a hyperlink in between the word-level
differences so that a programmer can navigate to other
related code changes (See lines 49–50 in Figure 3).

We audio-taped the discussion and had a note-taker
transcribe the conversation. Our key findings are or-
ganized by the questions raised during the discussion.6
When do programmers use diff? Programmers
often use diff when reviewing other engineers’ code
changes or when resolving a problem report. When
the program’s execution behavior is different from their
expectation or when investigating unfamiliar code,
programmers examine the evolutionary context of the
involved code: how the code changed over time and
why it was changed.

“The one that comes up the most frequently is a code
review. . .Multiple times a day, someone makes changes and
sends them out so that everybody can see it.”

“. . . You need to see generational changes; not just this file

6The discussion guide, screener questionnaire results, and the
focus group transcript are available in [18].
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and that file but how they went through a series of change
motivations. . . ”

What would you like to have in an ideal program
differencing tool? Programmers would like to see
program-wide, explicit, semantic relationships between
changed files. Many complained that diff’s file-based
organization is inadequate for reasoning about global
changes such as a refactoring that affects multiple files.

“The diff tools that I use, they are all file-oriented. They
don’t have notions, which I think you are trying to address is
that, they don’t have semantic relationships between different
files. I want to say ’What did I change due to this problem?’
It might have changed over 300 different files. I’d like to see
not just one file but all 300 files that were included as a part of
that. It is scaling up from a single source file to into spacing
in which correlated change took place.”

In general, the participants thought explicitly rep-
resenting code elements is important. Their questions
often focused on whether LSdiff accounts for Java
language syntax.

“Does it use type information?”

“There goes to my scoping question. All the ints go to
longs in a particular class, or a method, or a package?”

In which task contexts would you use LSdiff?
The participants believed that LSdiff can be used in
the situations where they are already using diff such
as code reviews, in particular, when there is a large
amount of changes. One testing engineer said he would
like to use LSdiff to understand the evolution of the
component that he write test cases for [7, 27].

“I write tests for the new E-commerce platform SDK. They
released a PR1 and now a PR2. We wrote all our tests against
PR1 and now we have to move them to PR2. How do we figure
out those differences? Specifically with testing, this is where
this can be really powerful. You don’t have to go by line by
line. . . This will make the tester’s time much more efficient.”

Strengths of LSdiff. The participants believed that
LSdiff’s ability to discover exceptions can help pro-
grammers find missing updates and better understand
design decisions.

“This ’except’ thing is great, because there’s always the
situation that you wonder, ‘why is this one different?’ You
can’t infer the programmer’s intent, but this is pretty close. . . ”

The participants thought that the change overview
based on the inferred rules would reduce change inves-
tigation time; programmers can start from rules and
drill down to details in a top down manner as opposed
to reading changed-lines file by file without having the
context of what they are reading about.
Limitations of LSdiff. The participants were con-
cerned that LSdiff does not identify cross-language
systematic changes such as changing a Java program
and subsequently changing XML configuration files.

Some were concerned that LSdiff would not provide
much additional benefits for non-systematic or small
changes and that LSdiff may find uninteresting sys-
tematic changes. For example, “all types that declared
toString() added constructors.” is a valid systematic
pattern but may be uninteresting to programmers.
Summary. Overall, our focus group participants were
very positive about LSdiff and asked us when they can
use it for their work. They believed that LSdiff can help
programmers reason about related changes effectively
and it can allow top-down reasoning of code changes,
as opposed to reading diff outputs without having a
high-level context. Though this study shows when and
how LSdiff can complement existing use of differencing
tools, it does not directly assess how much LSdiff helps
programmers in the context of real tasks. Evaluating
LSdiff’s utility remains as future work.

6 Assessments

Comparison with Structural Deltas. Our goal is
to answer the following questions by comparing LSdiff’s
result (LSD) with ∆FB, as ∆FB represents what an
existing program differencing approach would produce
at the same abstraction level.

(1) How often do individual changes form systematic
change patterns? LSdiff is based on the observation
that high-level changes are often systematic at a code
level. To understand how often this observation holds
true in practice, we measured coverage, the percentage
of facts in ∆FB explained by inferred rules: # of facts
matched by rules / ∆FB. For example, when rules
explain 90 facts out of 100 facts in ∆FB, the coverage
of rules is 90%.

(2) How concisely does LSdiff describe structural
differences in comparison to an existing differencing
approach that computes differences without any struc-
ture? We measured conciseness improvement: ∆FB /
(# rules + # facts). For example, when 4 rules and
16 remaining facts explain all 100 facts in ∆FB, LSD
improves conciseness by a factor of 5.

(3) How much contextual information does LSdiff
find from unchanged code fragments? We believe
that analyzing the entire snapshot of both versions
instead of only deleted and added text can discover
relevant contextual information, reducing a program-
mer’s burden of examining code that surrounds deleted
or added text. We measured how many additional
facts LSdiff finds by analyzing all three fact-bases as
opposed to only ∆FB: # facts in FBo and FBn that
are mentioned by the rules but are not contained
in ∆FB. For example, the second rule in Table 3
refers to three additional facts: subtype(“Car”,“BMW”),
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Table 4. Comparison with ∆FB
FBo FBn ∆FB Rule Fact Cvrg. Csc. Ad’l.

10 revision pairs in carol (carol.objectweb.org)
Min 3080 3452 15 1 3 59% 2.3 0.0
Max 10746 10610 1812 36 71 98% 27.5 19.0
Med 9615 9635 97 5 16 87% 5.8 4.0
Avg 8913 8959 426 10 20 85% 9.9 5.5

29 release pairs in dnsjava (www.dnsjava.org)
Min 3109 3159 4 0 2 0% 1.0 0.0
Max 7200 7204 1500 36 201 98% 36.1 91.0
Med 4817 5096 168 3 24 88% 4.8 0.0
Avg 5144 5287 340 8 37 73% 8.4 14.9

10 version pairs in LSdiff
Min 8315 8500 2 0 2 0% 1.0 0.0
Max 9042 9042 396 6 54 97% 28.9 12.0
Med 8732 8756 142 1 11 91% 9.8 0.0
Avg 8712 8783 172 2 17 68% 11.2 2.3

three data sets above
Med 6650 6712 132 2 17 89% 7.3 0.0
Avg 6632 6732 302 7 27 75% 9.3 9.7

(m=3, a=0.75, k=2)

Table 5. Comparison with textual delta
Textual Delta LSD

Files CLOC Hunk % Rule Fact
Version Touched

10 revision pairs in carol (carol.objectweb.org)
Med 11 626 38 7% 5 16
Avg 13 1229 57 8% 10 20

29 release pairs in dnsjava (www.dnsjava.org)
Med 9 354 40 17% 3 23
Avg 20 1159 65 28% 8 34

10 version pairs in LSdiff
Med 6 227 15 6% 1 8
Avg 6 294 19 5% 1 13

three data sets above
Med 9 344 31 8% 2 17
Avg 16 997 54 19% 7 27

(m=3, a=0.75, k=2)

subtype(“Car”, “GM”), and subtype(“Car”, “Kia”).
For this comparison, we selected source projects

carol and dnsjava, and our LSdiff itself as a subject
program because their medium code size (up to 30
KLOC) allowed us to manually analyze changes in
these programs in detail. Carol is a library that
supports different remote method invocation imple-
mentations; we selected 10 revisions with check-in
comments that indicate non-trivial changes. Dnsjava
is an implementation of domain name services in Java;
we selected 30 releases. We also selected our LSdiff’s
first 10 version pairs—revisions that are at least 8 hours
apart.

Table 4 shows the results for the three data sets with
the default parameter settings m=3, a=0.75, k=2. On
average, 75% of facts in ∆FB are covered by inferred
rules; this implies that 75% of structural differences
form higher-level systematic change patterns. Inferring
rules improves the conciseness measure by a factor of
9.3 on average. LSdiff finds an average of 9.7 additional
facts than ∆FB.

Comparison with Textual Deltas and Change
Descriptions. In practice, programmers often
use diff and read programmer-provided descriptions
such as check-in comments or change logs. It is
infeasible to directly compare LSdiff results (LSD)
with diff results (TD) and change descriptions; Diff
computes textual differences while LSdiff computes
only structural differences, and change descriptions are
often missing, hard to trace back to a program, and in
free-form. Thus, our goal is not to directly compare
them but to understand when LSDs complement TDs
and change descriptions. For this investigation, we
built a viewer that visualizes each rule with diff
outputs, similar to what is shown in Figures 1 and 3.

Table 5 shows the median and average size of TDs
and LSDs for the subject programs. CLOC represents
the number of added or deleted lines. Hunk represents
the number of blocks with consecutive line changes,
and % Touched represents the percentage of files that
includes added or deleted text, computed as (# added
files + # deleted files + 2 × # changed files ) / ( total
# files in both versions). The more hunks there are,
generally the harder it is to inspect a TD. Overall, when
an average TD consists of 997 lines scattered across 16
files, LSdiff reports an average of 7 rules and 27 facts.

To give an idea about the quality of inferred LSdiff
rules, we present representative rules along with the
size of TD and check-in comments in Table 6.

The benefits of LSdiff appear to depend heavily on
how systematic the change is. For example, carol 128-
129, “Bug fix, port number trace problem.” consists of
164 changed lines across 10 files. LSdiff finds 1 rule and
4 facts indicating that getPort methods were added to
six different classes and they were invoked from a tracer
module TraceCarol. If a programmer examines the LSD
before reading TD, upon inspecting one corresponding
class, she can probably skip five other classes.

When several different systematic changes are
mixed with many non-systematic changes, LSdiff
rules help programmers quickly understand the
systematic changes and focus on other changes
instead. For instance, programmers can discover that
exception handling mechanism was modified to use
NamingExceptionHelper by skimming 36 rules and 30
facts instead of over 4000 lines of changes.

7 Discussions

Impact of Input Parameters. The input pa-
rameters, m (the minimum number of facts a rule
must match), a (the minimum accuracy), and k (the
maximum number of literals a rule can have in its
antecedent) define which rules should be considered
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Table 6. Representative LSdiff rules and diff outputs
Source File CLOC Rule Fact Excerpt from Change Description

Representative Rules and Their Interpretation
carol 62-63 21 2151 12 71 A new simplified configuration mechanism (with bug id)

All fields in the CarolConfiguration class that are accessed from the loadCarolConfiguration method are newly added fields.
All Properties type fields in the CarolDefaultValues class were deleted.

carol 128-129 10 164 1 4 Port number trace problem. (with bug id references)
All getPort methods are newly added one.

carol 421-422 14 4313 36 30 Refactoring of the spi package. (247 words long)
All calls to the NamingExceptionHelper.create method are newly added.
All methods that called the getResource method no longer call the printStackTrace method.
dnsjava 1.0.2-1.1 53 3362 29 174 Resolver.sendAsync returns an Object instead of an int.
All sendAsync methods return Object instead of int.

LSdiff 20-21 11 637 6 19 (no check-in comment)
All classes in the lsd package that have the same name class in the jquery package were deleted.

• For presentation purposes, we translated the inferred rules to English sentences.

Table 7. Impact of varying input parameters
Rule Fact Cvrg. Csc. Ad’l. Time(Min)

1 39.6 0 100% 7.4 10.1 2.0
2 14.6 13.1 92% 10.6 7.4 11.2

m 3 9.9 20.4 85% 9.9 5.5 9.1
4 7.7 25.7 82% 9.1 5.4 8.7
5 5.7 30 80% 8.5 3.5 7.8
0.5 11.1 15.6 89% 10.6 2.1 6.8
0.625 9.7 17.2 88% 11.0 4.0 7.3

a 0.75 9.9 20.4 85% 9.9 5.5 9.0
0.875 10.8 24.2 78% 8.6 9.1 12.7
1 13.3 26.2 78% 7.9 12.5 16.5

k 1 7.5 33.8 78% 7.2 0.4 0.7
2 9.9 20.4 85% 9.9 5.5 9.1

in the output. To understand how varying these
parameters affects our results, we varied m from 1 to 5,
a from 0.5 to 1 with an increment of 0.125, and k from
1 to 2. Table 7 shows the results in terms of average for
the carol data set. When m is 1, all facts in ∆FB are
covered by rules by definition. As m increases, fewer
rules are found and they cover fewer facts in ∆FB.
As a increases, a smaller proportion of exceptions is
allowed per rule; thus, our algorithm finds more rules
each of which covers a smaller proportion of the facts,
decreasing the conciseness and coverage measures.
Changing k from 1 to 2 allows our algorithm to find
more rules and improves the additional information
measure from 0.4 to 5.5 by considering unchanged code
fragments that are further away from changed code.
With our current tool, we were not able to experiment
with k greater than 2 because the large rule search
space led to a very long running time.
Threats to Validity. In terms of our focus group
study, though it is common to commission an external,
professional research vendor, the first author designed
the discussion guide and took a moderator role due
to the difficulty of finding a vendor with similar ex-
pertise in program differencing tools. The moderator’s
intimate knowledge and bias towards LSdiff may have
led the participants to support the moderator’s views.
Though conducting multiple focus groups and contrast-

ing them is encouraged, we conducted only a single
focus group. Furthermore, the participants’ view may
be biased to practices in their organization—where
code reviews are often done by emails.

In terms of internal validity, the inferred rules are
incomplete in nature as they depend on both input
parameter settings and the predefined rule styles. We
need to investigate other types of systematic changes
that LSdiff does not cover and how frequent they are.

As some participants in the focus group pointed out,
LSdiff may report systematic changes that are not of
interest to the programmer. Vice versa, it may miss
to identify systematic changes that programmers are
expecting to see—in part due to selecting a subset
of rules in Part 3 of our algorithm. Examining the
precision and recall of LSdiff output is beyond the scope
of our work-to-date largely because it is heavily task,
project and programmer dependent. Resolving this
will likely take in-depth evaluations of LSdiff in the
context of real development tasks; these evaluations
will need to consider how to distinguish uninteresting
patterns from unanticipated but interesting patterns.

In terms of external validity, although our assess-
ment in Section 6 provides a valuable illustration of
how LSdiff can complement existing uses of diff, our
findings may not generalize to other data sets. We need
further investigations into how a program size and the
gap between program versions affect LSdiff results.

8 Conclusions

LSdiff discovers and represents systematic structural
differences as logic rules. Each rule concisely describes
a group of changes with similar structural characteris-
tics and notes anomalies to systematic change patterns.
Through a focus group study with professional software
engineers, we assessed LSdiff’s potential benefits and
studied when and how LSdiff can complement existing
program differencing tools. Our study participants
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believe that the grouping of related systematic changes
can complement diff’s file-based organization and the
detection of anomalies can help programmers discover
potential missed updates. In addition, we quantita-
tively compared LSdiff results with what an existing
program differencing approach would produce at the
same abstraction level; LSdiff produces 9.3 times more
concise results and finds 9.7 additional structural facts
that cannot be found by looking at the code that
changed between versions.
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