
Matching Program Elements for
Multi-Version Program Analyses

Miryung Kim, David Notkin
University of Washington

The Third International Workshop on Mining Software
Repositories, Shanghai China, 2006

Multi-Version Analysis

Time

Code Snippet

P1 P2 P3 P4 P5 P6

Interval

Matching

Matching between
Two Versions

Time

Two Version Matching

Code Snippet

P1 P2 P3 P4 P5 P6

Matching between
Two Versions

Time

Two Version Matching

Code Snippet

P1 P2 P3 P4 P5 P6

Matching between
Two Versions

Time

Two Version Matching

Code Snippet

P1 P2 P3 P4 P5 P6

Matching between
Two Versions

Time

Two Version Matching

Code Snippet

P1 P2 P3 P4 P5 P6

Matching between
Two Versions

Time

Two Version Matching

Code Snippet

P1 P2 P3 P4 P5 P6

Composing Two-Version
Matching Results

Time

Code Snippet

P1 P2 P3 P4 P5 P6

Program Element Matching
Problem

• A fundamental building block for multi-
version analyses.

• co-change [ZWDZ04, YMNC04], instability [BW03],
signature change [KWB05], type change [NFH05],
code clone change [KSNM05].

• Also used for software version merging,
regression testing, and profile propagation.

Matching Problem

Determine the differences ∆
between OV and NV.
For a code fragment nc ∈ NV,

determine whether nc ∈ ∆.

If not, find nc’s
corresponding origin oc in OV.

New Program (NV)Old Program (OV)

∆

ncoc

Characterization of
Matching Problem

line 1

line 2

line 3

line 4

line 1

line 2

line 3

line 4

line 5

line 6

Old File
New Filee.g. diff

Program
Representation

string (a sequence
of lines)

Matching
Granularity

line

Matching
Multiplicity

1:1

Matching
Criteria /
Heuristics

Two lines are
equal.

Matching
Technique

Program
Representation Granularity Multiplicity

Heuristics

Name
Posi-
tion

Similar
ity

name matching Entity Procedure/ File 1:1 ✔
diff [HS77] String Line 1:1 ✔
bdiff [Tic84] String Line 1:n ✔
cdiff [Yang91] AST AST node 1:1 ✔

Neamtiu et al. AST Type, Variable 1:1 ✔
jdiff [AOH04] CFG CFG node 1:1 ✔ ✔

BMAT [WPM00] Binary code Code block 1:1, n:1 ✔ ✔ ✔
Clone detectors Various Various n:n ✔
Zou, Godfrey Hybrid Procedure 1:1, n:1, 1:n ✔ ✔
S. Kim et al. Hybrid Procedure 1:1 ✔ ✔

Comparison

Matching
Technique

Program
Representation Granularity Multiplicity

Heuristics

Name
Posi-
tion

Similar
ity

name matching Entity Procedure/ File 1:1 ✔
diff [HS77] String Line 1:1 ✔
bdiff [Tic84] String Line 1:n ✔
cdiff [Yang91] AST AST node 1:1 ✔

Neamtiu et al. AST Type, Variable 1:1 ✔
jdiff [AOH04] CFG CFG node 1:1 ✔ ✔

BMAT [WPM00] Binary code Code block 1:1, n:1 ✔ ✔ ✔
Clone detectors Various Various n:n ✔
Zou, Godfrey Hybrid Procedure 1:1, n:1, 1:n ✔ ✔
S. Kim et al. Hybrid Procedure 1:1 ✔

Comparison

Many techniques
produce mappings at a fixed

granularity.

Matching
Technique

Program
Representation Granularity Multiplicity

Heuristics

Name
Posi-
tion

Similar
ity

name matching Entity Procedure/ File 1:1 ✔
diff [HS77] String Line 1:1 ✔
bdiff [Tic84] String Line 1:n ✔
cdiff [Yang91] AST AST node 1:1 ✔

Neamtiu et al. AST Type, Variable 1:1 ✔
jdiff [AOH04] CFG CFG node 1:1 ✔ ✔

BMAT [WPM00] Binary code Code block 1:1, n:1 ✔ ✔ ✔
Clone detectors Various Various n:n ✔
Zou, Godfrey Hybrid Procedure 1:1, n:1, 1:n ✔ ✔
S. Kim et al. Hybrid Procedure 1:1 ✔ ✔

Comparison

Many fine-grained
techniques require

mappings at a higher level.

Matching
Technique

Program
Representation Granularity Multiplicity

Heuristics

Name
Posi-
tion

Similar
ity

name matching Entity Procedure/ File 1:1 ✔
diff [HS77] String Line 1:1 ✔
bdiff [Tic84] String Line 1:n ✔
cdiff [Yang91] AST AST node 1:1 ✔

Neamtiu et al. AST Type, Variable 1:1 ✔
jdiff [AOH04] CFG CFG node 1:1 ✔ ✔

BMAT [WPM00] Binary code Code block 1:1, n:1 ✔ ✔ ✔
Clone detectors Various Various n:n ✔
Zou, Godfrey Hybrid Procedure 1:1, n:1, 1:n ✔ ✔
S. Kim et al. Hybrid Procedure 1:1 ✔ ✔

Comparison

Many techniques assume
1:1 mappings.

Matching
Technique

Program
Representation Granularity Multiplicity

Heuristics

Name
Posi-
tion

Similar
ity

name matching Entity Procedure/ File 1:1 ✔
diff [HS77] String Line 1:1 ✔
bdiff [Tic84] String Line 1:n ✔
cdiff [Yang91] AST AST node 1:1 ✔

Neamtiu et al. AST Type, Variable 1:1 ✔
jdiff [AOH04] CFG CFG node 1:1 ✔ ✔

BMAT [WPM00] Binary code Code block 1:1, n:1 ✔ ✔ ✔
Clone detectors Various Various n:n ✔
Zou, Godfrey Hybrid Procedure 1:1, n:1, 1:n ✔ ✔
S. Kim et al. Hybrid Procedure 1:1 ✔ ✔

Comparison

Many techniques
heavily rely on heuristics

to reduce a matching
scope.

• Inadequate evaluation for most matching techniques
except S. Kim’s origin analysis

• We created a set of hypothetical program change
scenarios.

• scenario 1 (small changes):

• changes in the nested level of a control structure

• semantics-preserving statement reordering.

• scenario 2 (large changes):

• procedure level renaming and splitting

• renaming, splitting, and merging scenarios.

Evaluation based on Hypothetical
Change Scenarios

Matching
Technique

Scenario Transformation

WeaknessesSplit/Merge Rename
Small Large Proc File Proc File

diff ◒ ◯ ◯ ◯ ◒ ◯ ✘require file level mapping

bdiff ⦁ ◯ ◒ ◯ ◒ ◯ ✘require file level mapping

cdiff ◯ ◯ ◯ ◯ ◯ ◯ ✘require procedure level mapping
✘sensitive to nested level change

Neamtiu et al. ◯ ◯ ◯ ◯ ◯ ◯ ✘partial AST matching

jdiff ⦁ ◒ ◯ ◯ ◒ ◒ ✘sensitive control structure change

BMAT ◯ ⦁ ◯ ◯ ⦁ ⦁ ✘1:1 mapping only
✘only applicable to binary code

Zou, Godfrey ◯ ⦁ ⦁ ⦁ ⦁ ⦁ ✘semi-automatic analysis

S. Kim et al. ◯ ⦁ ◯ ◯ ⦁ ⦁ ✘1:1 mapping only

Evaluation based on Hypothetical
Change Scenarios

⦁ good, ◒ mediocre, ◯ poor

Matching
Technique

Scenario Transformation

WeaknessesSplit/Merge Rename
Small Large Proc File Proc File

diff ◒ ◯ ◯ ◯ ◒ ◯ ✘require file level mapping

bdiff ⦁ ◯ ◒ ◯ ◒ ◯ ✘require file level mapping

cdiff ◯ ◯ ◯ ◯ ◯ ◯ ✘require procedure level mapping
✘sensitive to nested level change

Neamtiu et al. ◯ ◯ ◯ ◯ ◯ ◯ ✘partial AST matching

jdiff ⦁ ◒ ◯ ◯ ◒ ◒ ✘sensitive control structure change

BMAT ◯ ⦁ ◯ ◯ ⦁ ⦁ ✘1:1 mapping only
✘only applicable to binary code

Zou, Godfrey ◯ ⦁ ⦁ ⦁ ⦁ ⦁ ✘semi-automatic analysis

S. Kim et al. ◯ ⦁ ◯ ◯ ⦁ ⦁ ✘1:1 mapping only

Evaluation based on Hypothetical
Change Scenarios

⦁ good, ◒ mediocre, ◯ poor

Fine-grained
matching techniques do
not work well in case of

large changes.

Matching
Technique

Scenario Transformation

WeaknessesSplit/Merge Rename
Small Large Proc File Proc File

diff ◒ ◯ ◯ ◯ ◒ ◯ ✘require file level mapping

bdiff ⦁ ◯ ◒ ◯ ◒ ◯ ✘require file level mapping

cdiff ◯ ◯ ◯ ◯ ◯ ◯ ✘require procedure level mapping
✘sensitive to nested level change

Neamtiu et al. ◯ ◯ ◯ ◯ ◯ ◯ ✘partial AST matching

jdiff ⦁ ◒ ◯ ◯ ◒ ◒ ✘sensitive control structure change

BMAT ◯ ⦁ ◯ ◯ ⦁ ⦁ ✘1:1 mapping only
✘only applicable to binary code

Zou, Godfrey ◯ ⦁ ⦁ ⦁ ⦁ ⦁ ✘semi-automatic analysis

S. Kim et al. ◯ ⦁ ◯ ◯ ⦁ ⦁ ✘1:1 mapping only

Evaluation based on Hypothetical
Change Scenarios

⦁ good, ◒ mediocre, ◯ poor

Due to 1:1
mapping assumptions, they

perform poorly when
splitting or merging.

Matching
Technique

Scenario Transformation

WeaknessesSplit/Merge Rename
Small Large Proc File Proc File

diff ◒ ◯ ◯ ◯ ◒ ◯ ✘require file level mapping

bdiff ⦁ ◯ ◒ ◯ ◒ ◯ ✘require file level mapping

cdiff ◯ ◯ ◯ ◯ ◯ ◯ ✘require procedure level mapping
✘sensitive to nested level change

Neamtiu et al. ◯ ◯ ◯ ◯ ◯ ◯ ✘partial AST matching

jdiff ⦁ ◒ ◯ ◯ ◒ ◒ ✘sensitive control structure change

BMAT ◯ ⦁ ◯ ◯ ⦁ ⦁ ✘1:1 mapping only
✘only applicable to binary code

Zou, Godfrey ◯ ⦁ ⦁ ⦁ ⦁ ⦁ ✘semi-automatic analysis

S. Kim et al. ◯ ⦁ ◯ ◯ ⦁ ⦁ ✘1:1 mapping only

Evaluation based on Hypothetical
Change Scenarios

⦁ good, ◒ mediocre, ◯ poor

Techniques
that require higher level

correspondences perform
poorly in case of

renaming.

Matching
Technique

Scenario Transformation

WeaknessesSplit/Merge Rename
Small Large Proc File Proc File

diff ◒ ◯ ◯ ◯ ◒ ◯ ✘require file level mapping

bdiff ⦁ ◯ ◒ ◯ ◒ ◯ ✘require file level mapping

cdiff ◯ ◯ ◯ ◯ ◯ ◯ ✘require procedure level mapping
✘sensitive to nested level change

Neamtiu et al. ◯ ◯ ◯ ◯ ◯ ◯ ✘partial AST matching

jdiff ⦁ ◒ ◯ ◯ ◒ ◒ ✘sensitive control structure change

BMAT ◯ ⦁ ◯ ◯ ⦁ ⦁ ✘1:1 mapping only
✘only applicable to binary code

Zou, Godfrey ◯ ⦁ ⦁ ⦁ ⦁ ⦁ ✘semi-automatic analysis

S. Kim et al. ◯ ⦁ ◯ ◯ ⦁ ⦁ ✘1:1 mapping only

Evaluation based on Hypothetical
Change Scenarios

⦁ good, ◒ mediocre, ◯ poor

Zou and Godfrey’s
origin analysis will work

well but is semi-
automatic.

Current Work

• Matching representation

• expressible for various granularity and structure

• compact

• composable results for multi-version analysis

• Evaluation metric based on a matching representation

First Order Logic Rule to
Represent Matches

old new

chart:ChartFactory-createPieChart
[String, PieDataset, boolean]->JChart chart:ChartFactory-createPieChart

[String, PieDataset, boolean, boolean, boolean]->JChart

chart:ChartFactory-createGanttChart
[String, IntervalSet, boolean]->JChart

chart:ChartFactory-createGanttChart
[String, IntervalSet, boolean, boolean, boolean]->JChart

chart:ChartFactory-createLineXYChart
[String, XYDataset, boolean]->JChart

chart:ChartFactory-createLineXYChart
[String, XYDataset, boolean, boolean, boolean]->JChart

... ...

... ...

package class method parameter return

First Order Logic Rule to
Represent Matches

old new

chart:ChartFactory-createPieChart
[String, PieDataset, boolean]->JChart chart:ChartFactory-createPieChart

[String, PieDataset, boolean, boolean, boolean]->JChart

chart:ChartFactory-createGanttChart
[String, IntervalSet, boolean]->JChart

chart:ChartFactory-createGanttChart
[String, IntervalSet, boolean, boolean, boolean]->JChart

chart:ChartFactory-createLineXYChart
[String, XYDataset, boolean]->JChart

chart:ChartFactory-createLineXYChart
[String, XYDataset, boolean, boolean, boolean]->JChart

... ...

... ...

package class method parameter return

∀x: FullProcedureName, PatternMatch(x.method, “create*”) ∧ x.class =“ChartFactory” →
new(x).parameter = concatenate (x.parameter, [boolean, boolean])

Summary

• Matching program elements is a fundamental
building block for multi-version program
analyses.

• We characterized the code matching problem
and compared matching techniques based on
several criteria.

• We identified limitations of current matching
techniques and proposed future directions.

Acknowledgment: Dagstuhl 05261 participants for ideas and discussions

Back Up Slides

Motivating Scenarios

• fixing a bug in forked projects

• monitoring interface evolution

• other code evolution analyses

• co-change [ZWDZ04, YMNC04], instability
[BW03], signature change [KWB05], type
change [NFH05], code clone change
[KSNM05].

First Order Logic Rule to
Represent Matches

All methods that start with “create” in the class ChartFactory take
additional input parameters [boolean, boolean] in the new version.

∀x: FullProcedureName, PatternMatch(x.method, “create*”) ∧ x.class =“ChartFactory” →
new(x).parameter = concatenate (x.parameter, [boolean, boolean])

Surveyed Techniques
• name matching

• String: diff [HS77] and bdiff [Tic84]

• AST: cdiff [Yang91], Neamtiu et al. [NFH05]

• CFG: jdiff [AOH04]

• Binary Code: BMAT [WPM00]

• clone detectors

• tools that infer refactoring events [ZG05]
[KPW05], etc.

Two-Version Matching
Problem

A

B

C

D

a

b

c

d

e

f

old version OP
new version NP

{A,c}, {B,d}, {D,e}, {D,f}
{C, ∅}, {∅, a}, {∅,b}

Determine the differences ∆
between OP and NP.
For a code fragment nc ∈ NP,

determine whether nc ∈ ∆.

If not, find nc’s
corresponding origin oc in OP.

Challenges

• Absence of benchmarks

• Various granularity support

• Renaming, splitting, merging, and copying

• Scalability (e.g. matching result
representation.)

Limitations (1)

• Most matching techniques

• assume 1:1 mappings,

• produce mappings at a fixed granularity, and

• require correspondences at a certain level.

• Fine-grained matching techniques are costly and
do not work well when there are many changes
at a high level.

Limitations (2)
• Most matching techniques are inadequately

evaluated.

• Matching results are long and not compact.

• Matching results may not be intuitive and may
not be easy to understand.

• There’s no global metric that measures the
quality of matching results.

• It may not be straightforward to compose two
version matching results for multi-version
matching results.

Benefits of Representing
Matches as Rules

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Ratio of Found Rules

R
a

ti
o

 o
f

M
a

tc
h

e
s

0.9.4->0.9.5

0.9.6->0.9.7

0.9.7->0.9.8

0.9.12->0.9.16

0.9.9->0.9.10

0.9.16->0.9.17

0.9.17->0.9.19

Average rule match ratio
(# matches/ # rules) = 6.61

Text

