
Detecting Software Modularity Violations

Sunny Wong and
Yuanfang Cai
Drexel University

Philadelphia, PA, USA
{sunny, yfcai}@cs.drexel.edu

Miryung Kim
The University of Texas at

Austin
Austin, TX, USA

miryung@ece.utexas.edu

Michael Dalton
Drexel University

Philadelphia, PA, USA
mcd45@cs.drexel.edu

ABSTRACT
This paper presents Clio, an approach that detects modular-

ity violations, which can cause software defects, modularity
decay, or expensive refactorings. Clio computes the dis-
crepancies between how components should change together
based on the modular structure, and how components ac-

tually change together as revealed in version histories. We
evaluated Clio using 15 releases of Hadoop Common and
10 releases of Eclipse JDT. The results show that hundreds
of violations identified using Clio were indeed recognized as
design problems or refactored by the developers in later ver-
sions. The identified violations cover multiple symptoms of
poor design, some of which are not easily detectable using
existing approaches.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Maintenance and Enhance-
ment—refactoring, restructuring ; D.2.10 [Software Engi-
neering]: Design—modularity violation, refactoring

Keywords
modularity violation detection, refactoring, bad code smells,
design structure matrix

1. INTRODUCTION
The essence of software modularity is to allow for in-

dependent module evolution and independent task assign-
ment [1,18]. In reality, however, two modules that are sup-
posed to be independent may always change together, due to
unwanted side effects caused by quick and dirty implemen-
tation. For example, inexperienced developers may forget
to remove experimental scaffolding code that should not be
kept in the final product, and an application programming
interface (API) may be accidentally defined using non-API
classes [15]. Such activities cause modularity decay over
time and may require expensive system-wide refactorings.
Though empirical studies have revealed a strong correlation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’11 Honolulu, HI, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

between software defects and eroding design structure [5,22],
traditional verification and validation techniques do not find
modularity violations because these violations do not always
influence the functionality of software systems directly.

This paper presents Clio, an approach that detects and
locates modularity violations. Clio compares how compo-
nents should change together based on the modular struc-
ture and how components actually change together as re-
flected in the revision history. The rationale is that, if two
components always change together to accommodate modi-
fication requests,1 but they belong to two separate modules
that are supposed to evolve independently, we consider this
as a modularity violation.

Clio has three parts. First, we leverage Baldwin and
Clark’s design rule theory and design structure matrix (DSM) [1]
to manifest independently evolvable modules, from which
we determine structural coupling—how components should
change together. Second, we mine the project’s revision his-
tory to model change coupling—how components actually
change together [9]. We identify modularity violations by
comparing the results of structural coupling based impact
scope analysis with the results of change coupling based im-
pact scope analysis.

We applied Clio to the version histories of two large-scale
open source software systems: 15 releases of Hadoop Com-
mon,2 and 10 releases of Eclipse JDT.3 Our evaluation strat-
egy was to identify violations for each pair of releases. If a
violation was indeed problematic, it is possible that devel-
opers recognized and fixed it in a later release through a
refactoring. We considered a detected violation as being
confirmed if it was indeed addressed or recognized by devel-
opers later. We used two complementary evaluation meth-
ods. First, we compared the detected violations with refac-
torings automatically reconstructed using Kim et al.’s API
matching technique [16]. Second, for the remaining detected
violations, we manually examined modification requests to
see whether those violations were at least recognized by de-
velopers. Because it is possible that the violations detected
in recent versions are not recognized by the developers yet,
we also manually examined the corresponding code to deter-
mine whether the code shows any symptoms of poor design.

We identified 231 violations (47%) from the 490 modifica-
tion requests of Hadoop, of which 152 (65%) violations were
confirmed. From the 3458 modification request of Eclipse

1Consistent with Ying et al. [30], a modification request can
be a bug fix or feature enhancement.
2http://hadoop.apache.org/common/
3http://www.eclipse.org/jdt/

JDT, Clio identified 399 violations (12%), which shows that
the changes in Eclipse match its modular structure better.
Among these violations, 161 (40%) were confirmed. The
results also show that Clio identifies modularity violations
much earlier than manual identification by developers so
that designers can be alarmed to avoid accumulating mod-
ularity decay. Third, the identified violations include symp-
toms of poor design, some of which cannot be easily detected
using existing approaches.

The rest of this paper is organized as follows. Section 2
presents related work and how Clio differs from existing
approaches. Section 3 describes our modularity violation
detection approach and several background concepts. Sec-
tion 4 details our evaluation method and empirical results.
Section 5 discusses the strengths and limitations of Clio and
Section 6 concludes.

2. RELATED WORK
In this section, we compare and contrast Clio with other

related research topics.

Automatic Detection of Bad Code Smells.
Fowler [8] describes the concept of bad smell as a heuris-

tic for identifying redesign and refactoring opportunities.
Example bad smells include code clone and feature envy.
Garcia et al. [11] proposed several architecture-level bad
smells. To automate the identification of bad smells, Moha
et al. [17] presented the Decor tool and domain specific lan-
guage (DSL) to automate the construction of design defect
detection algorithms. Several other techniques [24–26] au-
tomatically identify bad smells that indicate needs of refac-
torings. For example, Tsantalis and Chatzigeorgiou’s tech-
nique [25] identifies extract method refactoring opportuni-
ties using static slicing. Detection of some specific bad
smells such as code duplication has also been extensively
researched. Higo et al. [13] proposed the Aries tool to iden-
tify possible refactoring candidates based on the number of
assigned variables, the number of referred variables, and dis-
persion in the class hierarchy. A refactoring can be suggested
if the metrics for the clones satisfy certain predefined values.

Clio’s modularity violation detection approach is different
in several aspects. First, it is not confined to particular types
of bad smells. Instead, we hypothesize that multiple types of
bad smells are instances of modularity violations that can be
uniformly detected by Clio. For example, when code clones
change frequently together, Clio will detect this problem
because the co-change pattern deviate from the designed
modular structure. Second, by taking version histories as
input, Clio detects violations that happened most recently
and frequently, instead of bad smells detected in a single
version without regard to the program’s evolution context.
Similar to Clio, Ratzinger et al. [19] also detect bad smells
by examining change couplings. Their approach leaves it to
developers to identify design violations from visualization of
change coupling, while Clio locates violations by comparing
change coupling with structural coupling. The detected vio-
lations thus either reflect the problem in the original design
or introduced in the subsequent modification requests.

Design Structure Matrix Analysis.
The most widely used design structure matrix (DSM) tools

include Lattix,4 Struture 101,5 and NDepend.6 These tools
support automatic derivation of DSMs from source code in
which columns and rows model classes or files, and the de-
pendencies model function calls, inheritance, etc. Different
from these tools, the DSMs used in Clio are generated from
augmented constraint networks (ACNs) [3,4], which separate
the interface and implementation of a class into two design
dimensions, and manifest implicit and indirect dependen-
cies [27, 28]. Our prior work shows that an ACN-derived
DSM can capture more types dependencies than that of a
syntactical DSM. The detail description on ACN is described
elsewhere [3].

Sangal et al. [21] identify modularity violations using Lat-
tix DSMs. Using Lattix, the user can specify which classes
should not depend on, that is, syntactically refer to, which
other classes. The tool raises an alarm if such predefined
constraints are violated. A key difference between Clio and
Lattix violation detection techniques is that Clio uses ver-
sion histories as opposed to analyzing a single version only.
Clio detects violations that occur during software evolution,
many of which are not in the form of syntactical depen-
dency, and thus will not be detected by Lattix. Another
major difference is that Clio takes recency and frequency
into consideration when identifying modularity violations.

Dependency Structure and Software Defects.
The relation between software dependency structure and

defects has been widely studied. Many empirical evaluations
(e.g., Selby and Basili [22], Cataldo et al. [5]) have found
that modules with lower coupling are less likely to contain
defects than those with higher coupling. Various metrics
have been proposed (e.g., Chidamber and Kemerer [6]) to
measure coupling and failure proneness of components. The
relation between change coupling [9] and defects has also
been recently studied. Cataldo et al.’s [5] study revealed a
strong correlation between density of change coupling and
failure proneness. Fluri et al.’s [7] study shows that a large
number of change coupling relationships are not entailed by
structural dependencies. While the purpose of these studies
are to statistically account for the relationship between soft-
ware defects, change couplings, and syntactic dependencies,
Clio’s purpose is to locate modularity violations that may
cause design decay and software defects.

3. MODULARITY VIOLATION DETECTION
Consider a project that evolves from version n to n+1. A

number of modification requests (MRs) are fulfilled during
this period, including both bug fixes and feature enhance-
ments. Suppose that, before the release n + 1 is publicly
released, the project manager needs to make sure that the
modular structure of the system is well-maintained, that is,
unexpected dependencies were not introduced by quick and
dirty maintenance. Fixing these problems would prevent
modularity decay. We now introduce how our modularity
violation detection approach, supported by the Clio frame-
work,7 can help achieve this goal.

4http://www.lattix.com/
5http://www.headwaysoftware.com/products/structure101/
6http://www.ndepend.com/
7
Clio is the Greek muse of history.

3.1 Framework Overview
Figure 1 depicts an overview of Clio that takes the follow-

ing artifacts as input. The first input is the original modular
structure of version n before implementing these modifica-
tion requests. Since an accurate design model is usually not
available in practice, Clio uses the Moka [27] tool to reverse-
engineer UML class diagrams from compiled Java binaries.
Clio then uses the uml2acn [27,28] tool to transform a class
diagram into an augmented constraint network (ACN) [3],
a design model that formalizes the key concepts of Bald-
win and Clarks’s design rule theory [1], which we introduce
soon. From an ACN, a design structure matrix (DSM) can
be automatically derived [3,4].

The second input is the revision history of the project,
which is used to derive change couplings from a set of files
changed to implement modification requests. The extract

plugin of Clio computes change couplings at a file level,
following the technique of Ying et al. [30].

The third input is the detailed information about a set
of files S (called the MR solution), which was modified to
fulfill each modification request.

For each modification request, Clio’s dr-predict plug-in
outputs the components that are likely to be changed ac-
cording to the original modular structure (FileSet A in Fig-
ure 1). Clio’s logic-predict plugin also reports the compo-
nents that are likely to be changed according to co-change
patterns, recorded in FileSet B. Finally, given A and B, and
a MR solution S, the detect plug-in computes a set of dis-
crepancies, D = (B ∩ S)\A. By using B ∩ S, Clio filters
out files that were accidentally changed together. Recurring
discrepancies (a subset of files in D) are then reported to
the users as violations.

Compiled

Binaries

Revision

History

Modification

Requests

Solution: S

Discrepancy : D

Logical

Deps

Moka uml2acn
dr-predict

Plugin

extract

Plugin

logic-predict

Plugin

detect

Plugin

File Set: B

File Set: A

Tool

Artifact

Database

Figure 1: Approach Overview: the Clio Framework

3.2 History-based Impact Scope Analysis
Clio takes source code revision history as input and ex-

tracts change couplings between files, storing the support
and confidence values between files into a database follow-

ing Ying et al. [30] and Zimmermann et al. [31].8 It reads
the change couplings from the database and predicts the im-
pact scope (noted as FileSet B in Figure 1) from the starting
change set. A file is predicted to be in the impact scope
if the corresponding co-change pattern’s support and confi-
dence are above the minimum support ths and confidence
thc thresholds.

For each modification request m, Clio first selects a sub-
set of files in the corresponding change set that exhibit the
strongest co-change patterns according to the change cou-
pling analysis. We call this selected set of files, the starting
change set, σ, as the discrepancy between σ’s impact scope
based on structural couplings and σ’s impact scope based
on change couplings is mostly likely to reveal modularity
violations.

3.3 Background
This section illustrates key background concepts of Clio’s

modularity-based impact scope analysis using a maze-game
example described by Gamma et al [10]. Figure 2 depicts a
UML class diagram for a maze game example used in our
prior work [28]. A maze consists of a set of rooms that know
their neighbors, a wall or a door to another room. The
base class, MapSite, captures the commonality of all the
maze components. The diagram shows the abstract factory
pattern to support two variations of the game: an enchanted
maze game and a bombed maze game.

MapSite

Wall Door Room Maze

BombedWall

MazeFactory

NeedingSpell
Door RoomWithA Enchanted

Room

MazeFactory MazeFactory
Bombed Enchanted

Bomb

Figure 2: Maze game UML class diagram [28]

8A transaction is defined as an atomic commit in a version
control repository (e.g. Subversion). For repositories that do
not natively support the concept of transactions (e.g. CVS),
heuristics and techniques have been developed to reconstruct
transactions. Consistent with Zimmermann et al. [31], the
frequency of a set in a set of transactions T is frq(T, x) =
{t|t ∈ T, x ⊆ t}|. The support of a rule, x1 ⇒ x2, by a set of
transactions T is supp(T, x1 ⇒ x2) = frq(T, x1 ∪ x2). The

confidence of a rule is conf(T, x1 ⇒ x2) =
frq(T,x1∪x2)

frq(T,x1)
.

Augmented Constraint Network (ACN).
An ACN [3,4] makes design decisions and their relations,

which are implied in a UML class diagram, explicit. Figure 3
shows part of an ACN derived from the above UML class
diagram. Each class is modeled using two variables (lines
1–6): an interface variable9 ending with _interface and an
implementation variable ending with _impl. Each variable
has a two-value domain modeling a current decision and
an unknown possibility. Lines 7 to 9 show several sample
assumption relations. For example, since Room inherits from
MapSite, its implementation makes assumption on both the
interface and implementation of MapSite (lines 7, 8).

Dominance relations in an ACN describe asymmetric de-
pendency relationships among design decisions, the essence
of Baldwin and Clark’s concept of design rules [1]. Bald-
win and Clark coined a term, design rules, to refer to stable
design decisions that decouple otherwise coupled design de-
cisions, hiding the details of subordinate components. We
emphasize that Baldwin and Clark’s concept of design rule

is different from the concept of rules used in other areas,
such as the rules of not creating clones or cyclic dependen-
cies, but rather they are essentially generalized interfaces
between components. Example design rules include abstract
interfaces, application programming interfaces (APIs), or a
shared data format agreed among development teams [23].
Broadly speaking, all non-private parts of a class used by
other classes can be seen as design rules.

For example, line 11 models that Room’s implementation
decision cannot influence its interface design, which is a de-

sign rule. One should not arbitrarily change Room’s interface
to improve its implementation because other components
may depend on it. In our previous work, we defined eight
heuristics to automatically derive dominance relations from
reverse-engineered UML diagrams. Here, we mention one
concrete heuristic which is based on inheritance. Depen-
dencies of a UML class diagram, such as method calls and
object aggregations, are used to derive constraints in the
ACN. The details on all the heuristics is described in our
previous paper [14].

1. MapSite interface : {orig, other}

2. MapSite impl : {orig, other}

3. Room interface : {orig, other}

4. Room impl : {orig, other}

5. Maze interface : {orig, other}

6. Maze impl : {orig, other}

7. Room impl = orig ⇒ MapSite interface = orig

8. Room impl = orig ⇒ MapSite impl = orig

9. Maze impl = orig ⇒ Room interface = orig

10. (MapSite impl,MapSite interface)

11. (Room impl,MapSite interface)

12. (Maze impl,Room interface)

Figure 3: Maze game augmented constraint net-
work [28]. Only a part of ACN is shown for pre-
sentation purposes.

9An interface variable in an ACN represents the publicly
accessible methods, fields, etc. of a class. It should not
be confused with the programmatic interface construct pro-
vided by many object-oriented languages.

Design Structure Matrix (DSM).
Figure 4 shows a sample design structure matrix (DSM)

automatically derived from maze game ACN. A DSM is a
square matrix whose columns and rows can be labeled with
design variables of an ACN. Each cell marked with “x” rep-
resents a pair-wise dependency relation: if y depends on x,
the cell on row y, column x will be marked. For exam-
ple, cell (r11, c2) indicates that Room_impl depends Map-

Site_interface. Cell (r2, c11) is not marked because Map-

Site_interface dominates Room_impl as a design rule.

Design Rule Hierarchy (DRH).
In order to identify modules—independent task assign-

ments according to Parnas’ definition [18], our prior work
created a special clustering based on ACN called the design

rule hierarchy (DRH). Using this clustering, the columns
and rows of the DSM can be reordered into layers, that is,
a lower triangle form in which the top right corner is blank.
The first layer in a DSM, l1, is the group of variables clus-
tered at the top left corner, and does not depend on any
other layers. A layer ln only depends on layers ln−1 to l1.
In a DRH, each layer contains a set of modules that are in-
dependent from each other. In the DSM, the modules are
inner groups of variables along the diagonal, and there are
no dependencies between the modules within the same layer.

For example, Figure 4 shows a DSM after the clustering
process and each identified layer is denoted as an outer rect-
angle in bold line along the diagonal line. This DRH has four
layers in total: The first layer (r1-2, c1-2) contains the most
influential design rules that must remain stable. In other
words, changing the top-level design rules, Maze_interface
and MapSite_interface, can have drastic effects on the sys-
tem. The second layer (r3-6, c3-6) contains decisions that
only depend on the top layer decisions (r1-2, c1-2). Simi-
larly, the third layer (r7-13, c7-13) contains decisions that
make assumptions about the decisions within the first two
layers only.

Within each layer, there are inner rectangles along the
diagonal line such as (r1, c1) or (r7-8, c7-8). They are mod-

ules containing decisions that can be made in parallel be-
cause there are no inter-module dependencies within a layer.
For example, MazeFactory_interface (r7) and MazeFac-

tory_impl (r8) decisions can be made in parallel with other
inner decisions of the same layer, such as DoorNeeding-

Spell_interface (r12). The modules in the last layer (r14-
24, c14-24) can be designed concurrently with each other,
and can be swapped out for different implementations with-
out affecting the rest of the system. For example, the task
of designing an enchanted maze game (r16-17) and the task
of designing a bombed maze game (r20-21) can be indepen-
dently accomplished.

These hierarchical relationships among design decisions
captured in a design rule hierarchy can also be represented
as a directed acyclic graph where each vertex u corresponds
a module in the DSM, containing a set of decisions, and each
edge (u → v) defines that changing a module u may affect a
module v. Figure 5 shows a part of the design rule hierarchy
graph derived from the maze game ACN.

3.4 Modularity-based Impact Scope Analysis
Taking a DRH graph and starting change set σ as input,

Clio analyzes σ’s impact scope to identify the components
that should change together according to the modular struc-

Figure 4: Maze game DSM [28]

ture if σ changed. Clio uses Robillard’s [20] relevant artifact
recommendation algorithm that identifies a subset of nodes
in a graph, relevant to an initial set of interests based on the
graph’s topology. We chose this algorithm because the in-
put format and the algorithm requirements are similar: (1) a
DRH is an acyclic graph just like a static dependency graph
in Robillard’s and (2) the algorithm must carefully propa-
gate the degree of relevance (weights) along edges until they
are stabilized using an iterative, fix-point algorithm.

In order to demonstrate our modularity-based change scope
analysis approach, we depict a small subset of the maze game
DRH graph in Figure 5 for the purpose of illustration. In
Figure 5, we only show 1 of the 2 modules in layer 1, 3
modules each from layer 2 and 3, and 1 module from layer
4. Note that the edges of the DRH graph are populated
based on constraints in the ACN as introduced in our prior
work [28].

The vertices with shaded background and white text model
the starting change set within a modification request (MR).
Beginning with the starting change set, we assign a weight
µ, in the range [0, 1], to each vertex, in a breadth-first order.
The starting change set vertices are assigned the maximum
weight of 1 and added to a initial set of interests, S. From
vertex Room_interface, we examine its neighbors, the sub-
ordinating decisions that Room_interface influences, and
assign them a weight. While traversing the graph to assign
weights, we ignore the starting change set’s design rules to
ensure that they remain stable. For example, since the Room
class is the starting change set (row 5 and row 11 in the
DSM) in our example, then its design rules, MapSite’s inter-
face and implementation should not be within their impact
scope.

Robillard [20] defines a formula for computing the weight
of a vertex:

µ0 =

(

1 + |Sforward ∩ S|

|Sforward|
·
|Sbackward ∩ S|

|Sbackward|

)α

Using this formula, we assign higher weights to vertices that

share more edges with elements in the set of interest S. This
allows us to identify the components that are likely to be af-
fected by the starting change set due to the strengths of their
design-level dependencies. µ is a weight and α is a constant
defined to determine the degree of relevancy propagation
(0.25 in our evaluation).

To start the each iteration of the algorithm, we take all
the vertices that have just been assigned weights, add them
to the set of interest S, and use them as the starting points
for weight assignment. We repeat this process of iteratively
assigning weights to vertices until the new weights fall below
a certain threshold. All vertices that were not assigned a
weight are considered to have the minimum weight of 0.
Figure 5 shows the weights for each vertex after all weights
are propagated. The vertices whose weights are above the
threshold thd (e.g., 0.75) are then recommended as being in
the impact scope (noted as node with dotted circles). Below,
we discuss how this minimum threshold thd is determined.

3.5 Discrepancy Analysis
We vary the thresholds to find values that maximize mea-

sure of accuracy over all the MRs. With dr-predict, we vary
the minimum weight threshold thd from 0 to 0.95 in incre-
ment of .05. With logic-predict, we vary ths from 2 to 10
and thc from 0 to 0.95 in increment of .05.

For each MR, we compute discrepancies between struc-
tural coupling based impact scope and change coupling based
impact scope. We then identify recurring discrepancies over
several versions of the software by using a frequent-pattern
mining algorithm [12]. The recurring patterns among these
discrepancies are called modularity violations. Consider two
MRs with the same starting change set of a. Suppose that
the set of discrepancies is {{a,b,c}, {a,b}}. Then, we say
that {a,b} is a modularity violation that occurred twice,
and {a,b,c} is a modularity violation that occurred once.

For example, EnchantedMazeFactory_impl and Bombed-

MazeFactory_impl are both located in the last layer of the
DSM, meaning that they should evolve independently from

Room_interface

Room_impl

MapSite_interface

EnchantedRoom_interface

EnchantedMazeFactory_interface

EnchantedMazeFactory_impl

Door_interface

MazeFactory_interface

MazeFactory_impl

MapSite_impl

µ = 0

µ = 0 µ = 0

µ = 1

µ = 1 µ = 0.84

µ = 0.71

µ = 0.78

Layer 1

Layer 2

Layer 3

Layer 4

Figure 5: Maze game design rule hierarchy

each other. Clio’s dr-predict plugin will never report that
they are in each other’s change scope. If the revision history
shows that they always change together, e.g. due to simi-
lar changes to cloned code, Clio will report that there is a
modularity violation. Consider another example, since Map-

site_interface is the design rule of Room_impl, it is normal
that Mapsite_interface changes and influences Room_impl
along with other dependent components. But Clio’s dr-

predict plugin will never predict Mapsite_interface to be
within the change scope of Room_impl. However, if the re-
vision history shows that whenever Room changes, MapSite
always changes with it, it is a violation because all other
components that depend on MapSite may be affected, caus-
ing unwanted side effects.

4. EVALUATION
To assess the effectiveness of Clio’s modularity violation

detection approach, the evaluation aims to answer the fol-
lowing questions:

Q1. How accurate are the modularity violations
identified by Clio? That is, do these identified violations
indeed indicate problems? Given the difficulty of finding the
designers of the subject systems who can most accurately
answer this question, we evaluate Clio retrospectively and
conservatively: we examine the project’s version history to
see whether and how many violations we identified in earlier
versions are indeed refactored in later versions or recognized
as design problems by the developers (e.g., through mod-
ification requests, source code comments). The precision

calculated this way is the most conservative, lower-bound
estimation because it is possible that some violations we
identified have not been recognized by the developers yet,
and could be refactored in future releases. We do not calcu-
late the recall of our result because it is not possible to find
all possible design issues in a system.

Q2. How early can Clio identify problematic viola-
tions? Our purpose is to see if this approach can detect de-
sign problems early in the development process. Although it
may not be necessary to fix a violation as soon as it appears,

revealing these violations will make the designers alarmed
as soon as possible to avoid accumulating modularity decay.
For each confirmed violation, we compare the version where
it was identified with where it was actually refactored or
recognized by the developers.

Q3. What are the characteristics of design viola-
tions identified by our approach? We also examined
the detected violations’ corresponding code to see whether
they show any symptoms of poor design and categorized the
violations into four categories.

4.1 Subjects
We choose two large-scale open source projects, Hadoop

Common and Eclipse Java Development Tools (JDT) as our
evaluation subjects. Hadoop is a Java-based distributed
computing system. We applied our approach to the first
15 releases, 0.1.0 to 0.15.0, covering about three years of de-
velopment. Eclipse JDT is a core AST analysis took kit in
the Eclipse IDE. We studied 10 releases of Eclipse JDT, from
release 2.0 to 3.0.2, also covering about three years of devel-
opment. Our evaluation use both their revision histories and
source code. For Hadoop, we investigated their SVN reposi-
tory to extract transactions. Eclipse JDT used CVS instead
of SVN, so we use the cvs2svn10 tool to derive the trans-
actions. In Table 1, we present some basic data regarding
to Hadoop and Eclipse JDT that we studied. We removed
commits with only one file or more than 30 files because they
either do not contribute to Clio’s modularity violation detec-
tion or they include noise such as changes to license informa-
tion. For each release pair n and n+1, we computed discrep-
ancies between the results of structural-coupling based im-
pact scope analysis and the results of change-coupling based
impact scope analysis. We then accumulated the discrepan-
cies over the five most recent releases to identify recurring
violations that occur more than a certain number of times.
The experiments showed that the results do not matter if
we aggregate discrepancies over more than 5 releases.

10http://cvs2svn.tigris.org/

Table 1: Characteristics of subject programs
Subjects SLOC #Transactions #Releases #MRs

Eclipse JDT 137K-222K 27806 10 3458
Hadoop 13K-64K 3001 15 490

Table 2: Modularity violations that occurred at least
twice in the last five releases

|V | |V ∩ R| |V ∩ M| |CV | Pr.

Eclipse JDT 399 55 104 161 40%
Hadoop 231 81 71 152 66%

4.2 Evaluation Procedure
We ran our experiments on a Linux server with two quad-

core 1.6Ghz Intel Xeon processors and 8GB of RAM. We
evaluate the output of Clio, that is, a set of violations, by
checking the source code and MR records in later versions
to see if they were indeed refactored or recognized as having
a design problem. If so, we call such violation as being
confirmed. We use both automated method and manual
inspection to confirm a violation.

First, we compared the detected violations with refac-
torings that were automatically found by Kim et al.’s API
matching tool [16]. This API matching tool takes two pro-
gram versions as input and detects nine different types of
refactorings at a method-header level. This tool extracts
method-headers from both old and new versions respectively,
finds a set of seed matches based on name similarity, gener-
ates candidate high-level transformations based on the seed
matches, and iteratively selects the most likely high-level
transformation to find a set of method-header level refactor-
ings. We chose this technique because it has a 5.01% higher
precision than other similar techniques according our recent
comparative study [29].

As these automatically reconstructed refactorings are me-
thod-header level refactorings, we aggregated them up to a
class level to compare with the violations Clio identified.
We consider a violation as confirmed if it overlaps with any
class-level refactorings. For each violation that is matched
with a reconstructed refactoring, we manually checked the
refactoring to verify that it was indeed a correct refactoring
that fixes design problems since the API-matching tool can
report false positive refactorings.

Second, to complement this automated validation approach,
we also manually inspected modification request descriptions
and change logs in the version history to check whether pro-
grammers fixed, or at least plan to fix, these reported vi-
olations through redesign or refactoring activities. For the
rest of the reported violations, we studied the correspond-
ing source code to see whether they include any symptoms
of poor design.

4.3 Results
We analyzed our results by answering the questions pro-

posed at the beginning of the section.

4.3.1 Q1.Accuracy of Identified Design Violations
Table 2 shows the total number of violations reported by

Clio (|V |), the total number of violations that match with
automatically reconstructed refactorings (|V ∩R|), the total
number of remaining violations that were confirmed based

on manual inspection (|V ∩ M |), the total number of con-
firmed violations |CV | (which is |V ∩ R| + |V ∩ M |), and
the precision, which is defined as the number of confirmed
violations out of the total number of reported violations:
|CV |
|V |

.

Clio reported 231 violations that occur at least twice in a
five release period in Hadoop, out of which 152 (66%) were
confirmed. 81 of them were automatically confirmed and
71 were manually confirmed. Figure 6 shows the precision
for those violations that occur at least twice and the viola-
tions that occur at least three times. With at least three
occurrences, we obtain a similar precision of 67% but fewer
reported violations. For Eclipse JDT, Clio reported 399 vi-
olations, of which 161 were conservatively confirmed (40%
precision). Requiring violations to occur at least three times
increased the precision to 42%. We only discuss the results
of requiring at least two occurrences for the rest of the paper
because the results of higher occurrence rates are its subsets.

By comparing the results of Hadoop and Eclipse JDT, we
first observe that Eclipse is better modularized and more
stable: although Eclipse JDT is about 10 times larger than
Hadoop, less than three times more refactorings were dis-
covered from Eclipse JDT than from Hadoop, showing that
it has been less volatile. This is consistent with the fact
that only 12% of all the 3767 Eclipse MRs were detected
to have violations (in Hadoop, the number is 47% out of
the 490 MRs), showing that the changes to Eclipse JDT
matches its modular structure better. Because Eclipse JDT
is much larger and the violations found are much sparser, it
was much harder for us to determine if a violation indicates
a problem, hence leading to a lower precision.

Figure 6: Precision (Hadoop)

In-depth Case Study: Hadoop.
Now we present an in-depth study of Hadoop to demon-

strate examples of violations that are (1) automatically con-
firmed violations, (2) manually confirmed violations, (3) false
positives (violations that are not confirmed), and (4) false
negatives (refactorings that are not identified as violations).

Automatically confirmed violations: In release 0.3.0,
Clio identified a violation involving FSDirectory and FS-

Namesystem. FSNamesystem depends on FSDirectory.isVa-

lidBlock method, but it often changes with FSNamesystem.
An API-level refactoring was identified in release 0.13.0,

showing that the isValidBlock method was moved from
FSDirectory to FSNamesystem. Upon further investigation,
we saw that, in the subsequent release, the method was made
private. In this case, Clio identified this violation 11 releases
prior to the actual refactoring.

Manually confirmed violations: Clio reported a vi-
olation in release 0.2.0 involving TaskTracker, TaskInPro-
gress, JobTracker, JobInProgress, and MapOutputFile that
does not match with automatically reconstructed refactor-
ings. We searched Hadoop’s MRs and found an open request
MAPREDUCE-278, entitled “Proposal for redesign /refac-
toring of the JobTracker and TaskTracker”. The MR states
that these classes are “hard to maintain, brittle, and merits

some rework.” The MR also mentions that the poor design
of these components have caused various defects in the sys-
tem.

False positive violations: Violations in this category
cannot be confirmed either automatically or manually. In
most cases, we cannot determine if there is a problem be-
cause we are not domain experts. As an example, in release
0.4.0, Clio reports a violation containing ClientProtocol,
NameNode, FSNamesystem, and DataNode. ClientProtocol

contains a public field with the protocol version number
and whenever the protocol changes, this number needs to
change. Since NameNode, DataNode, and FSNamesystem im-
plement the protocol, changes to them induce a change to
ClientProtocol. Although there may actually be a design
problem, we are not able to determine it for sure.

False negative violations: Some reconstructed refac-
torings are not matched to any violations identified by Clio.
There are many micro refactorings that happen within a
class and do not influence the macro structure of the sys-
tem. Refactorings can also happen for other purposes.

Another reason is that some discrepancies only occur once,
so Clio cannot tell if they are accidentally changed together
or there is a problem, but the developers may have realized
and fixed it before it happens again. For example, in version
0.15.1, the INode inner class of FSDirectory was refactored
and extracted into a separate class, and two of its sub-types
INodeFile and INodeDirectory were created so that the
DFSFileInfo and BlocksMap classes can be separated and
use specific INode subtypes. Clio did not identify a violation
between these classes because they were only involved in a
single MR during the time frame we examined.

4.3.2 Q2. Timing of Violation Detection
In Hadoop and Eclipse JDT, Clio identifies a violation,

on average, 6 and 5 releases respectively, prior to the re-
leases where the classes involved in the violation were ac-
tually refactored. Figure 7 shows the distribution of the
confirmed violations over Hadoop releases. Each point in
the plot represents a set of confirmed violations, such that
the horizontal axis shows the version that the violations were
first identified by Clio and the vertical axis shows the ver-
sion that the violations were refactored or recognized by the
developers. Points above 20 in the vertical axis signify that
the violations have been recognized by developers but not
refactored yet. Most of the points in Figure 7 are above
the line, indicating that Clio can identify design violations
early in the development process so that the designers can
be alarmed to avoid these problems accumulating into severe
decay.

Figure 7: Timing of Violation Detection (Hadoop)

Table 3: Characteristics of the Violations
Subjects cyclic clone inheritance coupling

Eclipse JDT 72 52 19 25
Hadoop 58 18 37 66

4.3.3 Q3. Characteristics of Identified Violations.
We further analyzed the symptoms of design problems as-

sociated with the detected violations and categorized them
into the following four types: (1) cyclic dependency, (2) code
clone, (3) poor inheritance hierarchy, and (4) unnamed cou-
pling. The first three symptoms are both well defined and
can be detected using existing tools. We call the fourth cat-
egory unnamed because they are not easily detectable using
existing techniques, to the best of our knowledge. Table 3
shows the number of confirmed violations under each cat-
egory in Hadoop and Eclipse JDT. The cyclic dependency,
code clone, and unnamed coupling violations reported in the
table are mutually exclusive from each other. The symptoms
of poor inheritance hierarchy often overlap with cyclic de-
pendency or unnamed coupling. Next we provide examples
from each category.

Cyclic Dependency. Both systems contain consider-
able number of cyclic dependencies. For example, in Eclipse
JDT, we found that the JavaBuilder and AbstractImage-

Builder often change together, and the code shows that
JavaBuilder contains a subclass of AbstractImageBuilder,
and AbstractImageBuilder contains a JavaBuilder. In a
Lattix DSM, there are no symmetric marks to alarm the
designer of this indirect cyclical dependency. Similarly, we
found that all of the following five files, or their subsets of-
ten change together: JavaProject, DeltaProcessor,Java-
ModelManager,JavaModel, and JavaCore. It turns out that
these five classes form a strongly connected components if
represented as a syntactic dependency graph.

Code Clone. Some modularity violations detected by
Clio involve code clones. In Hadoop version 0.12.0, the de-
tected modularity violation involves the classes Task, Map-
Task, and ReduceTask. Clio reported two violations: one
involving MapTask and Task, and the other involving Re-

duceTask and Task. Various methods and inner classes from
ReduceTask and MapTask were pulled up to the parent Task
class in versions 0.13.0, 0.14.0, and 0.18.0. In Eclipse JDT

and Hadoop, there are 52 and 18 violations respectively that
exhibit symptoms of code cloning. Using clone detectors, it
is possible that a much larger number of code clones can
be detected, but it may be too costly and not necessary to
refactor all of them. Clio picks up the ones that happen
most recently and most frequently, and provides more tar-
geted candidates to be refactored.

Poor Inheritance Hierarchy. The poor hierarchy vio-
lations we identified all have the symptoms that the sub-
classes causing the base class and/or other subclasses to
change for different reasons. For example, we identified, in
version 0.2.0 of Hadoop, a violation involving the Distri-

butedFileSystem and FileSystem classes, which was refac-
tored in version 0.12.0: several methods in DistributedFi-

leSystem were pulled up to its parent, FileSystem, making
them available to the other FileSystem subtypes. Another
reason is that the subclasses extensively use some methods
in their parent class and a push-down method refactoring
should have been applied [8]. For example, in Hadoop ver-
sion 0.14.0, the getHints method was pushed down from
the ClientProtocol to its subclass, DFSClient, because it
was the only user of this method. They were detected as a
violation in version 0.2.0.

In some cases, the parent classes depend on the subclasses
and form a cyclic dependency. In Hadoop version 0.1, mod-
ification request #51 describes changing the Distributed-

FileSystem class but its parent class FileSystem and an-
other child of the FileSystem, LocalFileSystem, are also
part of its solution. There are no syntactic dependencies be-
tween the two sibling classes. By release 0.3, Clio reported
that this modularity violation was observed more than three
times already. The code shows that the parent FileSys-

tem class contains methods to construct both of the two
subclasses. The parent class is thus very unstable because
changes to a child require changes to itself and its other
children. Our intuition that this is a problematic issue was
confirmed when we looked forward through the revision his-
tory and found that by release 0.19, the method to construct
DistributedFileSystem had been deprecated in FileSys-

tem, in favor of a method in a external class. As a similar
example in Eclipse, Scope is the parent of ClassScope and
BlockScope, but it constructs both of it’s children. We cat-
egorized this types of violation as both poor inheritance and
cyclic dependency.

Unnamed Coupling. The files involved in violations of
this category often change together, but they either do not
explicitly depend on each other (and are not code clones),
or have asymmetric dependency. For example, In Hadoop,
DatanodeInfo and DataNodeReport were involved in a vio-
lation, and was later refactored. In the modification request
comments, the developer says that these classes seem to be

similar and need to be refactored.
The FSDirectory and FSNamesystem we mentioned ear-

lier is also an example of unnamed coupling. Clio detected
this violation because the only allowed change order is from
the interface of FSDirectory to FSNamesystem. But the re-
vision history shows that changes to FSNamesystem often
cause FSDirectory to change. In the corresponding syn-
tactical DSM, these two classes reside in the same package,
and FSNamesystem depends on FSDirectory. Using a Lat-
tix DSM, the user can mark that FSDirectory should not
depend on FSNamesystem so that if FSDirectory explicitly
refers to FSNamesystem, Lattix will raise an alarm. How-

ever, in reality, FSDirectory never explicitly refers to FS-

Namesystem, although it often changes with FSNamesystem.
Table 3 shows that in Hadoop 66 out of 152 of the confirmed
violations fall into this category (In Eclipse, the number is
25 out of 161). We are not aware of existing techniques
that detect these violations that do not fit to pre-defined
symptoms of poor design

5. DISCUSSION
The quality of our modularity violation detection approach

depends heavily on the availability of modifications requests
and their solutions. For small-scale projects or projects
without version control systems, it is hard to apply Clio.

When calculating change coupling, how long a version his-
tory is enough? The answer depends on the specific project
and how to determine the best threshold is our ongoing work.
In the evaluation, we use all available revision histories to
determine change couplings. Changing the number of ver-
sions used for change coupling may change the results. Our
decision of only considering the five most recent releases in
evaluation when determining violations is based on the fact
that the results do not differ when we consider more versions.
Again, this heuristic may vary with different projects.

Since we only applied Clio to two subject systems, we
cannot conclude that the effectiveness of Clio generalizes
to all software systems; however, we did choose projects of
different sizes and domains to begin addressing this issue.
In addition, we cannot guarantee that the modification re-
quests used in the evaluation are not biased. As Bird et
al. [2] showed, the MRs that have associated change sets
may not be representative of all the MRs in the system. For
example, although we claim to identify design violations for
actively-developed parts of a system, the collected MRs may
not include the most active parts of the system.

Some violations detected using Clio may not embody any
design problems but reveal valid semantic dependency, as
shown in previous work [30, 31]. But our experiments show
that considerable number of violations indeed reflect design
problems. The accuracy of Clio also depends on how ac-
curate the ACN model embodies design decisions and their
assumption relations. The ACN model we used in this pa-
per were automatically generated from UML class diagrams
derived from source code. Some dependencies can only be
reflected in other design models, such as an architectural
description. It is possible that these dependencies are miss-
ing from the ACN model, hence causing false positives. The
violation we discussed in the previous section that contains
ClientProtocol, NameNode, FSNamesystem, and DataNode

is such an example. A future work is to improve Clio by
using high-level architectural models in addition to reverse-
engineered source models.

6. CONCLUSION
Parnas’ original definition of a module means an indepen-

dent task assignment, and his information hiding principle
advocates separating internal design decisions using an in-

terface to allow for independent evolution of other modules.
Though this definition of modularity is inherently insepara-
ble from the notion of independent module evolution, existing
approaches do not detect modularity violations by compar-
ing how components should change together and how the
components actually change together.

This paper proposes a novel approach of identifying erod-
ing design structure by computing the discrepancies between
modularity-based impact scope analysis and change coupling-
based impact scope analysis. We evaluated Clio using the
version histories of Hadoop Common and Eclipse JDT. We
conservatively confirmed hundreds of reported violations to
be correct, assuming there are no other design problems
in those code bases except the ones the developers already
refactored or reported. The result also shows that detected
modularity violations exhibit various symptoms of poor de-
sign, showing Clio’s advantages in contrast to bad-code smell
detection techniques that find only pre-defined set of poor
design symptoms, without regard to the system’s original
design structure nor its evolution history.

7. ACKNOWLEDGEMENTS
This work was supported in part by the National Science

Foundation under grants CCF-0916891 and DUE-0837665.

8. REFERENCES
[1] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1:

The Power of Modularity. MIT Press, 2000.

[2] C. Bird, A. Bachmann, E. Aune, J. Duffy,
A. Bernstein, V. Filkov, and P. Devanbu. Fair and
balanced? bias in bug-fix datasets. In Proc. 17th FSE,
pages 121–130, Aug. 2009.

[3] Y. Cai. Modularity in Design: Formal Modeling and

Automated Analysis. PhD thesis, University of
Virginia, Aug. 2006.

[4] Y. Cai and K. J. Sullivan. Modularity analysis of
logical design models. In Proc. 21st ASE, pages
91–102, Sept. 2006.

[5] M. Cataldo, A. Mockus, J. A. Roberts, and J. D.
Herbsleb. Software dependencies, work dependencies,
and their impact on failures. TSE, 35(6):864–878, July
2009.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. TSE, 20(6):476–493, June
1994.

[7] B. Fluri, H. C. Gall, and M. Pinzger. Fine-grained
analysis of change couplings. In Proc. 5th SCAM,
pages 66–74, Sept. 2005.

[8] M. Fowler. Refactoring: Improving the Design of

Existing Code. Addison-Wesley, July 1999.

[9] H. Gall, K. Hajek, and M. Jazayeri. Detection of
logical coupling based on product release history. In
Proc. 14th ICSM, pages 190–197, Nov. 1998.

[10] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides.
Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Nov. 1994.

[11] J. Garcia, D. Popescu, G. Edwards, and
N. Medvidovic. Identifying architectural bad smells. In
Proc. 13th CSMR, pages 255–258, Mar. 2009.

[12] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In Proc. SIGMOD,
pages 1–12, May 2000.

[13] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
Refactoring support based on code clone analysis. In
Proc. 5th PROFES, pages 220–233, Apr. 2004.

[14] S. Huynh, Y. Cai, and W. Shen. Automatic
transformation of UML models into analytical decision

models. Technical Report DU-CS-08-01, Drexel
University, Apr. 2008.
https://www.cs.drexel.edu/node/13661.

[15] S. Huynh, Y. Cai, Y. Song, and K. Sullivan.
Automatic modularity conformance checking. In Proc.

30th ICSE, pages 411–420, May 2008.

[16] M. Kim, D. Notkin, and D. Grossman. Automatic
inference of structural changes for matching across
program versions. In Proc. 29th ICSE, pages 333–343,
May 2007.

[17] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, and
L. Duchien. A domain analysis to specify design
defects and generate detection algorithms. In Proc.

11th FASE, pages 276–291, Mar. 2008.

[18] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. CACM,
15(12):1053–8, Dec. 1972.

[19] J. Ratzinger, M. Fischer, and H. Gall. Improving
evolvability through refactoring. In Proc. 2nd MSR,
pages 1–5, May 2005.

[20] M. P. Robillard. Topology analysis of software
dependencies. TOSEM, 17(4):18:1–18:36, Aug. 2008.

[21] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using
dependency models to manage complex software
architecture. In Proc. 20th OOPSLA, pages 167–176,
Oct. 2005.

[22] R. W. Selby and V. R. Basili. Analyzing error-prone
system structure. TSE, 17(2):141–152, Feb. 1991.

[23] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen.
The structure and value of modularity in software
design. In Proc. 8th FSE, pages 99–108, Sept. 2001.

[24] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou.
JDeodorant: Identification and removal of
type-checking bad smells. In Proc. 12th CSMR, pages
329–331, Apr. 2008.

[25] N. Tsantalis and A. Chatzigeorgiou. Identification of
extract method refactoring opportunities. In Proc.

13th CSMR, pages 119–128, Mar. 2009.

[26] N. Tsantalis and A. Chatzigeorgiou. Identification of
move method refactoring opportunities. TSE,
35(3):347–367, May 2009.

[27] S. Wong and Y. Cai. Predicting change impact from
logical models. In Proc. 25th ICSM, pages 467–470,
Sept. 2009.

[28] S. Wong, Y. Cai, G. Valetto, G. Simeonov, and
K. Sethi. Design rule hierarchies and parallelism in
software development tasks. In Proc. 24th ASE, pages
197–208, Nov. 2009.

[29] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim.
AURA: A hybrid approach to identify framework
evolution. In Proc. 32nd ICSE, May 2010.

[30] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C.
Chu-Carroll. Predicting source code changes by mining
change history. TSE, 30(9):574–586, Sept. 2004.

[31] T. Zimmermann, P. Weißgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. In Proc. 26th ICSE, pages 563–572, May
2004.

