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Program Element Matching 
Problem

• A fundamental building block for multi-
version analyses. 

• co-change [ZWDZ04,  YMNC04], instability [BW03],  
signature change [KWB05], type change [NFH05], 
code clone change [KSNM05].

• Also used for software version merging, 
regression testing, and profile propagation.  



Matching Problem 

Determine the differences ∆ 
between OV and NV. 
For a code fragment nc ∈ NV, 

determine whether nc ∈ ∆. 

If not, find nc’s 
corresponding origin oc in OV.

New Program (NV)Old Program (OV)

∆

ncoc
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Matching
Technique

Program 
Representation Granularity Multiplicity

Heuristics

Name
Posi-
tion

Similar
ity

name matching Entity Procedure/ File 1:1 ✔
diff [HS77] String Line 1:1 ✔
bdiff [Tic84] String Line 1:n ✔
cdiff [Yang91] AST AST node 1:1 ✔

Neamtiu et al. AST Type, Variable 1:1 ✔
jdiff [AOH04] CFG CFG node 1:1 ✔ ✔

BMAT [WPM00] Binary code Code block 1:1, n:1 ✔ ✔ ✔
Clone detectors Various Various n:n ✔
Zou, Godfrey Hybrid Procedure 1:1, n:1, 1:n ✔ ✔
S. Kim et al. Hybrid Procedure 1:1 ✔ ✔

Comparison
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Many techniques 
produce mappings at a fixed 

granularity. 
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Comparison

Many fine-grained 
techniques require 

mappings at a higher level.
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Many techniques assume 
1:1 mappings.
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Comparison

Many techniques 
heavily rely on heuristics 

to reduce a matching 
scope.



• Inadequate evaluation for most matching techniques 
except S. Kim’s origin analysis 

• We created a set of hypothetical program change 
scenarios.

• scenario 1 (small changes): 

• changes in the nested level of a control structure 

• semantics-preserving statement reordering. 

• scenario 2 (large changes):

• procedure level renaming and splitting 

• renaming, splitting, and merging scenarios. 

Evaluation based on Hypothetical 
Change Scenarios



Matching
Technique

Scenario Transformation

WeaknessesSplit/Merge Rename
Small Large Proc File Proc File

diff ◒ ◯ ◯ ◯ ◒ ◯ ✘require file level mapping

bdiff ⦁ ◯ ◒ ◯ ◒ ◯ ✘require file level mapping

cdiff ◯ ◯ ◯ ◯ ◯ ◯ ✘require procedure level mapping
✘sensitive to nested level change

Neamtiu et al. ◯ ◯ ◯ ◯ ◯ ◯ ✘partial AST matching

jdiff ⦁ ◒ ◯ ◯ ◒ ◒ ✘sensitive control structure change

BMAT ◯ ⦁ ◯ ◯ ⦁ ⦁ ✘1:1 mapping only 
✘only applicable to binary code 

Zou, Godfrey ◯ ⦁ ⦁ ⦁ ⦁ ⦁ ✘semi-automatic analysis

S. Kim et al. ◯ ⦁ ◯ ◯ ⦁ ⦁ ✘1:1 mapping only

Evaluation based on Hypothetical 
Change Scenarios

⦁ good, ◒ mediocre, ◯ poor
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Fine-grained 
matching techniques do 
not work well in case of 

large changes. 
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Due to 1:1 
mapping assumptions, they 

perform poorly when 
splitting or merging. 
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Techniques 
that require higher level 

correspondences perform 
poorly in case of 

renaming. 
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Zou and Godfrey’s 
origin analysis will work 

well but is semi-
automatic.



Current Work

• Matching representation 

• expressible for various granularity and structure

• compact

• composable results for multi-version analysis

• Evaluation metric based on a matching representation



First Order Logic Rule to 
Represent Matches 

old new

chart:ChartFactory-createPieChart
[String, PieDataset, boolean]->JChart chart:ChartFactory-createPieChart

[String, PieDataset, boolean, boolean, boolean]->JChart

chart:ChartFactory-createGanttChart
[String, IntervalSet, boolean]->JChart  

chart:ChartFactory-createGanttChart
[String, IntervalSet, boolean, boolean, boolean]->JChart

chart:ChartFactory-createLineXYChart
[String, XYDataset, boolean]->JChart

chart:ChartFactory-createLineXYChart
[String, XYDataset, boolean, boolean, boolean]->JChart

... ...

... ...

package class method parameter return
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package class method parameter return

∀x: FullProcedureName, PatternMatch(x.method, “create*”) ∧ x.class =“ChartFactory” →
new(x).parameter = concatenate (x.parameter, [boolean, boolean])



Summary

• Matching program elements is a fundamental 
building block for multi-version program 
analyses.

• We characterized the code matching problem 
and compared matching techniques based on 
several criteria. 

• We identified limitations of current matching 
techniques and proposed future directions. 

Acknowledgment: Dagstuhl 05261 participants for ideas and discussions
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Motivating Scenarios

• fixing a bug in forked projects

• monitoring interface evolution 

• other code evolution analyses 

• co-change [ZWDZ04,  YMNC04], instability 
[BW03],  signature change [KWB05], type 
change [NFH05], code clone change 
[KSNM05]. 



First Order Logic Rule to 
Represent Matches

All methods that start with “create” in the class ChartFactory take 
additional input parameters [boolean, boolean] in the new version.

∀x: FullProcedureName, PatternMatch(x.method, “create*”) ∧ x.class =“ChartFactory” →
new(x).parameter = concatenate (x.parameter, [boolean, boolean])



Surveyed Techniques
• name matching

• String: diff [HS77] and bdiff [Tic84]   

• AST: cdiff [Yang91], Neamtiu et al. [NFH05]

• CFG: jdiff [AOH04]

• Binary Code: BMAT [WPM00]

• clone detectors 

• tools that infer refactoring events [ZG05] 
[KPW05], etc. 



Two-Version Matching 
Problem 

A

B
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D

a

b

c

d

e

f

old version OP
new version NP

{A,c}, {B,d}, {D,e}, {D,f}
{C, ∅}, {∅, a}, {∅,b}

Determine the differences ∆ 
between OP and NP. 
For a code fragment nc ∈ NP, 

determine whether nc ∈ ∆. 

If not, find nc’s 
corresponding origin oc in OP.



Challenges

• Absence of benchmarks

• Various granularity support 

• Renaming, splitting, merging, and copying

• Scalability (e.g. matching result 
representation.) 



Limitations (1)

• Most matching techniques 

• assume 1:1 mappings, 

• produce mappings at a fixed granularity, and

• require correspondences at a certain level.

• Fine-grained matching techniques are costly and 
do not work well when there are many changes 
at a high level. 



Limitations (2)
• Most matching techniques are inadequately 

evaluated. 

• Matching results are long and not compact. 

• Matching results may not be intuitive and may 
not be easy to understand. 

• There’s no global metric that measures the  
quality of matching results. 

• It may not be straightforward to compose two 
version matching results for multi-version 
matching results.  



Benefits of Representing 
Matches as Rules
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