Template-based Reconstruction of
Complex Refactorings

Kyle Prete, Napol Rachatasumrit, Nikita Sudan, Miryung Kim
Electrical and Computer Engineering
The University of Texas at Austin
Email: {kylep, nrachtasumrit, nsudan} @mail.utexas.edu, miryung @ece.utexas.edu

Abstract—Knowing which types of refactoring occurred be-
tween two program versions can help programmers better
understand code changes. Our survey of refactoring identification
techniques found that existing techniques cannot easily identify
complex refactorings, such as an replace conditional with polymor-
phism refactoring, which consist of a set of atomic refactorings.

This paper presents REF-FINDER that identifies complex
refactorings between two program versions using a template-
based refactoring reconstruction approach—REF-FINDER ex-
presses each refactoring type in terms of template logic rules and
uses a logic programming engine to infer concrete refactoring
instances. It currently supports sixty three refactoring types
from Fowler’s catalog, showing the most comprehensive coverage
among existing techniques. The evaluation using code examples
from Fowler’s catalog and open source project histories shows
that REF-FINDER identifies refactorings with an overall precision
of 0.79 and recall of 0.95.

I. INTRODUCTION

Refactoring is the process of changing a software system
in such a way that it does not alter the external behavior of
the code yet improves the modular structure of software [1].
Automatically identifying which refactorings happened be-
tween two program versions is an important research problem
because inferred refactorings can help developers understand
the modifications made by other developers and can be used to
update client applications that are broken due to refactorings
in library components [2], [3], [4]. Furthermore, they can be
used to study the effect of refactorings on software quality
empirically when the documentation about past refactorings is
unavailable in software project histories [5].

Our survey of refactoring identification techniques found
that, even though they can handle simple refactorings, such
as rename and move refactorings, they cannot easily handle
complex refactorings that consist of atomic refactorings related
by structural constraints. In particular, they cannot easily iden-
tify (1) refactorings that require the knowledge of changes to
the control structure of a program such as replace conditional
with polymorphism (pages. 255-259 [6]), (2) refactorings that
require information about changes within method bodies such
as replace temp with query (pages. 120-123 [6]), and (3)
refactorings that themselves consist of multiple previously
identified refactorings such as an extract superclass refactoring
(pages. 336-340 [6]), which consists of move fields/methods.

To overcome these limitations, we developed a refactoring
reconstruction technique that actively leverages the domain
knowledge about well-known refactoring types. As a first

step, we targeted refactoring types in Fowler’s catalog [6],
a comprehensive list of refactorings, well understood by
software engineering practitioners. Inspired by the prior work
on logic-based program representation approaches [7], [8],
[9], we described the structural constraints before and after
applying a refactoring to a program in terms of femplate logic
rules and encoded ordering dependencies among refactoring
types to define which refactoring types must be identified
before finding higher-level, composite refactorings. We then
developed a fact extractor that traverses the abstract syntax tree
of a program and extracts facts about code elements (packages,
classes and interfaces, methods, and fields), structural de-
pendencies (containment, overriding relationships, subtyping
relationships, method calls, and field accesses), and the content
of code elements (e.g., if-then-else control structures in a
method-body). After representing a program in terms of a
database of logic facts, REF-FINDER infers concrete refactoring
instances by converting a template logic rule into a logic query,
and then invoking the query on the database using a Tyruba
logic programming system [10].

Consider a program that has undergone a replace condi-
tional with polymorphism refactoring, which replaces a con-
ditional logic that chooses different behavior depending on
the type of an object. Each leg of the conditional is extracted
to an overriding method in a subclass [6]. Invoking a logic
query that checks the deletion of if-statement and movement
of a content from the original method to a new method that
overrides the original method finds a replace conditional with
polymorphism refactoring.

To evaluate our system, we applied REF-FINDER to code
examples from Fowler’s book and compared REF-FINDER’S
output with the known refactoring instances to assess both
recall—how many known refactorings were indeed found by
REF-FINDER and precision—how many of found refactorings
are indeed correct. Its precision and recall were 97% and
94% respectively. We also applied REF-FINDER to release pairs
of Columba and jEdit and revision pairs of Carol. Since
these programs did not document refactorings, we created
a set of correct refactorings by running REF-FINDER with
a similarity threshold (0=0.65) and manually verified them.
We then measured a recall by comparing this set with the
results found using a higher threshold (0=0.85) and measured
precision by inspecting a sampled data set. The precision and
recall on open source projects were 0.74 and 0.96 respectively.



The rest of this paper is organized as follows. Section
II summarizes our survey of refactoring reconstruction ap-
proaches. Section III explains our methodology in detail.
Section IV discusses evaluation results on Fowler’s code
examples and open source projects. Section V concludes with
the description of future work.

II. RELATED WORK

Demeyer et al. [11] first proposed the idea of inferring refac-
toring events by comparing two program versions based on a
set of ten characteristic metrics, such as LOC and the number
of method calls within a method. Zou and Godfrey [16] first
coined the term, origin analysis, which serves as a basis of
refactoring reconstruction by matching code elements using
multiple criteria (e.g., names, signatures, metric values, callers,
and callees). Zou and Godfrey infer merge, split, and rename
refactorings. S. Kim et al. [15] used clone detectors such as
CCFinder [22] to map methods. Malpohl et al. [12] align
tokens using diff and infers a function or variable renaming
when distinct tokens are surrounded by mapped token pairs.
Van Rysselberghe and Demeyer [13] use a clone detector to
detect moved methods. Antoniol et al. [14] identifies class-
level refactorings using a vector space information retrieval
approach. Xing and Stroulia’s UMLDIff [5] matches packages,
classes, interfaces, fields and blocks based on their name and
structural similarity in a top-down order. After matching code
elements, UMLDIfT infers refactorings.

Refactoring Crawler [2] identifies refactorings in two
stages. First, it finds a list of code element pairs using shingles
(a metric-based fingerprint) and performs a semantic analysis
based on reference relationships (calls, instantiations, uses of
types, import statements). The second part of the algorithm is
an iterative, fix point algorithm that finds refactorings in a top-
down order. Weillgerber and Diehl’s technique [17] identifies
and ranks refactoring candidates using names, signatures, and
clone detection results. Change Distiller [19] compares two
versions of abstract syntax trees; computes tree-edit opera-
tions; and maps each tree-edit to atomic AST-level change
types (e.g., parameter ordering change). Though it analyzes
both declaration and method-body changes derived from AST
edit operations, unlike REF-FINDER, it does not relate previ-
ously identified refactorings from multiple locations to infer
higher-level refactorings. M. Kim et al. [21] automatically
infer systematic declaration changes as rules and determine
method-level matches. We extend this prior work by actively
leveraging the structural constraints of a program before and
after each refactoring type.

The columns of Table I represent individual approaches and
the rows indicate refactoring types. Refactoring types that are
currently implemented by each approach are marked by +/; the
refactoring types that can be supported by simple extensions
are marked by ¢. (Some of these extensions were mentioned in
the sources themselves.) The refactoring types not mentioned
in the table require considerable extensions or are not sup-
ported by them currently. Many of these existing techniques
analyze code elements at or above the level of method headers

and do not analyze changes to the control structure within
method bodies. Thus, detection of decompose conditionals
requires significant extensions to these algorithms. They also
cannot detect composite refactorings easily because they do
not know which refactorings must be detected first and how
those refactorings must be knit together to detect higher-level,
composite refactorings.

The approach most similar to REF-FINDER is Xing et al.’s
change-facts queries [18]. They first extract facts regarding
design-level entities and relations. These facts are then pair-
wise compared to determine how the facts changed from
one version to the next. Finally, queries corresponding to
well-known refactoring types are applied to the database to
find concrete refactoring instances. This work is similar to
REF-FINDER in that it explicitly encodes the skeleton of a
refactoring type as a query. Because the queries are encoded
in SQL, identification of composite refactorings may require
manually weaving the results. REF-FINDER also provides a
more comprehensive coverage by supporting 63 refactoring
types from Fowler’s catalog [6], as opposed to 32 queries
mentioned in [18].

Spyware [23] captures refactorings during development
sessions in an IDE rather than trying to infer refactorings
from two program versions. Refactoring reconstruction can
complement Spyware by finding refactorings that are not
directly supported by IDEs.

Representing a program’s code elements and structural
dependencies as a set of logic facts has been used for decades.
Grok [7] extracts facts about code elements and structural
relationships in software and supports querying the resulting
relational databases. CodeQuest [9] evaluates logic queries
specified by programmers to assist program investigation.
Mens et al.’s intentional view [8] allows programmers to spec-
ify concerns or design patterns using logic rules. Eichberg et
al. [24] use Datalog rules to continuously enforce dependency
constraints as software evolves. DeMIMA [25] finds concrete
instantiations of design patterns by matching the skeleton of
design patterns against a program structure. Tourwé et al.
[26] use logic meta-programming to detect bad code smells.
Similar to the aforementioned approaches, REF-FINDER uses
a logic-based representation and querying approach; while
these approaches support source code navigation, detect design
pattern instantiations, detect refactoring opportunities, or check
structural constraints in a single program version, REF-FINDER
focuses on identifying refactorings that occurred between two
program versions.

III. METHODOLOGY

REF-FINDER takes two program versions as input and finds
refactoring instances automatically by leveraging the catalog
of template refactoring rules. Section III-A describes how
REF-FINDER encodes both old and new program versions as
a database of logic facts and each refactoring type as a
template logic rule. Section III-B describes how REEF-FINDER
finds refactoring instances by converting template logic rules
into logic queries and invoking the queries on the logic



TABLE I: Refactoring types currently supported by existing refactoring reconstruction approaches. The remaining 40
refactorings in Fowler’s catalogue that are not mentioned in the table are not handled by any of the existing techniques.

De-
meyer

Mal-
pohl

Van
Ryssel-
berghe
I [ [2] | [13] [14]

Anto- | S.Kim

niol

Refactorings

—
—
—

]

Zou Wei3- Fluri M.Kim

gerber

Dig Xing Dagenais

H
=
o

]

—
(3]

]

=
Q

)

—

)

. [18]

—_
—_
\O

—

[20] [21]

o=
W

Extract Method

v/ o o

N o

Extract Subclass

Move Class

Move Field

Move Interface

Move Method

Rename Method

Replace Package

Replace Class

Replace Return

MO O N NN

Replace Input Signature

MM NN N G SO N
< O | O R

OOO«O

Add Parameter

MG OO NSO N
<SS
< OO IR [
<
<& Q SO0 << (ol Kol el
< @ [ ==

Extract Superclass

Pull Up Field

Pull Up Method

Push Down Field

Push Down Method

Remove Parameter

Hide Method

(o]

Unhide Method

OO | RIS

Extract
tem/package

subsys-

M GNN
M GNN

Lol ol Kol R
[l Rl Rl R

<
<

Inline subsystem/package

<
<
<
<

Extract interface o S o

«O

<

Inline superclass

Inline subclass

Form Template Method

Replace inheritance with
delegation

Replace delegation with
inheritance

Inline Class

Convert anonymous class
to inner class

Introduce factory method

Introduce parameter ob-
ject

Encapsulate field

Preserve whole object o

RO NN SR NSO OSSOSO RN SIS IS OSSOSO OSSOSO OSSOSO OSSN

database. The queries are invoked in order such that pre-
requisite refactorings are found before high-level, composite
refactorings. Section III-C illustrates the inference process
using a decompose conditional example.

A. Logic-based Representation and Refactoring Rules

Predicate definition. REF-FINDER represents each program
version using a set of logic predicates (see Table II). Some
of the predicates describe code elements (packages, classes,
interfaces, types, methods, and fields) and their containment
relationships; Some describe structural dependencies (field-
access, method-call, subtyping, and overriding). These pred-
icates about code elements and structural dependencies are
adopted from our prior work on LSdiff [27]. Because our prior
work only described the content of method bodies in terms
of method-calls and fields-accesses, we added six predicates,
conditional, cast, trycatch, throws, variabledefinition, and methodbody,
to analyze the internal content of method bodies, control-

structures and variable definitions. For example, predicate
conditional was added to encode it statements within a method
body. We also added four predicates to capture the modifier of
methods/fields and getter or setter methods. These predicates
were identified as we needed them to encode the skeleton
of each refactoring type from Fowler’s catalog as rules. REF-
FINDER traverses the abstract syntax trees of a program and
extracts logic facts using the Eclipse JDT analysis toolkit [30].

Some logic facts are derived from previously identified
facts. For example, inheritedmethod facts are derived from both
method declaration facts and subtyping relationship facts. Af-
ter extracting facts from both old and new versions (denoted as
before_ and after_ respectively), REF-FINDER identifies deleted_
and added_ facts by comparing the factbases. Some facts are
computed on demand to assist our refactoring reconstruction
process. For example, in order to determine an extract_method
refactoring, REF-FINDER generates a similarbody fact if the sim-
ilarity between two candidate methods is above a threshold o.



TABLE II: Logic predicates used to model code elements, structural dependencies, and the content of code elements in Java

Basic Predicate Adopted from LSdiff [27]

Interpretation

package(packageFullName)

There exists a package with packageFullName.

type(typeFullName, typeShortName, packageFullName)

A class or an interface with name typeShortName is in packageFullName package.

method(methodFullName, methodShortName, typeFull-
Name)

A method with name methodShortName is in typeFullName type.

field(fieldFullName, fieldShortName, typeFullName)

A field with name fieldShortName is in typeFullName type.

return(methodFullName, returnTypeFullName)

A method methodFullName returns type returnTypeFullName.

fieldoftype(fieldFullName, declaredTypeFullName)

A field fieldFullName is declared to be declaredTypeFullName type.

typeintype(innerTypeFullName, outerTypeFullName)

An inner class innerTypeFullName is declared in class outerTypeFullName.

accesses(fieldFullName, accessorMethodFullName)

A field fieldFullName is accessed by method accessorMethodFullName.

calls(callerMethodFullName, calleeMethodFullName)

A method callerMethodFullName calls a method calleeMethodFullName.

subtype(superTypeFullName, subTypeFullName)

A subTypeFullName class is a subtype of superTypeFullName.

inheritedfield(fieldShortName, superTypeFullName, sub-
TypeFullName)

A fieldShortName field is inherited by class subTypeFullName from class
superTypeFullName.

inheritedmethod(methodShortName, superTypeFullName,
subTypeFullName)

A methodShortName method is inherited by class subTypeFullName from class
superTypeFullName.

Extended Predicates (A full list of predicates is available in [28])

Interpretation

methodbody(methodFullName, methodBody)

A method methodFullName has a content methodBody block.

conditional(condition, thenPart, elsePart, methodFull-

Name)

An if-then-else statement inside method methodFullName has thenPart
block and elsePart block with a condition expression..

cast(expr, typeFullName, methodFullName)

A method methodFullName contains expression expr, which has been cast to type
typeFullName.

trycatch(tryBlock, catchClauses, finallyBlock, methodFull-
Name)

A method methodFullName contains a try-catch statement with tryBlock
block, catchClauses clauses, and finallyBlock block.

throws(methodFullName, exceptionFullName)

A method methodFullName throws an exception of type exceptionFullName.

variabledeclaration(methodFullName, varName, varType,
expr)

Within a method methodFullName, a variable with the identifer varName is
declared to be type varType and assigned to expression expr.

methodmodifier(methodFullName, modifierType)

The modifier of methodFullName method is modifierType.

fieldmodifier(fieldFullName, modifierType)

The modifier of fieldFullName field is modifierType.

parameter(methodFullName, paramList)

A method methodFullName has an input signature, paramList.

getter(methodFullName, fieldFullName)

The method methodFullName returns the value of the field fieldFullName .

setter(methodFullName, fieldFullName)

The method methodFullName sets the value of the field fieldFullName .

similarbody(method1FullName, method1Body, method2-
FullName, method2Body)

The methods method1FullName and method2Ful1lName have method bodies and
their content similarity is above a threshold o.

addedparameter (methodFullName, argName, argType)

A method methodFullName has a new input argument argName of type argType.

deletedparameter (methodFullName, argName, argType)

A method methodFullName deleted an input argument argName of type argType.

For this purpose, we have implemented a rudimentary block-
level clone detection technique, which removes any beginning
and trailing parenthesis, escape characters, white spaces and
return keywords and computes word-level similarity between
the two texts using the longest common subsequence algo-
rithm [31]. This type of fact extraction can be replaced with
existing clone detection techniques such as CCFinder [22]. To
identify add/remove parameter refactoring, for each deleted
method, we search for a new method with the same name, and
compared its signature to identify input signature changes.

Coding refactoring types as template logic rules. We
encode each refactoring type as a logic rule. A consequent
predicate represents a target refactoring type to be inferred
and the predicates in the antecedent represent pre-requisite
refactorings or change-facts. For example, the extract method
rule, added_method(m2, n2, t2) A after_method(m1, n1, t1) A simi-
lar_body(m2, b2, m1, b1) A after_calls(m1, m2) — extract_method(m1,
m2, b2, t1), represents that an extract_method refactoring re-
quires that a new method m2’s body content b2 is extracted
from method m1 in the old version and that m1 now calls m2.

We manually encoded 63 refactoring types in Fowler’s cat-
alog as rules. Complex refactorings are described using other
refactorings as pre-requisites. Table III shows the logic-rule
based representations for six refactorings out of 63 refactorings

in the technical report [28].

We excluded convert procedural design to objects, substitute
algorithm, duplicate observed data, introduce foreign method,
replace record with data class, and separate domain from
presentation because they either are too ambiguous or require
significant knowledge about mapping from design to code.
We excluded split temporary variable and remove assignments
to parameter refactorings because they require accurate alias
analysis. We also excluded consolidate duplicate conditional
fragments because this requires detecting clones at an arbitrary
block granularity.

B. Refactoring Identification via Logic Queries

Topological sort. Because the description of a composite
refactoring consists of a set of low-level refactorings, we
explicitly define partial ordering relationships among refac-
torings. These ordering relationships are derived from tem-
plate logic-rule descriptions. For example, based on an ex-
tract superclass refactoring description, added_subtype(...) A
— before_subtype(...) A (move_field(...) v move_method(...)) —
extract_superclass(...), the ordering relationship between move
method/field and extract superclass is defined.

We used a topological sort algorithm [32] to identify which
refactorings need to be inferred first. Each refactoring type



TABLE III: Refactoring types expressed in terms of template logic rules. This table includes six refactoring types from Fowler’s
catalogue and the remaining template rule-based description of sixty five refactorings is described in our technical report [28].

Refactoring | Corresponding template logic rule

Description of each refactoring

type type

replace deleted_conditional(condition, thenPart, elsePart, mFullName) You have a conditional that chooses
conditional A before_method(mFullName, mShortName, tFullName) different behavior depending on the
with  poly- - type of an object. Move each leg
morphism A after_subtype(tFullName, subtFullName) of the conditional to an overriding

A added_method(submFullName, mShortName, subtFullName)
A similar_body(submFullName, mFullName)
— replace_conditional_with_polymorphism(mFullName)

method in a subclass. Make the orig-
inal method abstract.

collapse hi- | (deleted_subtype(tParentFullName, tChildFullName)

erarchy A (pull_up_field(fShortName, tChildFullName, tParentFullName)

V pull_up_method(mShortName, tChildFullName, tParentFullName)))

V (before_subtype(tParentFullName, tChildFullName)

V deleted_type(tParentFullName, tParentShortName, package)

A (push_down_field(fShortName, tParentFullName, tChildFullName)

V push_down_method(mShortName, tParentFullName, tChildFullName)))
— collapse_hierarchy(tParentFullName, tChildFullname)

A superclass and subclass are not
very different. Merge them together.

pull up | move_method(fShortName, tChildFullName, tParentFullName) A method is moved from a class to
method A before_subtype(tParentFullName, tChildFullName) its superclass.

— pull_up_method(fShortName, tChildFullName, tParentFullName)
extract added_subtype(superClassFullName, classFullName) You have two classes with simi-

superclass A NOT (before_type(superClassFullName, X, X)) A

( move_field(fieldShortName, classFullName, superClassFullName)

Vv move_method(methodShortName, classFullName, superClassFullName))
—extract_superclass(superClassFullName, classFullName)

lar features. Create a superclass and
move the common features to the
superclass.

extract added_method(toMethodFullName, toMethodShortName, toClassFullName)

method A after_method(fromMethodFullName, fromMethodShortName, fromClassFullName)
A similar_body(toMethodFullName, toMethodBody, fromMethodFullName, fromMethodBody)

A after_calls(fromMethodFullName, toMethodFullName)

Name)

— extract_method(fromMethodFullName, toMethodFullName, toMethodBody, toClassFull-

You have a code fragment that can
be grouped together. Turn the frag-
ment into a method whose name
explains the purpose of the method.

encapsulate added_cast(X, tFullName, mFullName) A added_return(mFullName, tFullName)

downcast A deleted_return(mFullName, oldtFullName) A (after_subtype(oldtFullName, tFullName)
V (after_subtype(oldtFullName, othertFullName) A after_subtype(othertFullName, tFullName)))

— encapsulate_downcast(mFullName, tFullName)

A method returns an object that
needs to be downcasted by its
callers. Move the downcast to within
the method.

can be considered as a node in a refactoring hierarchy graph,
where an edge from node x to node y exists if a refactoring
type = contains a refactoring type y in its antecedent. This
sorting result determines the invocation order of logic queries.
Finding concrete refactoring instances. We find concrete
refactoring instances by converting the antecedent of each
rule into a logic query and invoking the query on the
database of logic facts using the Tyruba logic programming
engine [10]. For example, to find pull up method refactoring
instances, the antecedent of the rule, move_method(m1,n1,p1) A
before_subtype(p1,c1) is invoked on the factbase to find constant
bindings for the logic variables, m1,n1,p1 and c1. Our algo-
rithm then creates a new fact with the consequent predicate,
pull_up_method, by substituting its variables with the constant
bindings. This new fact is written to the factbase so that other
refactorings that require this fact as a pre-requisite can be
found later (see Algorithm 1).

C. Example of Refactoring Reconstruction Process.

Consider a decompose conditional refactoring, which sim-
plifies a complicated conditional by extracting methods from
an ir statement’s condition expression, and then and else
blocks. Table IV shows programs before and after a decom-
pose conditional refactoring, its template logic rule, and the
snapshots of the factbase during the refactoring identification
process. Since the decompose conditional refactoring is framed
in terms of the extract method refactoring, the latter precedes
it in the order of identification. Invoking the query results in
the three extract method instances, which are then written to
the factbase file. Querying the antecedent of the decompose
conditional refactoring returns a non empty result set, implying
that the target refactoring did occur.

IV. EVALUATION

This section presents evaluation concerning two aspects:
How many known refactorings were accurately detected, and
how correct were the identified refactorings? Let R represent




Input:

FB, factbase

S, a refactoring hierarchy graph that encodes ordering
dependencies among refactorings

R, a hash map of (key:refactoring type, value:rule)

t, a target refactoring type to be inferred

while n in topologicalSort (S,t) do
if n has not been visited yet then
mark n as visited;
foreach node m with an edge from n to m do
inferRefactoring(FB, S, R, m);
end
rule:= getvalue (R, n) ;
a := rule.antecedent;
¢ := rule.consequent;
resultSet := executeTyrubaQuery (FB, a) ;
foreach ¢ in resultSet do
create a new fact f with predicate ¢ using constant
bindings e;
FB := FB U {f};
end
end
end
Algorithm 1: inferRefactoring

the total number of refactorings identified and F represent the
total number of expected refactorings. The precision and recall
are defined as follows:

e Precision = |E(\R|/ |R|

e Recall = |[E(\R|/ |E|

We performed two case studies—one on manually created
code examples from Fowler [6] and the other on version pairs
of Java open source projects Carol, Columba, and jEdit. For
the first type of evaluation, we measured both precision and
recall. For the second study, we randomly sampled at most 50
refactorings per version and measured the precision. Since it
is hard to find known refactorings, we ran REF-FINDER using
similarity threshold o= 0.65 and manually inspected randomly
chosen refactorings until we found 10 correct refactorings.
We then measured a recall against this data set at a more
reasonable threshold, o= 0.85.

A. Evaluation using Fowler’s Code Examples

Almost all of the related work in refactoring reconstruction
cites Fowler’s Refactoring book [6]. Code examples from
the same book were used to do a preliminary evaluation on
63 refactorings types. The example programs were intended
to have only one refactoring in each. After applying REF-
FINDER to these programs, we manually inspected the results
to confirm whether the expected refactoring instances were
found. REF-FINDER found 59 of 63 different types correctly,
resulting in 93.7% recall and 97.0% precision. It even found
additional refactorings that resulted from combining Fowler’s
examples in addition to constituent refactorings in addition to
constituent refactorings.

Fowler’s Refactoring book [6] describes 72 refactorings,
which we numbered alphabetically. To display them more
easily, we broke up the refactorings into seven groups, as

TABLE IV: Reconstruction of decompose conditional

Program differences

public class Foof{
public void main(){
// START OF BLOCK 0
- if (date.before (SUMMER_START)
- | |date.after (SUMMER_END) //EXPR 1
- charge = quantity * winterRate
- + winterServiceCharge; //BLOCK 2
else
charge = quantity * summerRate;//BLOCK 3
//END OF BLOCK 0
// START OF BLOCK 4
if (notSummer (date))
charge = winterCharge (quantity);
else
charge = summerCharge (quantity);
// END OF BLOCK 4

R

}

boolean notSummer (Date date){
return date.before (SUMMER_START)
|| date.after (SUMMER_END) ;//BLOCK 5

int winterCharge (int quantity){
return quantity x winterRate
* winterServiceCharge;//BLOCK 6

int summerCharge (int quantity){

return quantity x summerRate;//BLOCK 7

-

B I S T e e S

decompose conditional refactoring rule

deleted_conditional(condition, thenPart, elsePart, origM)

A extract_method(origM, newM1, condition, t1)

A extract_method(origM, newM2, thenPart, t2)

A extract_method(origM, newM3, elsePart, t3)

— decompose_conditional(condition, thenPart, elsePart, origM)

Initial factbase

added_method(“Foo.summerCharge”, “summerCharge”, “Foo”).

2

added_method(“Foo.notSummer”,“notSummer”,“Foo’).
added_method(“Foo.winterCharge”, “winterCharge”,“Foo”).
added_methodbody(“Foo.main”, BLOCK 4).
added_methodbody(“Foo.winterCharge”, BLOCK 6).
added_methodbody(“Foo.notSummer”, BLOCK 5).
added_methodbody(“Foo.summerCharge”, BLOCK 7).
deleted_methodbody(“Foo.Foo.main”, BLOCK 0).
deleted_conditional(EXPR 1, BLOCK 2, BLOCK 3, “Foo.main”).
similar_body(*“Foo.winterCharge”, BLOCK 6,”Foo.main”, BLOCK 0).
similar_body(‘“Foo.notSummer”, BLOCK 5,“Foo.main”, BLOCK 0).
similar_body(“Foo.summerCharge”, BLOCK 7,“Foo.main”, BLOCK 0).

Additional facts written to the factbase, after identifying extract method
refactorings

extract_method(*“Foo.main”,“Foo.summerCharge”, BLOCK 7,“Foo”).
extract_method(‘“Foo.main”, “Foo.notSummer”, BLOCK 5,“Foo”).
extract_method(“Foo.main”, Foo.winterCharge”, BLOCK 6,“Fo00”).

Additional facts written to the factbase, after identifying decompose
conditional refactoring

decompose_conditional(EXPR 1, BLOCK 2, BLOCK 3, “Foo.main”).

shown in Table V. Each refactoring is represented by its
number followed by the quantity of that refactoring we found.
For example, 18(4) means type extract method was found four
times. |E| lists the number of refactorings we expected to
find, and | R| the number of found refactorings. When counting
the total number of refactorings, we counted both composite
and constituent refactorings. For example, the decompose
conditional refactoring in Table IV is counted as 4 not 1.

The two false positive extract methods resulted from short
methods with similar but unrelated content, as the content



TABLE V: Results: Fowler’s code examples

Excluded refactorings Expected refac- | Identified refactorings | |E| | |R| | Prec. | Rec. | False negatives False positives
torings (E) (R)
1 to 10 8 (consolidate duplicate 1-7,10 1-7,10, 25, 18(4), 23, | 8 19 1.00 1.00
conditionals), 9 (con- 50, 33, 34, 38, 39
vert procedural design
to objects)
11 to 20 | 11 (duplicate observed | 12-20 12-17, 18(2) 19-20, | 9 20 0.95 1.00 18 (extract
data) 33(3), 343), 1(2), method)
45(2)
21to 30 | 29 (introduce foreign | 21-28, 30 21-28, 34(3), 33,30 9 12 1.00 1.00
method)
31 to 40 31-40 31-32, 1(2), 45(2), 33- | 10 13 1.00 0.90 | 36  (preserve
35, 37-40 whole object)
41 to 50 | 42 (remove assignments | 41, 43-50 41, 43-48, 50, 28, 18, | 9 11 1.00 0.89 | 49 (replace
to parameter) 23 conditional
with
polymorphism)
51 to 60 51-60 51-58, 18, 45, 60 10 11 1.00 0.90 | 59 (replace
parameter
with explicit
methods
61to72 | 61 (replace record | 62-67, 69, 72 62-64, 66-67, 69, 72, | 8 14 0.86 0.88 65 (replace | 56 (replace
with data class), 68 56, 50, 1, 45, 51, 16, 18 type code with | magic number
(separate domain from state/strategy) with  symbolic
presentation), 70 (split constants),
temporary variable), 71 18 (extract
(substitute algorithm) method)
Total 9 63 100 | 0.97 0.94

similarity is a measure relative to the method size. Another
false positive, replace magic number with constant, was found
on an example where a superclass adds constant fields to
replace methods from its subclasses. Most false negatives
resulted from not being able to find similarbody facts, which
indicates that the similarity threshold o must be carefully tuned
for different types of refactorings.

B. A Case Study using Open Source Projects

We selected Carol because the authors knew of existence of
complex refactorings in the data set from Kim and Notkin’s
prior study [27]. The other two subject programs jEdit and
Columba were selected because they were used by many min-
ing software repository projects. The inspected version pairs
were randomly selected. The size of input factbase ranged
from 12869 to 39353 in Carol, from 110151 to 121931 in
JEdit, and from 374026 to 381893 in Columba. The time taken
to run the refactoring tool was the lowest for Carol revision
pair 548-576 (with input factbase size of 31628) at 0.091
minutes and the highest for Columba revision pair 352-449
(with input factbase size of 381893) which took 64 minutes
for refactoring identification. We deactivated identification of
four refactoring types, replace temp with query, inline temp,
introduce explaining variable, and remove control flag because
this requires local variable level analysis and thus slows down
REF-FINDER’s performance. The evaluation of Carol was done
on a 2.4GHz Core 2 Duo Windows Vista machine with 2GB
RAM. The evaluations of jEdit and Columba was done on a
3.06GHz Core 2 Duo MacOS machine with 8GB of RAM.

Two of the authors manually inspected refactoring instances
reported by REF-FINDER to confirm their correctness. Table VI

TABLE VII: Example of hide delegate

Program differences

public class TextUtilities{
public static int findMatchingBracket (Buffer buffer,
int line, int offset, int startLine, int endLine)
throws BadLocationException{

- TokenMarker tokenMarker = buffer.getTokenMarker ();

- TokenMarker.LineInfo lineInfo = tokenMarker
.markTokens (buffer, line);

- Token lineTokens = linelInfo.firstToken;

+ Buffer.LineInfo lineInfo = buffer.markTokens (line);

+ Token lineTokens = linelInfo.getFirstToken();

summarizes the number of refactoring instances found by REF-
FINDER, the precision measures, and the types of refactorings
found by REF-FINDER. In total, REF-FINDER found 774 refac-
toring instances. We sampled at most 50 from each version
pair and inspected 344 refactorings in total. We determined
that 254 of the 344 are correct through manual inspection,
reporting 0.738 precision. In the table, the types of refactorings
that are found by REF-FINDER but are not handled by existing
approaches are in bold font.

Most incorrectly identified instances occurred due to argu-
ment renamings in method input signatures. For example, in
JEdit releases 3.0.2-3.1, 17 of the 21 false positives were add
parameter and remove parameter refactorings caused by this.



TABLE VI:

Results from jEdit, Columba, and Carol (¢ = 0.85)

JEdit

Versions

| R]

Prec.

Recall

Types of identified refactorings

Time (min)

3.0-3.0.1

10

|E|
9

0.75

0.78

remove parameter(1), add parameter(2), replace magic number with constant(4),
extract method(3)

0.87

3.0.1-3.0.2

1.00

1.00

remove parameter(1)

0.67

3.0.2-3.1

214

0.45

1.00

change unidirectional to bidirectional association (3), replace magic number
with constant(7), replace parameter with method(4), replace nested con-
ditional with guard clauses(3), hide delegate(4), introduce null object(4),
change bidirectional to unidirectional association(l), separate query from
modifier(1), consolidate conditional expression(7), remove middle man(4),
replace exception with test(1), inline method(5), remove parameter(89), add
parameter(73), extract method(4), move method(4)

12.37

Columba

300-352

13

0.52

0.90

add parameter(5), change bidirectional to unidirectional association(1), remove
middle man(1), push down method(1), move field(2), move method(2), ex-
tract method(10), consolidate conditional expression(2), introduce assertion(3),
push down field(1), remove parameter(3), pull up constructor body(1), rename
method(7), replace nested conditional guard clauses(3),inline method(1)

20.86

352-449

209

10

0.91

1.00

replace nested conditional guard clauses(2), add parameter(43), remove param-
eter(79), inline method(1), extract method(1), rename method(2), hide method(1),
move field(13), move method(11), consolidate conditional expression(4), in-
troduce null object(2), replace magic number with constant(2), replace
constructor with factory method(1), pull up method(3)

63.60

Carol

62-63

1.00

1.00

move method(3), move field(6), add parameter(1), remove parameter(2)

0.15

389-421

0.63

1.00

replace exception with test(1), replace magic number with constant(1), add
parameter(4), extract method(2)

0.15

421-422

147

0.64

0.90

form template method(5), move field(8), remove assignment to parameters(12),
replace exception with test(1), move method(102), add parameter(5), extract
superclass(7), extract method(2), remove parameter(5)

0.74

429-430

13

0.85

1.00

introduce local extension(1), inline method(2), replace exception with test(4),
replace magic number with constant(3), move method(20), extract superclass(5),
move field(13)

0.12

430-480

37

10

0.81

1.00

replace magic number with constant(2), replace exception with test(2),
inline method(2), consolidate conditional expression(2), move method(5),
move field(5), rename method(1), add parameter(7), extract method(3), remove
parameter(8)

1.01

480-481

11

10

0.91

0.90

move field(6), move method(5)

0.61

548-576

20

10

1.00

1.00

move method(15), extract interface(2), move field(3)

0.09

576-764

14

10

0.85

1.00

add parameter(3), introduce local extension(1), move method(7), move field(3)

0.69

Total

774

115

0.74

0.96

101

We now discuss several refactoring instances that are hard to
detect using existing methods but were found by REF-FINDER.

(A) extract superclass was found previously between Carol
revisions 429 and 430 when analyzing the LSDiff output [27].

The class wnamesvc had five subclasses—cmiregistry,
JacORBCosNaming, JeremieRegistry, IIOPCosNaming and
LmiRegistry. An extract superclass refactoring occurred

in revision 430. Table VIII contrasts the LSdiff results with
REF-FINDER results side by side. While LSdiff leaves it to
a developer to knit together related changes (Fact 1, Rule 1
to 3), REF-FINDER reports an extract_superclass refactoring
explicitly by knitting constituent move refactorings.

(B) hide delegate prevents clients of a class from knowing
about the class’s delegates. Instead of allowing a client to
retrieve a delegate and call methods on it, methods are
added to a class to provide access to the delegate’s meth-
ods. The client no longer accesses the delegate directly,
instead making calls through the intermediate class. REF-
FINDER found one such instance in jEdit versions 3.0.2 to 3.1
(see Table VH) TextUtilities called Buffer.getTokenMarker (),
then called TokenMarker.markTokens (). In the new VCrSiOH,

this delegation is hidden from textutilities Who merely
calls Buffer.markTokens (). REF-FINDER produced hide_delegate(—
“org.gjt.sp.jedit.syntax. TokenMarker”, “org.gjt.sp.jedit.Buffer”, “org.gjt.-
sp.jedit. TextUtilities”).

(C) inline method is applied to move the content of a
method doing little work to its caller. On Columba revi-
sions 352 and 449, the class Messagecontroller had a method
chooseBodyPart () that iS called once only from showMessage () .
The ten lines of code are moved from chooseBodypart () to its
caller and the original method is deleted in revision 449.

To determine the effect of threshold o on the time taken
to infer refactorings and the number of found refactorings,
we ran REF-FINDER on jEdit pair 3.0.2-3.1 and increased o in
0.05 increments from 0.5 to 0.9. Figure 1 shows that the lower
the threshold o, the longer the running time and the more
refactorings found. With a higher threshold o, REF-FINDER
finds fewer refactorings. Relaxing the criteria determining
method content similarity may increase the number of false
positives and thus could lead to a lower precision. While using
a more strict similarity criterion could increase precision, it
may decrease recall.



TABLE VIII: Comparison between our prior

work (LSdiff[27]) and REF-FINDER results.

LSdiff

REF-FINDER

Fact 1. AbsRegistry is a new class.
added_type(“AbsRegistry”,“org.objectweb.carol.jndi.ns”)
Rule 1. The port field was deleted in NameSvc’s subtype.
before_subtype(“NameSvc”, t) A before_field(f, t)
deleted_field(f,“port”, t)

Rule 2. The setPort method was deleted from NameSvc’s subtype.
before_subtype(“NameSvc”, t) A before_method(m,“setPort(int)”, t) =
deleted_method(m, “setPort(int)”, t)

Rule 3. The getPort method was deleted from NameSvc’s subtype.
before_subtype(“NameSvc”, t) A before_method(m,“getPort()”, t) =
deleted_method(m, “getPort()”, t)

“port”, =

Refactoring 1. AbsRegistry was extracted from CmiRegistry
extract_superclass(“AbsRegistry”, “CmiRegistry”)

Refactoring 2. The port field was moved from CmiRegistry class
to AbsRegistry class.

move_field(“port”, CmiRegistryFullName, AbsRegistryFullName)
Refactoring 3. The getPort method was moved from
CmiRegistry class to AbsRegistry class.
move_method(“getPort()”, CmiRegistryFullName, AbsRegistry-
FullName)

Refactoring 4. The getPort method in AbsRegistry was
extracted from the getPort method in CmiRegistry.
extract_method(“CmiRegistry.getPort()”,"-

AbsRegistry.getPort()”,“port”,“AbsRegistry”). ..

20.0 400

18.0 350
160

300
14.0

12.0 250

10.0 ~4—running time 200

refactorings

g
=}

~#-# of found refactorings 150

runing time (minutes)

6.0
100

4.0

20 50

0.0

05 055 06 065 07 075 08 085 09

threshold

Fig. 1: REF-FINDER Performance while varying threshold (o)

C. Limitations

Since REF-FINDER queries the facts extracted using LS-
Diff, the performance of LSDiff’s fact extraction directly
affects REF-FINDER’s capability in identifying different types
of refactorings. Complex refactorings themselves consist of a
set of atomic refactorings and thus an incorrect identification
of atomic refactorings will lead to an incorrect or missed
identification of complex refactorings. Our interpretation of
the definitions for the different types of refactorings mentioned
in Fowler might be subject to bias.

The evaluation on Fowler’s code examples [6] suffers from
an additional validity concern since the code examples and the
rules used to encode refactorings are from the same source.
The version histories of the open source projects may not be
representative for other kinds of software projects.

D. Future Work

We plan to investigate the robustness of our refactor-
ing reconstruction tool when refactorings overlap with non-
refactorings, (i.e., floss refactorings, coined by Murphy-Hill
et al. [33]). In addition, to better measure REF-FINDER’S
recall, we plan to seed refactorings using Eclipse’s refactoring
features and compare a set of refactorings found by REF-
FINDER with a set of seeded refactorings. We also plan to
compare reconstructed refactorings with a set of recorded
refactorings in IDE, such as Spyware’s refactoring logs [23].

V. CONCLUSION

Existing refactoring reconstruction approaches handle sim-
ple refactoring types such as renames, moves, and basic
extracts but steer away from complex refactorings which
themselves consist of atomic refactorings and require anal-
ysis of the internal method body content. In this paper, we
used a logic meta-programming approach to identify complex
refactorings from two program versions. Different types of
refactorings were expressed as template logic rules and a logic
programming engine was used to infer concrete refactoring
instances. Our evaluation shows that REF-FINDER’s overall
precision is 0.79.

ACKNOWLEDGMENT

This research is in part supported by IBM Jazz Innovation
Award. The authors thank anonymous reviewers for their
thorough comments.

REFERENCES
(1]
(2]

T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE Trans.
Softw. Eng., vol. 30, no. 2, pp. 126-139, 2004.

D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
detection of refactorings in evolving components,” in ECOOP, 2006,
pp. 404-428.

J. Henkel and A. Diwan, “CatchUp!: capturing and replaying refactor-
ings to support API evolution,” in ICSE ’05: Proceedings of the 27th
International Conference on Software Engineering. New York, NY,
USA: ACM, 2005, pp. 274-283.

Z. Xing and E. Stroulia, “Api-evolution support with diff-catchup,” IEEE
Trans. Softw. Eng., vol. 33, no. 12, pp. 818-836, 2007.

Xing and Stroulia, “Umldiff: an algorithm for object-oriented design
differencing,” in ASE '05. New York, NY, USA: ACM, 2005, pp.
54-65.

M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

R. C. Holt, “Structural manipulations of software architecture using
tarski relational algebra,” in WCRE ’98: Proceedings of the Working
Conference on Reverse Engineering. — Washington, DC, USA: IEEE
Computer Society, 1998, p. 210.

K. Mens, T. Mens, and M. Wermelinger, “Maintaining software through
intentional source-code views,” in SEKE '02. ACM, 2002, pp. 289-296.
E. Hajiyev, M. Verbaere, and O. de Moor, “Codequest: Scalable source
code queries with datalog,” in ECOOP’06: Proceedings of the 20th
European Conference on Object-Oriented Programming, ser. Lecture
Notes in Computer Science, vol. 4067. Berlin, Germany: Springer,
2006, pp. 2-27.

K. D. Volder, “Type Oriented Logic Meta Programming,” Ph.D. disser-
tation, The University of British Columbia, 1998.

S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refactorings via
change metrics,” SIGPLAN Not., vol. 35, no. 10, pp. 166-177, 2000.

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

(11]



[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]
[30]

[31]

[32]

[33]

G. Malpohl, J. J. Hunt, and W. F. Tichy, “Renaming detection,” Auto-
mated Software Engg., vol. 10, no. 2, pp. 183-202, 2003.

F. Van Rysselberghe and S. Demeyer, “Reconstruction of successful
software evolution using clone detection,” in IWPSE ’03: Proceedings
of the 6th International Workshop on Principles of Software Evolution.
Washington, DC, USA: IEEE Computer Society, 2003, p. 126.

G. Antoniol, M. D. Penta, and E. Merlo, “An automatic approach to
identify class evolution discontinuities,” in IWPSE ’'04: Proceedings
of the Principles of Software Evolution, 7th International Workshop.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 31-40.

S. Kim, K. Pan, and E. J. Whitehead, Jr., “When functions change
their names: Automatic detection of origin relationships,” in WCRE '05:
Proceedings of the 12th Working Conference on Reverse Engineering.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 143-152.
L. Zou and M. Godfrey, “Using origin analysis to detect merging and
splitting of source code entities,” IEEE Trans. Softw. Eng., vol. 31, no. 2,
pp. 166-181, 2005.

P. Weissgerber and S. Diehl, “Identifying refactorings from source-code
changes,” in ASE '06: Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering. ~ Washington, DC,
USA: IEEE Computer Society, 2006, pp. 231-240.

Z. Xing and E. Stroulia, “Refactoring detection based on umldiff change-
facts queries,” in WCRE ’06. Washington, DC, USA: IEEE, 2006, pp.
263-274.

B. Fluri, M. Wuersch, M. Plnzger, and H. Gall, “Change distilling:tree
differencing for fine-grained source code change extraction,” [EEE
Transactions on Software Engineering, vol. 33, no. 11, pp. 725-743,
2007.

B. Dagenais and M. P. Robillard, “Recommending adaptive changes
for framework evolution,” in ICSE ’08: Proceedings of the 30th inter-
national conference on Software engineering. New York, NY, USA:
ACM, 2008, pp. 481-490.

M. Kim, D. Notkin, and D. Grossman, “Automatic inference of structural
changes for matching across program versions,” in ICSE ’07: Proceed-
ings of the 29th International Conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 333-343.
T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code.”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654-670,
2002.

R. Robbes and M. Lanza, “Spyware: a change-aware development
toolset,” in ICSE ’08: Proceedings of the 30th international conference
on Software engineering. New York, NY, USA: ACM, 2008, pp. 847—
850.

M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini, “Defining
and continuous checking of structural program dependencies,” in ICSE
’08: Proceedings of the 30th International Conference on Software
Engineering. New York, NY, USA: ACM, 2008, pp. 391-400.

Y.-G. Guéhéneuc and G. Antoniol, “Demima: A multilayered approach
for design pattern identification,” IEEE Trans. Softw. Eng., vol. 34, no. 5,
pp. 667-684, 2008.

T. Tourwé and T. Mens, “Identifying refactoring opportunities using
logic meta programming,” in CSMR ’03: Proceedings of the Seventh
European Conference on Software Maintenance and Reengineering.
Washington, DC, USA: IEEE Computer Society, 2003, p. 91.

M. Kim and D. Notkin, “Discovering and representing systematic code
changes,” in ICSE '09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 309-319.

K. Prete, N. Rachatasumrit, and M. Kim, “Catalogue of template refac-
toring rules,” The University of Texas at Austin, Tech. Rep. UTAUSTIN-
ECE-TR-041610, April 2010.

A. Loh and M. Kim, “A program differencing tool to identify systematic
structural differences,” in ICSE ’10 Research Demo, 2010, p. 4.
Eclipse, http://www.eclipse.org.

J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest
common subsequences,” Communications of the ACM, vol. 20, no. 5,
pp. 350-353, 1977.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, 2001.

E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and
how we know it,” in ICSE ’09: Proceedings of the 31st International
Conference on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 287-297.



