Matching Program Elements for Multi-Version Program Analyses Miryung Kim, David Notkin University of Washington

The Third International Workshop on Mining Software Repositories, Shanghai China, 2006

Multi-Version Analysis

Composing Two-Version Matching Results

Program Element Matching Problem

- A fundamental building block for multiversion analyses.
 - co-change [ZWDZ04, YMNC04], instability [BW03], signature change [KWB05], type change [NFH05], code clone change [KSNM05].
- Also used for software version merging, regression testing, and profile propagation.

Matching Problem

Determine the differences \triangle between OV and NV. For a code fragment $nc \in NV$, determine whether $nc \in \triangle$. If not, find nc's corresponding origin oc in OV.

Characterization of Matching Problem

	e.g. diff	New File
Program Representation	string (a sequence of lines)	Old File line I
Matching Granularity	line	line 2 line 3
Matching Multiplicity	I:I	line 3 line 4 line 5
Matching Criteria / Heuristics	Two lines are equal.	line 6

Matching	Program	Program		Heuristics		
Technique	Representation	Granularity	Multiplicity	Name	Posi- tion	Similar ity
name matching	Entity	Procedure/ File	1:1	\checkmark		
diff [HS77]	String	Line	l:I			~
bdiff [Tic84]	String	Line	l:n			~
cdiff [Yang91]	AST	AST node	1:1			~
Neamtiu et al.	AST	Type,Variable	1:1	~		
jdiff [AOH04]	CFG	CFG node	1:1	~		~
BMAT [VVPM00]	Binary code	Code block	l:1, n:1	~		~
Clone detectors	Various	Various	n:n			~
Zou, Godfrey	Hybrid	Procedure	l:1, n:1, 1:n	~		
S. Kim et al.	Hybrid	Procedure	1:1	~		~

Matching	Program			He	eurist	ics
Technique	Representation	Granularity	Granularity Multiplicity		Posi- tion	Similar ity
name matching	Entity	Procedure/ File		V		
diff [HS77]	String	Line	1:1			V
bdiff [Tic84]	String	Line	Many	techr	niaues	
cdiff [Yang91]	AST	AST node	produce m	appings at a f		fixed
Neamtiu et al.	AST	Type,Variable	gra	anular	ity.	
jdiff [AOH04]	CFG	CFG node	1:1	V		V
BMAT [WPM00]	Binary code	Code block	l:1, n:1	V	V	V
Clone detectors	Various	Various	n:n			V
Zou, Godfrey	Hybrid	Procedure	l:1, n:1, 1:n	V		V
S. Kim et al.	Hybrid	Procedure	1:1			V

Matching	Program			He	eurist	ics	
Technique	Representation	Granularity	Multiplicity	Name	Posi- tion	Similar ity	
name matching	Entity	Procedure/ File	:	V			
diff [HS77]	String	Line	1:1			V	
bdiff [Tic84]	String	Line	Many	fine-g	rained		
cdiff [Yang91]	AST	AST node	techniques requir			re Joval	
Neamtiu et al.	AST	Type,Variable	mappings	at a m	gner	level.	
jdiff [AOH04]	CFG	CFG node	1:1	V		V	
BMAT [WPM00]	Binary code	Code block	l:1, n:1	V	V	V	
Clone detectors	Various	Various	n:n			V	
Zou, Godfrey	Hybrid	Procedure	l:1, n:1, 1:n	V		V	
S. Kim et al.	Hybrid	Procedure	1:1	V		V	

Matching	Program			He	eurist	ics
Technique	Representation	Granularity	Multiplicity	Name	Posi- tion	Similar ity
name matching	Entity	Procedure/ File	1:1	V		
diff [HS77]	String	Line	1:1			V
bdiff [Tic84]	C	2	l:n			V
cdiff [Yang91]	Many techniq	ues assume	1:1			V
Neamtiu et al.	I:I map	opings.	1:1	V		
jdiff [AOH04]	Crs		1:1	V		V
BMAT [WPM00]	Binary code	Code block	l:1, n:1	V	V	V
Clone detectors	Various	Various	n:n			V
Zou, Godfrey	Hybrid	Procedure	l:1, n:1, 1:n	V		V
S. Kim et al.	Hybrid	Procedure	1:1	V		V

Matching	Program			He	Heuristics		
Technique	Representation	Granularity	Multiplicity	Name	Posi- tion	Similar ity	
name matching	Entity	Procedure/ File					
diff [HS77]	String	Line	l:I				
bdiff [Tic84]	String	Many techni	ques				
cdiff [Yang91]	AST	heavily rely on h					
Neamtiu et al.	AST	to reduce a m	\checkmark				
jdiff [AOH04]	CFG	C		\checkmark			
BMAT [WPM00]	Binary code	Code block	l:1, n:1	\checkmark	/		
Clone detectors	Various	Various	n:n				
Zou, Godfrey	Hybrid	Procedure	l:1, n:1, 1:n				
S. Kim et al.	Hybrid	Procedure	1:1			\checkmark	

- Inadequate evaluation for most matching techniques except S. Kim's origin analysis
- We created a set of hypothetical program change scenarios.
 - scenario I (small changes):
 - changes in the nested level of a control structure
 - semantics-preserving statement reordering.
 - scenario 2 (large changes):
 - procedure level renaming and splitting
 - renaming, splitting, and merging scenarios.

	Scenario		Т	Transformation			
Matching				Merge	Ren	ame	Weaknesses
reeninque	Small	Large	Proc	File	Proc	File	
diff	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	★ require file level mapping
bdiff		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	X require file level mapping
cdiff	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	 require procedure level mapping sensitive to nested level change
Neamtiu et al.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	✗ partial AST matching
jdiff		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$oldsymbol{x}$ sensitive control structure change
BMAT	\bigcirc		\bigcirc	\bigcirc			I:I mapping onlyonly applicable to binary code
Zou, Godfrey	\bigcirc						🗙 semi-automatic analysis
S. Kim et al.	\bigcirc		\bigcirc	\bigcirc			× 1:1 mapping only

b good, \bigcirc mediocre, \bigcirc poor

	Scenario		Т	ransfo	rmatio	mation		
Matching			Split/Merge Rename		Weaknesses			
reeninque	Small	Large	Proc	File	Proc	File		
diff		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	X require file level mapping	
bdiff		\bigcirc	\bigcirc	\bigcirc	\bigcirc		Due to I:I	
cdiff	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	mapping assumptions, they pping		
Neamtiu et al.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	split	ting or merging.	
jdiff		\bigcirc	\bigcirc	\bigcirc	Θ	\bigcirc	X sensitive control structure change	
BMAT	\bigcirc		\bigcirc	\bigcirc			X I:I mapping onlyX only applicable to binary code	
Zou, Godfrey	\bigcirc						🗶 semi-automatic analysis	
S. Kim et al.	\bigcirc		\bigcirc	\bigcirc			× I:I mapping only	

	Scenario		Т	ransfo	rmatio	n					
Matching							Split/I	Merge	Ren	ame	Weaknesses
leeningue	Small	Large	Proc	File	Proc	File					
diff	Те	chnique	es	\bigcirc	\bigcirc	\bigcirc	X require file level mapping				
bdiff th	at requ respor	lire hig dences	her lev s perfo	rm	\bigcirc	\bigcirc	X require file level mapping				
cdiff	poor	ly in ca	se of		\bigcirc	\bigcirc	X require procedure level mappingX sensitive to nested level change				
Neamtiu et al.			5.		\bigcirc	\bigcirc	✗ partial AST matching				
jdiff		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	X sensitive control structure change				
BMAT	\bigcirc		\bigcirc	\bigcirc			X I:I mapping onlyX only applicable to binary code				
Zou, Godfrey	\bigcirc						× semi-automatic analysis				
S. Kim et al.	\bigcirc		\bigcirc	\bigcirc			× I:I mapping only				

 $lacksim good, lacksim mediocre, \bigcirc poor$

	Scenario		Т	ransfo	rmatio	n			
Matching			Split/I	Merge Rename		ame	Weaknesses		
recinique	Small	Large	Proc	File	Proc	File			
diff		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	X require file level mapping		
bdiff		\bigcirc	\bigcirc	\bigcirc	Θ	Zo	ou and Godfrey's		
cdiff	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	origir w	igin analysis will work pping ange		
Neamtiu et al.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		automatic.		
jdiff		\bigcirc	\bigcirc	\bigcirc	Θ	\bigcirc	× sensitive control structure change		
BMAT	\bigcirc		\bigcirc	\bigcirc			I:I mapping onlyonly applicable to binary code		
Zou, Godfrey	\bigcirc						🗙 semi-automatic analysis		
S. Kim et al.	\bigcirc		\bigcirc	\bigcirc			× I:I mapping only		

b good, \bigcirc mediocre, \bigcirc poor

Current Work

- Matching representation
 - expressible for various granularity and structure
 - compact
 - composable results for multi-version analysis
- Evaluation metric based on a matching representation

First Order Logic Rule to Represent Matches

old	new
chart:ChartFactory-createPieChart [String, PieDataset, boolean]->JChart	package class method parameter return chart:ChartFactory-createPieChart [String, PieDataset, boolean, boolean, boolean]->JChart
chart:ChartFactory-createGanttChart [String, IntervalSet, boolean]->JChart	chart:ChartFactory-createGanttChart [String, IntervalSet, boolean, <mark>boolean, boolean</mark>]->JChart
chart:ChartFactory-createLineXYChart [String, XYDataset, boolean]->JChart	chart:ChartFactory-createLineXYChart [String, XYDataset, boolean, <mark>boolean, boolean</mark>]->JChart
	•••

First Order Logic Rule to Represent Matches

old	new
chart:ChartFactory-createPieChart [String, PieDataset, boolean]->JChart	package class method parameter return chart:ChartFactory-createPieChart [String, PieDataset, boolean, boolean, boolean]->JChart
chart:ChartFactory-createGanttChart [String, IntervalSet, boolean]->JChart	chart:ChartFactory-createGanttChart [String, IntervalSet, boolean, <mark>boolean, boolean</mark>]->JChart
chart:ChartFactory-createLineXYChart [String, XYDataset, boolean]->JChart	chart:ChartFactory-createLineXYChart [String, XYDataset, boolean, <mark>boolean, boolean</mark>]->JChart
	•••
	····

∀x: FullProcedureName, PatternMatch(x.method, "create*") ∧ x.class = "ChartFactory" → new(x).parameter = concatenate (x.parameter, [boolean, boolean])

Summary

- Matching program elements is a fundamental building block for multi-version program analyses.
- We characterized the code matching problem and compared matching techniques based on several criteria.
- We identified limitations of current matching techniques and proposed future directions.

Acknowledgment: Dagstuhl 05261 participants for ideas and discussions

Back Up Slides

Motivating Scenarios

- fixing a bug in forked projects
- monitoring interface evolution
- other code evolution analyses
 - co-change [ZWDZ04, YMNC04], instability [BW03], signature change [KWB05], type change [NFH05], code clone change [KSNM05].

First Order Logic Rule to Represent Matches

All methods that start with "create" in the class ChartFactory take additional input parameters [boolean, boolean] in the new version.

 $\forall x: FullProcedureName, PatternMatch(x.method, "create*") \land x.class = "ChartFactory" \rightarrow$

new(x).parameter = concatenate (x.parameter, [boolean, boolean])

Surveyed Techniques

- name matching
- String: diff [HS77] and bdiff [Tic84]
- AST: cdiff [Yang91], Neamtiu et al. [NFH05]
- CFG: jdiff [AOH04]
- Binary Code: BMAT [WPM00]
- clone detectors
- tools that infer refactoring events [ZG05] [KPW05], etc.

Two-Version Matching Problem

Determine the differences \triangle between OP and NP. For a code fragment $nc \in NP$, determine whether $nc \in \Delta$. If not, find nc's

corresponding origin oc in OP.

new version NP

{A,c}, {B,d}, {D,e}, {D,f} {C, Ø}, {Ø, a}, {Ø,b}

Challenges

• Absence of benchmarks

- Various granularity support
- Renaming, splitting, merging, and copying
- Scalability (e.g. matching result representation.)

Limitations (I)

Most matching techniques

- assume I:I mappings,
- produce mappings at a fixed granularity, and
- require correspondences at a certain level.
- Fine-grained matching techniques are costly and do not work well when there are many changes at a high level.

Limitations (2)

- Most matching techniques are inadequately evaluated.
 - Matching results are long and not compact.
 - Matching results may not be intuitive and may not be easy to understand.
 - There's no global metric that measures the quality of matching results.
- It may not be straightforward to compose two version matching results for multi-version matching results.

Benefits of Representing Matches as Rules

Average rule match ratio (# matches/ # rules) = 6.61