
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Characterizing and Identifying Composite Refactorings:
Concepts, Heuristics and Patterns

Leonardo Sousa
Electrical & Computer Engineering
Carnegie Mellon University, USA

leo.sousa@sv.cmu.edu

Diego Cedrim
Amazon
Brazil

dccedrim@amazon.com

Alessandro Garcia, Willian
Oizumi

PUC-Rio, Brazil
{afgarcia,woizumi}@inf.puc-rio.br

Ana C. Bibiano, Daniel Oliveira
PUC-Rio, Brazil

{abibiano,doliveira}@inf.puc-rio.br

Miryung Kim
UCLA, USA

miryung@cs.ucla.edu

Anderson Oliveira
PUC-Rio, Brazil

aoliveira@inf.puc-rio.br

ABSTRACT
Refactoring consists of a program transformation applied to im-
prove the internal structure of a program, for instance, by con-
tributing to remove code smells. Developers often apply multiple
interrelated refactorings called composite refactoring. Even though
composite refactoring is a common practice, an investigation from
different points of view on how composite refactoring manifests
in practice is missing. Previous empirical studies also neglect how
different kinds of composite refactorings affect the removal, preva-
lence or introduction of smells. To address these matters, we pro-
vide a conceptual framework and two heuristics to respectively
characterize and identify composite refactorings within and across
commits. Then, we mined the commit history of 48 GitHub soft-
ware projects, in which we identified and analyzed 24,911 composite
refactorings involving 104,505 single refactorings. Amongst several
findings, we observed that most composite refactorings occur in the
same commit and have the same refactoring type. We also found
that several refactorings are semantically related to each other,
which occur in different parts of the system but are still related to
the same task. Moreover our study is the first to reveal that many
smells are introduced in a program due to "incomplete" composite
refactorings. Additionally, our study is also the first to reveal 111
patterns of composite refactorings that frequently introduce or re-
move certain smell types. These patterns can be used as guidelines
for developers to improve their refactoring practices as well as for
designers of recommender systems.
ACM Reference Format:
Leonardo Sousa, Diego Cedrim, Alessandro Garcia, Willian Oizumi, Ana
C. Bibiano, Daniel Oliveira, Miryung Kim, and Anderson Oliveira. 2020.
Characterizing and Identifying Composite Refactorings: Concepts, Heuris-
tics and Patterns. In Proceedings of (MSR’20). ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Software refactoring is a widely used technique in practice [9, 11,
13, 18, 19, 32, 47]. Refactoring consists of a program transforma-
tion used to improve software structure, such as removing code
smells [14]. Well-known refactoring types include Extract Method,
Rename Method, and Move Method. Since the term refactoring first

MSR’20, May 2020, Seoul, Korea
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

appeared in the literature [14, 35], studies have been actively in-
vestigating it [2, 3, 8, 11, 13, 18, 19, 24, 31, 32, 42, 47]. Most of these
studies analyze the characteristics and the impact of each single
refactoring on the software structure.

However, from 40% to 60% of the times, developers apply more
than one refactoring in conjunction [7, 32], even for removing
simple code smells, such as Long Methods [14]. In other words,
developers often apply which we call here as composite refactoring.
A composite refactoring – from now on also called composites –
comprises two or more interrelated refactorings that affect one
or more elements [7, 9, 33, 41]. There are two broad categories of
composites: (i) temporally-related composite, i.e., those refactorings
applied in the same commit and are likely to be related to the same
developer’s task, and (ii) spatial composite, i.e., a set of refactorings
applied in structurally related code elements, regardless whether
they are performed at the same change (commit) or not.

However, recent studies (e.g., [7, 9, 39, 48]) have strictly focused
their analysis on a single category of composite (Section 2). For
example, Palomba et al. [39] and Tufano et al. [48] only analyze
temporally-related composites, while Bibiano et al. [7] and Brito
et al. [9] explore spatial composites. As there is no study that ana-
lyzes these different categories all together, a more comprehensive
understanding of composites is missing. There is not even a unified
conceptual framework that supports such a holistic characterization
and study of composites.

Moreover, when composite categories are studied only under a
single perspective, the actual impact of refactoring on the program
structure – e.g., removal or introduction of smells – is not properly
understood (Section 2). For example, while certain complex smells
are likely to be fully removed over time (e.g., a God Class) through
a spatial composite refactoring, other smells (e.g., Shotgun Surgery)
may be removed in a single commit, but require changes in non-
structurally related parts of the program. Unfortunately, existing
studies that assess the impact of refactoring on code smells [5, 7,
11, 48] do not consider both categories of composites.

To address the aforementioned issues, we mined the commit
history of 48 GitHub software projects (i) to identify the charac-
teristics of different categories of composite refactorings, and (ii)
their effect on either removing or introducing smells. To support
our study, we provide a conceptual framework and two heuristics
for detecting composites. The heuristics are named commit-based
and range-based heuristics, and they serve to automatically identify
composites in software projects. The first supports the analysis of

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MSR’20, May 2020, Seoul, Korea Sousa, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

refactorings which have a temporal relation. The second intends to
capture refactorings that have a spatial relation. These heuristics
enabled us to investigate composites and their impact on smells
from different perspectives. We expect that our contributions and
study findings can help tool builders by uncovering the blind spots
on the relation between composite refactoring and smells that have
not been properly addressed by the community. Our contributions
and study findings can be summarized as follows.

First, we provide a formal and unambiguous definition for com-
posites, which also serves to guide researchers who aim to further
investigate composites. Our two proposed heuristics enabled us
to reveal characteristics of composites in practice, which are over-
looked by previous studies [7, 9, 32]. We present some of these
characteristics below.

Second, we observe that nearly 41% of composites are complex,
i.e., are comprised by 3 to 20 interrelated refactorings, which con-
tradicts a recent finding [7]. The majority of the composites are
confined to the same commit and homogeneously formed by refac-
torings of the same type, e.g., various syntactically related method
extractions. There is also a non-negligible frequency of: (i) hetero-
geneous and cross-commit composites, and (ii) semantically related
composites within the same commit, i.e., sequences of refactorings
located in different parts of the code, but still related to the same
task (e.g., removing non-trivial, scattered smells).

Third, contradicting previous findings [6, 7, 11, 44], we observe
that refactoring do have a considerable effect on smells. We found
that nearly 50% of composites either remove or introduce smells.
Previous studies often suggest otherwise. For instance, Bavota et
al [6] stated that refactorings are not related to smell removal.
Cedrim et al. [11] and Bibiano et al [7] reported that refactorings
are most often neutral, i.e., neither introduce nor remove smells.
These studies either analyze each single refactoring individuallyy
or multiple refactorings affecting only a single element.

Fourth, our heuristics enabled us to identify patterns of compos-
ites that recurrently introduce or remove specific smell types. No
existing study in the literature, including recent studies (e.g., [7, 11]),
systematically derived and documented such a comprehensive set
of smell-affecting composite patterns. A manual analysis confirmed
a total of 111 composite-smell patterns: 84 smell-removing patterns
and 27 smell-introducing patterns. As refactoring tools tend to be
underused [32], these patterns can be used to improve recommenda-
tion systems [17, 23, 30, 34, 36] by recommending removal patterns
that developers do in practice; thus, increasing the chance of them
adopt automated refactoring tools.

Fifth, our study also contributes with a comprehensive replica-
tion package [38]. Our dataset is available for other researchers who
are interested in studying composites and their effects on smells.
We also provide the scripts that we used to implement the proposed
heuristics as well as the catalog of composite-smell patterns for
eleven smell types.

2 RELATEDWORK AND EXAMPLE
Diverse views on composite refactoring.Many researchers have
investigated composites [7, 9, 27, 32, 45, 48, 49]. However, they use
different terms (e.g., batch refactoring [7]) or definitions to refer
to composite refactoring. Some studies consider a composite as a

commit1
UserCtrl

+ userDao
+ mediaDao

+ saveUser (u:User)
+ saveMedia (m:Media)

commit2
UserCtrl

+ userDao

+ saveUser (u:User)

MediaCtrl

+ mediaDao

+ saveMedia (m:Media)

commit3

UserCtrl MediaCtrl

AbstractCtrl

Extract
Superclass

Move
Method

Move
Method

Extract
Method

Extract
Method

Move
Method

Move
Attribute

r1 r7r5r4r3r2 r6

God
Class

Speculative
Generality

Figure 1: Refactorings applied to the Mobile Media

set of two or more interrelated refactorings applied by the same
developer [7, 23, 30, 32, 46]. Other studies define a composite as
a set of refactorings applied by multiple developers [19, 27, 45].
Bibiano et al. [7] consider the scope of a composite refactoring
as an individual code element. Other studies consider that a com-
posite refactoring may be applied in the scope of multiple ele-
ments [19, 27, 30, 32, 45, 46]. There is even a study that assumes
time constraints to define a composite [32]. There are also studies
that have proposed approaches to recommend composite refactor-
ings [23, 30, 46].

To the extent of our knowledge, Bibiano et al. [7], Vassalo et
al. [49], and Brito et al. [9] are the most recent studies that investi-
gate composites. Unfortunately, these studies tend to only investi-
gate composite through a single perspective. Additionally, neither
of them provided both a clear definition of composite refactoring
and also a systematic investigation about its effects on smells. For
example, Bibiano et al. [7] only provided a partial view on com-
posite refactoring since they analyze only composites in the scope
of individual code elements. Hence, composite refactorings that
crosscut two or more elements were not completely investigated.
Moreover, their overly restrictive definition of composite can lead
to some findings that may not hold in practice. Next, we present an
example that illustrates how their restrictive analysis of composites
can lead to misleading results.

Effect of composites on smells. For this discussion, we will
rely on the example of Figure 1. This figure shows three commits of
Mobile Media (MM), a software product line to derive mobile appli-
cations [53]. A developer performed seven refactorings: 𝑟1, 𝑟2, .., 𝑟7
along these commits.Wemay have different instances of composites
according to the chosen composite definition. Bibiano et al. [7] de-
fine composite as two or more refactorings within the scope of a sin-
gle element. Thus, they would consider only 𝑐𝑟1 = [𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5]
and 𝑐𝑟2 = [𝑟3, 𝑟6, 𝑟7] as composites. But only restricting composites
to those occurring in the context of an element may be inappropri-
ate to investigate the effects of composites on smells. For example,
in Figure 1, the refactorings 𝑟1 and 𝑟2 removed the God Class. As
these refactorings belong to the composite 𝑐𝑟1, Bibiano et al. would
conclude that composites have a positive effect on the program
structure since 𝑐𝑟1 reduced the incidence of smells. However, this
conclusion is misleading due to their narrow composite definition.

Let us consider the 𝑟3 refactoring (Extract Superclass), which
crosscuts multiple elements. This refactoring creates a superclass
(AbstractCtrl) shared by UserCtrl and MediaCtrl, which led to the
introduction of the Speculative Generality [14]. Since the smell is
introduced in the scope of another element, Bibiano et al. would
not consider it when assessing the effect of a composite. In this

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Characterizing and Identifying Composite Refactorings MSR’20, May 2020, Seoul, Korea

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

scenario, the composite removed a smell (God Class) but introduced
another (Speculative Generality). Therefore, Bibiano et al. should
have concluded that composites have no effect on the introduction
or removal of smells. As Bibiano et al. do not consider the scope
of all elements affected by the refactorings, they only provide a
partial view of the effects of composite on smells. To have a better
understanding on composite refactorings and their effect on smells,
we propose two heuristics (Section 3.3) to identify composites that
affect the scope of one to multiple elements.

3 CHARACTERIZING AND IDENTIFYING
COMPOSITE REFACTORING

In this section, we define basic concepts for supporting the under-
standing of composite refactoring (Section 3.1). We use them to
identify the limitations of an existing heuristic (Section 3.2) and to
propose two new heuristics (Section 3.3).

3.1 A Conceptual Framework
This section presents a conceptual framework for composite refac-
toring. We used this framework to provide a foundation for our
heuristics (Section 3.3) and our empirical study. Other researchers
can also use it to conduct studies based on unambiguous concepts.

3.1.1 Composite Refactoring. Composite refactoring occurs when
two or more interrelated refactorings are applied to a set of code
elements. Thus, 𝑐𝑟 = [𝑟1, 𝑟2, · · · , 𝑟𝑛] is a composite of size 𝑛 if 𝑛 ≥ 2.
Additionally, the refactorings within the composite should be inter-
related. The notion of interrelation depends on the composite scope
(Section 3.1.4). Most studies restrict the composite to refactorings
applied by the same developer [7, 32, 37, 43]. However, developers
can work together to apply a composite [19]. This scenario can hap-
pen, for example, when they have to team up to plan and perform
a major restructuring in the system, or when they create branches
to apply refactoring exclusively [19].

3.1.2 Composite Uniformity. All the refactorings in the compos-
ite can have the same type or not, which we define as composite
uniformity. In this context, 𝑡𝑦𝑝𝑒 (𝑟𝑖 ) is a function that returns the
type of the refactoring 𝑟𝑖 . In our example of Figure 1, 𝑡𝑦𝑝𝑒 (𝑟1) =
Move Method. Therefore, the composite 𝑐𝑟 = [𝑟1, 𝑟2, · · · , 𝑟𝑛] is het-
erogeneous if and only if |𝑡𝑦𝑝𝑒 (𝑟1) ∪ 𝑡𝑦𝑝𝑒 (𝑟2) · · · ∪ 𝑡𝑦𝑝𝑒 (𝑟𝑛) | > 1.
If |𝑡𝑦𝑝𝑒 (𝑟1) ∪ 𝑡𝑦𝑝𝑒 (𝑟2) · · · ∪ 𝑡𝑦𝑝𝑒 (𝑟𝑛) | = 1, then the composite is
homogeneous. Most studies do not consider that a composite only
exists if all refactorings have the same type [32, 37, 40, 43].

3.1.3 Composite Timespan. A developer can start a composite in
a commit and finish it in the same commit or in the subsequent
commits. In this sense, composite timespan indicates if the composite
is either single-commit or cross-commit. To identify the timespan,
let us define the function 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟 ) to find the commit where the
refactoring 𝑟 was performed. Thus, a composite 𝑐𝑟 = [𝑟1, 𝑟2, · · · , 𝑟𝑛]
is cross-commit if and only if |𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟1) ∪ · · · ∪ 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟𝑛) | > 1.
Similarly, if |𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟1) ∪ · · · ∪ 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟𝑛) | = 1, then 𝑐𝑟 is single-
commit. Several studies of refactoring only consider major version
[6] or a single commit [11], or the entire project history [7].

3.1.4 Refactoring and Composite Scope. Elements directly affected
by the refactoring constitute the refactoring scope. Given a refactor-
ing 𝑟 , 𝑠𝑐𝑜𝑝𝑒 (𝑟 ) is a function that returns the set of elements belong-
ing to the scope of 𝑟 . For instance, the refactoring 𝑟1 in Figure 1
(Move Method) moved the method mediaDao from class UserCtrl to
MediaCtrl. Hence, the refactoring scope is {𝑚𝑒𝑑𝑖𝑎𝐷𝑎𝑜,𝑈𝑠𝑒𝑟𝐶𝑡𝑟𝑙,

𝑀𝑒𝑑𝑖𝑎𝐶𝑡𝑟𝑙}. Similar to a single refactoring, composites also have a
scope. The composite scope is the set of code elements affected by the
refactorings within a composite. The composite scope also indicates
how the refactorings within the composite are interrelated.

One might naturally say the union of all refactoring scopes from
a composite determines the composite scope, but this is not neces-
sarily true in all scenarios. Related studies have different ways to
define the composite scope. In general, these studies can be divided
into two groups: composite refactoring affects only the scope of a
single element [21, 29, 40] or the scope of multiple elements [19, 37].
In the first group, all refactorings within the composite are related
to each other because they affect the same element. In the second
group, if a refactoring crosscuts two elements, then all refactorings
in one element will be related to the refactorings in the other ele-
ment. For example, a developer applied refactoring 𝑟1 to class A and
𝑟2 to class B. These two refactorings are not related to each; thus
they do not compose a composite. However, the developer applied
a refactoring 𝑟3, which moves a method from A to B. Thus, the three
refactorings became related to each other, creating a composite. In
this case, the composite scope includes both classes.

3.1.5 Composite Synthesis. The process of grouping interrelated
refactorings to find composites is defined as composite synthesis. To
synthesize a composite, we need first to detect the refactorings that
occurred in the system. Related studies have different strategies
to identify refactorings applied by developers. A strategy is to
analyze the commit message to identify the refactorings [42]. Other
strategy is to use a tool that compares two subsequent commits to
identify them [47]. For the sake of explanation, let assumes that a
refactoring detection tool implements a function 𝑅. This function
expresses all refactorings in the history 𝐻 of a system 𝑠 , which is
composed of all refactorings detected between subsequent pairs
of commits: 𝐻 (𝑠) =

⋃ |𝐶𝑜𝑚𝑚𝑖𝑡𝑠 (𝑠) |−1
𝑖=1 𝑅(𝑐𝑖 , 𝑐𝑖+1). To illustrate the

output of function 𝐻 (𝑠), let us visit the MM system presented
in Figure 1. This system has four commits, where three of them
are represented in the figure. The fourth one is produced as the
result of applying the refactorings {𝑟4, 𝑟5, 𝑟6, 𝑟7}. Hence, 𝐻 (𝑠1) =
𝑅(𝑐1, 𝑐2) ∪ 𝑅(𝑐2, 𝑐3) ∪ 𝑅(𝑐3, 𝑐4). In other words, 𝐻 (𝑠1) contains all
refactorings presented in Figure 1, which are {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7}.

3.2 Element-Based Heuristic
This section presents a formal definition of the element-based heuris-
tic [7], which we will use in our study.

Formal Definition. A heuristic that synthesizes composites
using as scope an individual code element, i.e., either a method
or a class. The goal of this heuristic is to investigate how com-
posites affect an specific element. Formally, a given composite
𝑐𝑟 = [𝑟1, 𝑟2, · · · , 𝑟𝑛] is synthesized by the element-based heuristic if
and only if there is an element 𝑒 such as 𝑒 ∈ 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑖 ) ∀𝑟𝑖 ∈ 𝑐𝑟 . For
instance, let 𝐶𝑅𝑒 (ℎ) be the function that implements the element-
based heuristic over a particular refactoring history ℎ (Figure 1).

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MSR’20, May 2020, Seoul, Korea Sousa, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

So, 𝐶𝑅𝑒 (𝐻 (𝑠1)) = {𝑐𝑟𝑎 [𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5], 𝑐𝑟𝑏 [𝑟3, 𝑟6, 𝑟7]}. Thus, this
heuristic synthesizes two composites. The first one, 𝑐𝑟𝑎 , is a com-
posite because [𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5] affected the same element: UserCtrl.
The second composite, 𝑐𝑟𝑏 , affects the MediaCtrl class.

Scope. In this heuristic, the composite scope is determined by the
element used to synthesize the composites. In this way, 𝑠𝑐𝑜𝑝𝑒 (𝑐𝑎) =
{𝑈𝑠𝑒𝑟𝐶𝑡𝑟𝑙}, and 𝑠𝑐𝑜𝑝𝑒 (𝑐𝑏 ) = {𝑀𝑒𝑑𝑖𝑎𝐶𝑡𝑟𝑙}.

The element-based heuristic focuses on the element to find com-
posites. Focusing on the element is a strength as it allows us to
investigate what occurs with the element during its evolution. At
the same time, focusing on the element is also a weakness. The
scope of some refactoring types goes beyond a single element. Sup-
pose a developer applies an Extracted Method in class A, and then a
Move Method from class A to B. The heuristic will only synthesize a
composite in class A. Since class B is out of scope, the effects of the
composite in B will not be considered. As the effect in each element
will be treated independently, this heuristic may not be entirely
appropriate to investigate the effect of composites on smells.

3.3 Composite Synthesis Heuristics
We propose here two heuristics to synthesize composites.

3.3.1 Commit-Based Heuristic. The composite scope also indicates
how the refactorings are interrelated (Section 3.1.4). Sometimes the
refactorings are not structurally related to each other but they occur
in the same context. For example, a developer may apply several
refactorings to address a task associated with a commit. Hence,
it makes sense to group these refactorings. For this purpose, this
heuristic considers a single commit as the timespan (Section 3.1.3).
In fact, there is a commit policy, widely accepted in the commu-
nity, that recommends developers not to perform code changes for
multiple tasks in the same commit [20]. Thus, each commit should
have refactorings somehow related to the same task.

Formal Definition. The commit-based composite heuristic syn-
thesizes as a composite all refactorings performed within a commit.
The goal of this heuristic is to capture a temporal relation among
the refactorings made at the time frame of a single commit. For-
mally, a composite 𝑐𝑟 = [𝑟1, 𝑟2, · · · , 𝑟𝑛] is synthesized if and only
if |𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟1) ∪ 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟2) · · · ∪ 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟𝑛) | = 1. For instance,
consider 𝐻 (𝑠1) = [𝑟1, · · · , 𝑟7] (Figure 1). Now, let 𝐶𝑅𝑐 (ℎ) be the
function that implements the commit-based heuristic over a refac-
toring history ℎ. Thus, the commit-based heuristic produces two
composites: 𝐶𝑅𝑐 (𝐻 (𝑠1)) = {𝑐𝑟𝑐 [𝑟1, 𝑟2], 𝑐𝑟𝑑 [𝑟4, 𝑟5, 𝑟6, 𝑟7]}.

Scope. The composite scope includes the elements affected by
the refactorings within the commit. Thus, 𝑠𝑐𝑜𝑝𝑒 (𝑐𝑟𝑐 ) = {𝑈𝑠𝑒𝑟𝐶𝑡𝑟𝑙,

𝑀𝑒𝑑𝑖𝑎𝐶𝑡𝑟𝑙}, and 𝑠𝑐𝑜𝑝𝑒 (𝑐𝑟𝑑 ) = {𝑈𝑠𝑒𝑟𝐶𝑡𝑟𝑙, 𝑀𝑒𝑑𝑖𝑎𝐶𝑡𝑟𝑙, 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝐶𝑡𝑟𝑙}.
The commit-based heuristic is useful to observe the effect of all

refactorings that occur in a commit. Assuming that all the changes
within a commit are related to the same task [20], researchers can
use this heuristic to understand how refactorings affect elements
related to a task. This heuristic solves (partially) the limitation of the
element-based heuristic. Instead of considering only the scope of a
single element, it considers all elements affected by the refactorings
made along the commit’s task.

As this heuristic considers all elements, it does not discard refac-
torings that crosscut elements. However, there are cases that the
commit-based heuristic discards refactorings to which it should not.

A developer can start a composite in a commit and finish it in the
subsequent commits. For example, a developer can start a compos-
ite, then, s/he can commit the changes and continue on refactoring
the same elements. In this case, the commit-based heuristic would
synthesize two composites rather than one.

3.3.2 Range-Based Heuristic. Some refactorings are structurally
related to each other because they affect elements that are located in
the same part of the source code. Thus, if we want to understand the
effect of composites on the program structure, we need to analyze
how these structurally related refactorings affect the elements. For
example, if a refactoring crosscuts two elements, both elements
should be analyzed to understand the effect of the refactoring. We
propose the range-based heuristic to identify composites in which
their refactorings affect the same location in the code.

Formal Definition. The range-based composite heuristic con-
siders the notion of refactoring scope to synthesize composites.
In this heuristic, the scope of all refactorings form the composite
scope. A composite starts with an arbitrary refactoring 𝑟𝑎 . A second
refactoring 𝑟𝑏 is part of the same composite if and only if 𝑟𝑎 and
∃𝑒 ∈ 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑏 ) such as 𝑒 ∈ 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑎). A possible third refactor-
ing 𝑟𝑐 will be added to the composite if ∃𝑒 ∈ 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑐 ) such as
𝑒 ∈ 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑎) or 𝑒 ∈ 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑏 ). This process continues until all
refactorings in a particular history are explored.

Scope. In this heuristic, the composite scope is determined
by the union of the scopes of all refactorings. In this way, the
scope is defined as ∪𝑛

𝑖=1𝑠𝑐𝑜𝑝𝑒 (𝑟𝑖 ). The 𝑟1 and 𝑟2 refactorings in Fig-
ure 1 moved elements from UserCtrl to MediaCtrl classes. Hence,
𝑠𝑐𝑜𝑝𝑒 (𝑟1) = 𝑠𝑐𝑜𝑝𝑒 (𝑟2) = {𝑈𝑠𝑒𝑟𝐶𝑡𝑟𝑙, 𝑀𝑒𝑑𝑖𝑎𝐶𝑡𝑟𝑙}. The composite
synthesis in this example starts with 𝑟1. As 𝑟2 was applied in one
element of 𝑠𝑐𝑜𝑝𝑒 (𝑟1), then the composite grows bigger and turns
into [𝑟1, 𝑟2]. The 𝑟3 refactoring affects elements of 𝑠𝑐𝑜𝑝𝑒 (𝑟1), then
the composite is now [𝑟1, 𝑟2, 𝑟3]. The same reasoning can be used
for the remaining refactorings, so the composite synthesis produce
the composite 𝑐𝑒 = [𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7].

4 STUDY PLANNING
4.1 Research Questions
In the previous section, we proposed heuristics to identify com-
posites. These heuristics allow one to analyze composites from
different, albeit complementary, perspectives. To propose them, we
formally defined concepts that characterize a composite. Our goal
is to use these concepts to understand (i) how composites manifest
in software systems and (ii) their effect on smells. To achieve this
goal, we aim to answer the following research question:

RQ1. What are the characteristics of composites in software
systems?

We address RQ1 by applying the heuristics to identify three
categories of composites: element-based, commit-based, and range-
based composites. We rely on the concepts defined in our conceptual
framework to compare these categories of composites. The analysis
of these categories also allows us to have a better understanding of
the effect of composites on the program structure. For this purpose,
we investigate if composites affect the incidence of code smells.
Thus, our following research question addresses this investigation:

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Characterizing and Identifying Composite Refactorings MSR’20, May 2020, Seoul, Korea

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

RQ2. How does composite affect the incidence of smells?

We addressRQ2 by investigating the influence of the composites
on the incidence of code smells. Notice that such investigation is
not trivial. First, we need to identify the elements affected by each
category of composite, but taking into consideration their compos-
ite scope. Then, we analyze what happened with the smells before
and after developers apply the composites. To support this analysis,
we rely on the classification of each composite according to their
effect on the incidence of smells. Thus, we classify a composite as
a positive one if it reduces the number of code smells. Conversely,
we classify it as negative composite if it increases the number of
smells. Otherwise, we classify it as neutral composite, i.e., if it
neither increases nor decreases the number of smells. This type
of analysis has been applied in other empirical studies [7, 10–12].
Consequently, we can directly contrast our findings with theirs.

As a complement to RQ2, understanding and distinguishing the
effect of specific types of composites on smells is an essential inves-
tigation. First, our investigation may help tool builders by uncover-
ing the blind spots on the relation between refactoring and smells.
Second, this investigation aims (i) to identify topics that require
further investigation and (ii) to contrast the results with findings
established in the literature. For example, Fowler [14] presented a
catalog of composite types that can be used to remove code smells,
which we named as a composite-smell pattern. A composite-smell
pattern establishes a frequently observed relationship between a
composite type and the introduction or removal of a smell type.
For instance, suppose that there is a method affected by the Fea-
ture Envy code smell. In this case, Fowler recommends to apply a
composite pattern composed of Extract Method followed by a Move
Method. Unfortunately, we do not know if developers apply this
composite pattern in practice. More specifically, we do not know
which patterns govern the relation between refactorings and smells.
These patterns are the focus of our next research question:

RQ3.What are the patterns governing composites and smells?

We address RQ3 by investigating creational and removal pat-
terns. A creational pattern represents a recurring case where the
composite tends to introduce a code smell. A removal pattern
represents a recurring case where the composite tends to remove a
smell. We detect these patterns by analyzing the impact of compos-
ites on smells located in the elements forming the composite scope.
There is no empirical study in the literature that reports composites
that typically remove or introduce smells. By answering RQ3, we
are able to reveal composites used by developers not only to remove,
but also to inadvertently introduce smells. The knowledge about
creational patterns make developers informed about the risks of in-
troducing certain smells along composite refactoring. The removal
patterns can be useful to implement recommendation systems to
support developers when removing smells.

4.2 Study Phases
This section presents the five phases of the study design.

Phase 1: Dataset Acquisition. In this phase, we choose a set
𝑆 of software projects to analyze. We established GitHub as the
source of projects. To select them, we followed criteria based on
closely related studies [7, 11]. We selected projects with (1) different

levels of popularity – based on the number of Github stars, (2) an
active issue tracking system, and (3) at least 90% of code written in
Java. These criteria allowed us to select 48 projects with a diversity
of structure, domain, size and popularity. The replication package
contains information about them [38], including name, domain,
number of lines of code, commits, and Github stars.

Phase 2: Smell and Refactoring Detection. In this phase, we
detected (i) the refactorings in all subsequent pairs of commits 𝑐𝑖
and 𝑐𝑖+1, and (ii) all smells in each commit 𝑐𝑖 ∈ 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑠). We
chose Refactoring Miner [47] to detect refactorings for two reasons.
First, the tool has precision of 98% and recall of 87% as reported by
Tsantalis et al. [47], which leads to a very low rate of false positives
and false negatives. Second, the tool identifies the most common
refactoring types applied by developers [32]. We considered all 14
refactoring types identified by the tool. Refactoring Miner gives us
as output a list of refactorings 𝑅(𝑐𝑖 , 𝑐𝑖+1) = {𝑟1, · · · , 𝑟𝑘 } as defined
before, where 𝑘 is the number of identified refactorings.

Code smells are often detected with metric-based strategies [4].
Each strategy is defined based on a set of metrics and thresholds. Af-
ter collecting metrics for all projects, we applied the rules to detect
smells [6, 22, 26]. These rules were used because: (i) they repre-
sent refinements of well-known rules proposed by Lanza et al. [22],
which are used in related studies [7, 11, 28, 51]; and (ii) they have,
on average, precision of 72% and recall of 81% [25]. We collected
19 smells: Brain Class, Brain Method, Class Data Should Be Private,
Complex Class, Data Class, Dispersed Coupling, Divergent Change,
Feature Envy, God Class, Intensive Coupling, Large Class, Lazy Class,
Long Method, Long Parameter List, Message Chain, Refused Bequest,
Shotgun Surgery, Spaghetti Code, Speculative Generality.

Phase 3: Manual Validation.We randomly sampled refactor-
ings from each type to manually validated them. To ensure an
acceptable confidence level in the results, we calculated the sample
size of each refactoring type based on a confidence level of 95% and
a confidence interval of 5 points. We recruited ten undergraduate
students from another research group to also analyze the samples.
The samples were divided into ten disjointed sets, and each student
validated one. For each pair of elements, they had to mark it as a
valid refactoring or not. Thus, we estimated the number of false
positives generated by the Refactoring Miner [47]. We highlight
that our goal was to ensure the trustability of the tool for our set
of systems. For that matter, we relied on students, familiar with
refactoring, to validate the tool. After the manual validation, we
observed that the tool achieve high precision for all refactoring
types, in which the median was 88.36%. The precision for all refac-
toring types is within one standard deviation (7.73). Applying the
Grubb outlier test (alpha=0.05), we did not find any outlier. This
result indicates that no refactoring type is strongly influencing the
median precision. Thus, the precision for all the refactorings in the
validated sample provides trustability to our results.

Some smells can be introduced by functional changes, such as
the implementation of a new feature. Thus, we also validated if the
smells were introduce or removed by the refactorings. First, we ran
the eGit plugin and the Linux diff tool to find changes between
commits. Then, we manually analyzed each change. When we iden-
tified a functional change, we classified it as non-pure refactoring
[32]; otherwise, we classified it as pure refactoring. We validated

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MSR’20, May 2020, Seoul, Korea Sousa, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

1,168 pure refactorings and 3,817 non-pure refactorings. We used
the pure refactorings to confirm some results in Sections 5 and 6.

Phase 4: Synthesis and Classification of Composites. The
heuristics to synthesize composites require a refactoring history
as input (Section 3.3). We collected this history for each project in
Phase 2. Each refactoring history was submitted to the algorithms
that implement the heuristics, allowing us to collect: (i) element-
based, (ii) range-based, and (iii) commit-based composites. After
collecting them, they were classified according to their effect on
smells. Thus, composites were classified as positive, negative, and
neutral. Finally, we identified composite patterns related to the
introduction and removal of specific types of smell. More details
about the composite patterns are provided in Section 6. The al-
gorithms (scripts) that implement the heuristics and classify the
composites are available in the replication package [38].

Phase 5: Systematic Validation of Composite Patterns. To
increase the reliability of our results, we conducted a systematic
manual validation of a random sample of composites. First, we se-
lected 130 composites associated with the introduction and removal
of Feature Envy and God Class. We focused on these smells since
they are the ones with the most complex composites (Section 6).
Then, we randomly divided the composites among 4 researchers.
For each composite, the researcher conducted the following steps.

(1) Select the GitHub project where the composite happened;
(2) Identify the commits where the composite occur;
(3) Validate the refactorings and the smells in the elements;
(4) Confirm if the composite is a creational or removal pattern;
(a) If yes: confirm if the composite explicitly introduced/re-

moved the smell or if it is at least associated with the smell
introduction/removal.

(b) If no: verify if the composite is an incomplete one, i.e., if
one or more refactorings in the removal pattern would
have removed the smell.

(5) Analyze the commit messages to find the developer’s inten-
tion when performing the composite.

We validated 40 creational patterns, 43 removal patterns and
47 incomplete composites. We will use the validated composites
to exemplify our discussions. In these cases, we will identify the
composite by the “#” symbol followed by its id, e.g., composite
#21517). Our replication package contains all the validated instances
and the detailed steps and information to validate them.

5 COMPOSITES: OCCURRENCE AND EFFECT
We identified 27,911 composites in our dataset. We present their
characteristics (Section 5.1) and smell effects (Section 5.2).

5.1 Synthesized Composites
5.1.1 Quantity and Size. This section addresses our RQ1. Table
1 shows, for each heuristic (1𝑠𝑡𝑐𝑜𝑙𝑢𝑚𝑛), the quantity (2𝑛𝑑𝑐𝑜𝑙𝑢𝑚𝑛)
and size of composites.

Providing a broader view on the composites. In Section 3.2,
we discussed the element-based heuristic proposed by Bibiano et
al. [7]. We mentioned that there were several elements affected
by the refactorings that they were probably ignoring. Indeed, the
number of refactored elements in the element-based composites
is lower when compared to the other categories of composites

Table 1: Quantity and size of composites by heuristic

Heur. №
Comp.

Ref. in
Comp.

Size Std.
Dev.

Grubbs
Test

№
Elem.Min Med. Max Avg

Element 12,636 28,394
(54%) 2 2 333 3.9 6.6 49.89538 4,579

Commit 11,545 47,218
(91%) 2 3 2,562 8.0 44.4 57.76980 51,472

Range 3,730 28,883
(55%) 2 2 2,556 7.7 62.2 41.09278 18,132

(last column in the Table 1). When we compare the average size
of element-based composites with the commit-based and range-
based composites (7𝑡ℎ𝑐𝑜𝑙𝑢𝑚𝑛), we notice a huge difference in the
number of refactorings in each category of composite. Comparing
the number of elements with the average size, we notice that the
commit-based and range-based composites are fragmented in the
element-based composites. This result shows how the element-
based heuristic only provides a partial view of the composites. The
analysis of refactored elements leads to our first finding:

Finding 1: Commit-based and range-based heuristics allow
a broader assessment on the interrelation among refactored
code elements.

Capturing complex composites. We also observed that our
heuristics are helpful to find complex composites. A composite is
considered complex when it is composed of a high number of refac-
torings, usually affectingmultiple code elements.Whenwe consider
the average of refactorings in a composite (7𝑡ℎ𝑐𝑜𝑙𝑢𝑚𝑛), it becomes
clear that the size of commit-based (8.0) and range-based (7.7) com-
posites is near twice the size of element-based composites (3.9). This
comparison shows that the number of interrelated refactorings (in
commit-based or range-based composites) is much larger than any
occurrence in the context of a single element. We also have found
that 1,545 (41%) out of 3,761 composites of range-based heuristic,
and 5,793 (50%) out of 11,659 composites of commit-based heuristic
have 3 to 20 interrelated refactorings in conjunction. Therefore,
studies that investigated only single refactorings or only refactor-
ings affecting an element [6, 8, 11–13, 15, 16, 42, 52] are not able to
identify complex composites. Thus, they are oversimplifying the
study on refactoring. This result leads us to our next finding:

Finding 2: There is a non-ignorable frequency of complex
composites that most empirical studies missed.

Most refactorings are interrelated.After applying the heuris-
tics, a given refactoring will be either classified as a single refac-
toring or interrelated with others in a composite. In this vein, the
3𝑟𝑑𝑐𝑜𝑙𝑢𝑚𝑛 of Table 1 presents the quantity of interrelated refac-
torings. As expected, the commit-based heuristic was the one that
grouped the highest number of interrelated refactorings. The heuris-
tic synthesized 11,545 composites, totaling 47,218 interrelated refac-
torings, which represents 91% of the total of refactorings in our
dataset. This result indicates that refactoring composites are much
more complex. Previous empirical studies [11, 32] reported that
Extract Method and Rename Method are the commonest refactoring
types applied by developers. These studies may give the simplistic
impression that developers tend to most commonly apply single

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Characterizing and Identifying Composite Refactorings MSR’20, May 2020, Seoul, Korea

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

refactorings with a very strict scope, i.e., refactorings that affect
one or two methods of a single class. However, this is not the case.

Even though Extract and Rename Method are the most com-
mon refactoring types, they are most often interrelated with other
refactorings and they tend to be complex. For example, when we
manually validated the 130 composite instances, we found that
when these two refactoring types are applied, they are frequently
part of a much more complex transformation that goes beyond the
scope of a single method or class. For instance, when developers
had the intention to improve the source code, all the refactorings
were associated to the same task: code improvement (e.g., compos-
ites #22691 and #227031). This is even clearer for the commit-based
composites. Since most of the refactorings occur within a commit
(91%), the refactorings are associated with the task’s commit.

Finding 3: Refactoring composites are much more complex
than what existing empirical studies suggest.

Semantic relation among refactorings.Whenwe analyze the
commit-based composites, only 9% of the refactorings do not belong
to a composite. This result indicates that 91% of the refactorings
are interrelated. Thus, either these refactorings are part of range-
based composites (55%) or they occur in elements that are not
structurally related to each other. This result indicates that when
developers are working on a task, there are several refactorings
that are not syntactically related to each other. As the refactorings
in the commit-based composites are not syntactically related, we
investigated if they had any relation. We found that several of
these refactorings are semantically associated with the task that the
developer is addressing in the commit. For example, several of the
refactorings were applied to remove smells in different elements.
These refactorings were not structurally related to each other, but
they were semantically related to each since they aimed to remove
smells (Section 5.2). Notice that if one analyzes only the range-based
composite, s/he would not be able to identify the semantic relation
between the refactorings. This result leads us to our next finding:

Finding 4: Several commit-based composites contain refac-
torings that are semantically related to each other.

This finding may jeopardize most refactoring recommendation
systems [17, 23, 30, 34, 36, 37]. These systems tend to consider only
the structurally related refactorings to learn how to recommend
refactorings. However, they do not explore the semantic relation
among refactorings. Only considering structurally related refactor-
ings may not suffice to provide recommendations for developers.

In our dataset, we also found extremely large composites, as
presented in Table 1. However, we consider these composites as
being outliers, since they are extremely rare. For the commit-based
heuristic, for example, 87% of the composites are composed by 10
or less refactorings. On the other hand, only 0.004% of the commit-
based composites have more than 100 refactorings. Thus, to confirm
that large composites are outliers, we applied the Grubbs test for one
outlier. Table 1 shows the Grubbs score in the penultimate column.
The test is calculated as the highest size minus mean, divided by
standard deviation. We observed p-values smaller than 0.00001 for
all heuristics. This means that we can accept the hypothesis that
1These composites are available in our replication package [38]

the highest sizes of all heuristics are outliers. In our replication
package [38], we have a manual analysis about these outliers.

5.1.2 Heterogeneity and Timespan of Composites. Table 2 presents
the results about the timespan and uniformity of composites.

Table 2: Timespan and uniformity characteristics

Timespan Uniformity

Heur. Single-Commit Cross-Commit Homoge. Heteroge.

Element 9,094 (72.0%) 3,542 (28.0%) 11,107 (87.9%) 1,529 (12.1%)
Commit 11,545 (100.0%) 0 (0.0%) 6,484 (56.0%) 5,061 (44.0%)
Range 3,486 (93.5%) 244 (6.5%) 2,875 (77.0%) 855 (23.0%)

Most composites are single-commit. Different from our ex-
pectation, Table 2 shows that most composites are single-commit.
This occurs even in the case of the range-based composites, where
there is the possibility of having a larger composite scope. We were
expecting that developers could start a composite in a commit and
finish it in the following commits. However, out results show that
developers tend to limit the composites to a single commit. This sug-
gests that they intend to perform all refactorings at once, without
splitting the task into multiple commits.

Most composites are homogeneous. Regarding uniformity,
Table 2 shows that most composites are homogeneous, i.e., they
have the same refactoring type. We were not expecting this result.
Fowler [14] in his book presents a catalog of multiple refactorings
that can be applied to remove some smells. Hence, we assumed
that developers would apply heterogeneous composites in practice.
However, our assumption does not hold in practice. Regardless the
heuristics, most composites are homogeneous. The highest inci-
dence of heterogeneous composites are from the commit-based
composites, which can be explained due to the semantic relation
among refactorings. As discussed, any refactoring performed in a
given commit can be semantically related to the same task, even if
these refactorings are applied in structurally unrelated elements.
The result about uniformity indicates that developers frequently ap-
ply the same refactoring type when restructuring related elements.
After analyzing the uniformity and timespan characteristics, our
results lead us to our next finding:

Finding 5: Even though homogeneous and single-commit
composites are more frequent than their counterparts, het-
erogeneous and cross-commits composites occur with a non-
ignorable frequency, which should not be overlooked.

5.2 Effect of Composites on Code Smells
To answerRQ2, we classified the composites as positive, negative or
neutral according to their effect on the incidence of smells. Table 3
shows the classification for each heuristic.

Table 3: Composite classification by heuristic

Heuristic Positive Neutral Negative

Element-based 751 (6.0%) 11,264 (89.1%) 621 (4.9%)
Commit-based 1,653 (14.3%) 6,019 (52.1%) 3,873 (33.6%)
Range-based 542 (14.5%) 2,020 (54.2%) 1,168 (31.3%)

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MSR’20, May 2020, Seoul, Korea Sousa, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Several positive and negative composites. We can notice in
Table 3 that the frequency of positive, negative and neutral compos-
ites differs between the element-based heuristic and the commit-
based and range-based heuristics. First, Bibiano et al. found similar
values for the element-based heuristic. However, if we analyze only
from the perspective of element-based heuristic, we will conclude
that the frequency of positive and negative composites is almost
negligible. However, this conclusion is not correct. The other heuris-
tics show that the positive and negative composites are almost as
frequent as neutral composites. In fact, the frequency of positive,
negative and neutral composites is higher than the results reported
in the literature [6, 7, 11]. As discussed, the scope of some refactor-
ing types goes beyond a single element. However, the element-based
heuristic only consider the scope of a single element. Thus, this
heuristic is not entirely appropriate to investigate refactorings that
crosscut elements. This limitation compromises the study of Bib-
iano et al. [7]. In their study, the effect of several refactorings out
of the composite scope is mistakenly ignored. Thus, they provide a
partial view of composites, which, in the worst scenario, can be an
erroneous view. This result leads to our next finding:

Finding 6: Effects of composites often can only be observed
through the reasoning of refactoring’s relations in the scope
of a range or a commit.

Negative composites are most likely than positive ones.
We had an increase in the number of positive composites when we
compare the element-based composites with the other categories.
As discussed in Finding 4 (Section 5.1.1), several refactorings are not
syntactically related to each other but are semantically related. This
scenario occurred, for instance, when developers had the task of
removing Duplicate Code smell scattered over different parts of the
system. We found several instances of the following commit-based
composite 𝑐𝑟1 = {Extract Superclass, Rename Method} to remove
this smell. The developer applied the Extract Superclass to create a
superclass for the classes with the smell. Then, s/he renamed the
method in the superclass to be consistent with the functionality pro-
vided. We found a case that a system had three different unrelated
instances of Duplicate Code in the same commit. For each instance,
the developer applied the composite 𝑐𝑟1. Despite the increase in
positive composites, developers are most likely to introduce smells,
as shown in Table 3. This result leads to the next finding:

Finding 7: Even though most composites are neutral, a non-
ignorable frequency of composites introduce smells.

Effect of the composite on the smell type. We relied on the
classification of each composite to investigate its influence on the
incidence of smells (Section 4.1). We found a case in which the
developer applied a composite to a class that had two smells: Feature
Envy and Message Chain. After the composite has been applied,
we noticed that the developer removed the Message Chain, but
s/he introduced a God Class. In this case, our classification scheme
would classify the composite as neutral. However, a God Class
would be often considered worse than a Message Chain. Hence, it
would not be fair to label the composite as neutral. Considering
the “criticality” of the smell, this composite is more likely to be
considered negative because the structure is worse than before. To

mitigate the risk of misclassifying neutral composites, we verified
in our datset the smells presented before and after each neutral
composite. We observed only 30 cases, in a set that contains 27,911
composites, in which a smell was replaced by other from a different
type. This investigation leads to our next finding:

Finding 8: The refactorings in neutral composites very often
do not replace a smell type for another type.

6 COMPOSITE-SMELL PATTERNS
To address RQ3, we analyzed removal and creational patterns
emerging from the relationship between range-based composites
and smells (Section 4.1). We focus on discussing here the patterns of
range-based composites that affect Feature Envy and God Class. We
discuss these smells because they are usually associated with the
system structural degradation [1, 26, 50]. Patterns for the other nine
smells are available in our replication package as well as patterns
for the other categories of composites [38]. We manually inspected
several instances of the patterns to understand what happened. In
particular, we also confirmed whether the composites were directly
related to the removal or introduction of the smell. After this analy-
sis, we ended up identifying a total of 111 composite-smell patterns:
84 removal patterns and 27 creational patterns.

6.1 Feature Envy
Feature Envy is a code smell that represents a method much more
interested in the data of a class other than the one it is actually
declared [14]. This smell is the most frequent one in our dataset.
Figure 2 presents all 13 composite types related to Feature Envy.
Green boxes represent the removal patterns; they appear in the
right side of Figure 2. The red ones, in the left side, represent the
creational patterns. The content of each box represents the type of
composite involved in the pattern. There is a caveat regarding the
repetition structure: the {𝑛} symbol indicates the refactoring type
was observed more than once in the composite structure.

The arrow weight indicates the frequency of a pattern with: (i) a
removal behavior if the arrow is pointing to a green box, and (ii)
creational behavior if the arrow is departing from a red box. For
instance, the top-right green box indicates that in 77% of the times
a composite with more than one Inline Method followed by more
than one Extract Method removes one instance of Feature Envy.
The same rationale is used to interpret the creational patterns.

We discussed in Section 5.1.1 that Extract Method is one of the
most common refactorings and it is most often interrelated with
other refactorings. Indeed, Figure 2 shows that all patterns have
by, at least, one Extract Method (EM). Neither the discussion about
Extract Method in Section 5.1.1, nor the identification of compos-
ite patterns would be possible if (i) we had only analyzed single
refactorings or (ii) used the element-based heuristic.

Incomplete composites. We noticed cases of composites con-
sistently introducing Feature Envies in 31 projects. Composites
with Move Attribute, Extract Method introduced Feature Envies in
more than 60% of the cases as shown in Figure 2. These creational
patterns indicate that the composites are “incomplete”, which con-
tributed to the introduction (rather than the removal) of the Feature
Envy. An incomplete composite occurs when a set of refactorings

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Characterizing and Identifying Composite Refactorings MSR’20, May 2020, Seoul, Korea

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

0.77

0.96

0.69

0.65

0.61

0.67

0.82

0.73

0.63

Feature
Envy

0.60Move	Attribute{n},
Extract	Method

0.69Move	Attribute,
Extract	Method{n}

0.70Move	Attribute,
Extract	Method

0.63Rename	Method{n},
Extract	Method{n}

Extract	Method,	Move	Attribute{n}

Inline	Method{n},	Extract	Method{n}

Inline	Method{n},	Extract	Method

Extract	Method,	Inline	Method

Inline	Method,	Extract	Method

Extract	Method{n},	Inline	Method

Extract	Method,	Move	Attribute

Extract	Method,	Move	Method

Inline	Method,	Extract	Method{n}

Figure 2: Feature Envy patterns

affect the smelly structure, but are not sufficient to fully remove
a smell. In certain cases, it may even worsen the smelly structure.
For instance, the developers moved attributes in the three first
creational patterns in Figure 2; however, they did not move the cor-
responding extracted methods to fully remove the envy structures.
Consequently, the “unmoved methods” became more interested in
the classes to which the attributes were moved. Thus, these com-
posites led to the introduction of the Feature Envy because they
were incomplete; i.e., a Move Method should also be part of such
composites. Examples falling into this scenario include composites
#22092, #22156 and #22419.

This type of scenario reinforces our discussion about the high
number of negative composites (Finding 7 ). As we discussed in
Section 5.2, our heuristics show that several composites are nega-
tive. This increase in the number of negative impacts is related to
the incomplete composites. We found that developers are trying
to improve the program structure during the refactoring process
but, for different reasons, they are not necessarily completing the
restructuring process to fully remove the smelly structure. As a
consequence, incomplete composites lead to the introduction of
smells, such as the Feature Envy. These incomplete composites
were also observed on patterns for the other smell types.

Finding 9: Developers tend to introduce smells, such as Fea-
ture Envies, due to incomplete composites.

Avoiding misleading results. As discussed, Bibiano et al. [7]
do not provide a broader understanding of the effect of composites
on smells, which can lead to misleading results. The same occurs
with studies that only focus on single refactorings [6, 11]. For exam-
ple, Bavota et al. [6] did not find any relation between specific smells
(e.g., Feature Envy) and specific refactorings (e.g., EM). To illustrate
how these studies are not able to either provide a broader view or
find relation between refactorings and smells, let us consider the
EM refactoring since it occurs in all the patterns associated with
the Feature Envy (Figure 2).We applied the Fisher’s Exact Test to
investigate the relation between EM and Feature Envy (Table 4). For
each heuristic (1𝑠𝑡𝑐𝑜𝑙𝑢𝑚𝑛), we present the number of composites
containing EM that removed and introduced Feature Envies, 2𝑛𝑑

and 3𝑟𝑑 columns respectively. The 4𝑡ℎ and 5𝑡ℎ columns show the

same information for composites without EM. The last two columns
show the p-value and odds ratio (OR) for the Fisher’s Exact Test.

Table 4: Fisher’s test results for Feature Envy patterns

Heuristic Positive
With EM

Negative
With EM

Positive
Without EM

Negative
Without EM p-value OR

Element 496 86 0 0 1 0
Commit 15,632 2,013 31,398 39,000 <0.000001 9.64
Range 360 110 25 0 0.002338 0

We ran the test with 95% of confidence, which means that we
can reject the null hypothesis (H0) when the p-value is smaller
than 0.05. In our case, the H0 is that the introduction or removal of
Feature Envies by composites is independent of the presence of EM.
Given the p-values, only in the case of the element-based heuristic
that we cannot reject H0. Therefore, the element-based composites
mislead us to believe that composites without EM will never re-
move or introduce Feature Envies. However, the results of the other
heuristisc show the opposite, especially in the case of commit-based
composites. Thus, our heuristics were able to reveal that EM often
“partially” contributes to the removal (and introduction) of Feature
Envy, when performed with other refactorings (composites). In
summary, only analyzing element-based composites [7] or single
composites [6, 11] does not provide a broader understanding of
composite, or, in the worst-case scenario, it can lead to an erroneous
result. This discussion reinforces Finding 1 (Section 5.1.1).

6.2 God Class
Our second set of composite-smell patterns concerns the God Class.
This smell exists when a class accumulates several responsibilities
[14]. We found out that this smell is more frequent than one might
expect. We found 425 distinct instances of God Class distributed
into 26 projects. Figure 3 presents all the 12 patterns.

0.78

0.71
0.59

0.61

0.51

0.59

0.66

0.50

0.57

0.61

0.71

God
Class0.81Rename	Method{n},

Extract	Method{n}

Inline	Method{n},	Extract	Method{n}

Pull	Up	Method{n},	Move	Method,	Pull	Up	Method

Move	Method{n}

Pull	Up	Method{n},	Move	Method,	Pull	Up	Method{n}

Extract	Method{n},	Inline	Method

Pull	Up	Attribute{n},	Pull	Up	Method{n}

Inline	Method{n}

Extract	Method{n}

Pull	Up	Method{n}

Pull	Up	Attribute{n},	Pull	Up	Method{n},
Move	Method,	Pull	Up	Method

Pull	Up	Attribute,	Pull	Up	Method{n}

Figure 3: God Class patterns

Palomba et al. showed that when developers implement new
features, they often apply complex refactorings to improve the code
cohesion [39]. Our results provide a new perspective regarding

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

MSR’20, May 2020, Seoul, Korea Sousa, et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

this scenario. We found that developers tend to decrease the code
cohesion when interleaving refactorings with additional changes.
For example, when developers apply composites of RenameMethods
and Extract Methods, they tend to introduce God Class, as show
in Figure 3. At first sight, this pattern is not intuitive. Developers
are not expected to increase the size of classes while performing
Rename and Extract Methods. We analyzed these composites to
understand why they led to the God Class.

Inappropriate additional changes. We found that this cre-
ational pattern exists when developers interleave refactoring with
additional changes and if they are not performed in conjunction
with other refactorings (e.g., composites #21517 and #20932). The
additional changes comprise the creation of new methods (Extract
Methods), which are, unfortunately, implementing unrelated func-
tionalities. As a consequence of these additions in the extracted
methods, developers have to change the methods’ name to express
the new functionalities (Rename Methods). As new functionalities
are introduced, the class cohesion decreases, which leads to the
appearance of a God Class. The composites with Rename Methods
and Extract Methods were not the main reason for the introduction
of the God Class. Still, a recommender system can use this pattern
to improve their refactoring recommendation. For example, if a de-
veloper is introducing non-structural changes along with Rename
Methods and Extract Methods, the system can alert the developer
that s/he may introduce a structural problem.

Moving data to remove the God Class. We identified 11 re-
moval patterns associatedwith the God Class. This result shows that
developers often apply a wide range of non-trivial composites to
remove the smell across software project. For example, as discussed
in the previous paragraphs, the God Class was introduced when
the composites of Rename Methods and Extract Methods occurred
with additional changes. We found that these changes introduced
pieces of code that should not be in the classes, contributing to the
God Class. Later on, developers had to apply several refactorings
to move these pieces of code to the classes that suit them better,
removing the God Class. This behavior of applying refactorings
that move data is reflected in the removal patterns. All the removal
patterns had refactorings that moved data between classes, except
for Inline Method and Extract Method. This scenario is another ex-
ample of why an element-based heuristic fails to show the effect
of composites on smells. To remove God Class, developers apply
refactorings that affect multiple elements, such as the classes to
which the data is moved. However, if we analyze only the scope of
a single element, we would not be able to notice that composites
moving data play a central role in the addition and removal of God
Classes. This behavior leads us to our next finding:

Finding 10: The range-based heuristic detects how data is
moved among classes to either introduce or remove God Class.

Providing knowledge based on practice. Although some pat-
terns emerge in the element-based heuristic, they only provide a
partial view of composite effects. Several of the composite patterns
reported here and in the replication package can only be identified
with range-based and commit-based heuristics. Even Fowler’s cat-
alog [14], which lists common composites to remove smells, does
not report our patterns. For example, Fowler’s catalog indicates

that developers should apply Extract Class or Extract Subclass to
remove a God Class. However, we noticed that developers much
more often follow other strategies regarding the refactoring types:
Inline Method, Extract Method, Pull Up Method and Attribute, and
Move Method. Thus, our results suggest that existing refactoring
catalogs [14] may not reflect the practice. We also observed that
existing recommenders for code smell removal do not recommend
these patterns [30, 36, 46]. They should refine their recommenda-
tions with our smell-removal composite patterns.

7 THREATS TO VALIDITY
To apply the heuristics, we had to identify the refactorings that
occurred in each system. For this identification, we relied on the
Refactoring Miner [47]. Thus, there is a threat associated with
the false positives generated by the tool. To minimize this threat,
we conducted a manual validation for each refactoring type ( Sec-
tion 4.2). We observed a high precision for each refactoring type.

Some findings are centered around the difference among positive,
negative and neutral composites. However, if our classification
procedure is somewhat inaccurate in identifying them, thenwe have
a major threat to the validity of our data. In order to mitigate that,
we studied all the cases where the classification procedure could
be inaccurate (Section 5.2). We found a risk of the classification
scheme being wrong on 0.01% of the cases. In this way, this risk
was mitigated by the data disposition.

We also presented several patterns where range-based compos-
ites removed or introduced smells. We computed them by verifying
how often they happen in the analyzed projects, so they might
suffer from lack of generality. To avoid this threat, we only reported
those patterns that happened in more than 50% of the instances in
our dataset. Additionally, to make sure these patterns happened in
all three types of composites, we verified the intersection of the
element-based, commit-based and range-based heuristics. We found
that 16 (out of 27) creational pattern and 80 (out of 84) removal
patterns were found by all heuristics.

8 CONCLUSION
Composite refactoring is common in practice, but a wide empirical
knowledge about it is scarce. To tackle this issue, we conducted
a study with two purposes. First, we provided a conceptual char-
acterization of composites and defined two heuristics to identify
composites in different categories. Second, our study aimed to un-
derstand how composites manifest in practice, and how they affect
the program structure. Our results show that to study composite
refactoring we need indeed to rely on different heuristics: they are
complementary to each other, but most empirical studies tend to use
only a single heuristic (Section 2). For example, the identification of
the semantically-related refactorings was only possible using the
commit-based and range-based heuristics together. Similarly, the
identification of several composite-smell patterns were only possi-
ble with the range-based heuristic. Thus, studies that investigate
only a single composite perspective fall short in providing a full
understanding of temporal and spatial refactoring effects.

Our results can be useful both for researchers and practitioners.
In particular, our study helped to explain conflicting results in the
literature. For instance, different studies (e.g., [6] and [7]) have come

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Characterizing and Identifying Composite Refactorings MSR’20, May 2020, Seoul, Korea

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

to different conclusions regarding the relation of refactoring types
with specific code smells. Thus, we provided new evidence that
there are composite patterns strongly related to the introduction
or removal of specific code smells (which explain the divergence in
their results). On the practical side, we contributed with insights
and a set of composite-smell patterns that are useful for improving
existing refactoring detection tools or recommender systems.

REFERENCES
[1] M Abbes, F Khomh, Y Gueheneuc, and G Antoniol. 2011. An Empirical Study

of the Impact of Two Antipatterns, Blob and Spaghetti Code, on Program Com-
prehension. In Proceedings of the 15th European Software Engineering Conference;
Oldenburg, Germany. 181–190.

[2] Vahid Alizadeh and Marouane Kessentini. 2018. Reducing Interactive Refactoring
Effort via Clustering-based Multi-objective Search. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE 2018).
ACM, New York, NY, USA, 464–474. https://doi.org/10.1145/3238147.3238217

[3] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Ali Ouni, and Marouane
Kessentini. 2019. Do Design Metrics Capture Developers Perception of Quality?
An Empirical Study on Self-Affirmed Refactoring Activities. In 13th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM 2019).

[4] Roberta Arcoverde, Isela Macia, Alessandro Garcia, and Arndt von Staa. 2012.
Automatically Detecting Architecturally-Relevant Code Anomalies. Proceedings
of the InternationalWorkshop on Recommendation Systems for Software Engineering
(2012), 90–91. https://doi.org/10.1109/RSSE.2012.6233419

[5] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano Di
Penta, Rocco Oliveto, and Orazio Strollo. 2012. When Does a Refactoring Induce
Bugs? An Empirical Study. Proceedings of the IEEE 12th International Working
Conference on Source Code Analysis and Manipulation (2012), 104–113. https:
//doi.org/10.1109/SCAM.2012.20

[6] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and
Fabio Palomba. 2015. An Experimental Investigation On The Innate Relationship
Between Quality And Refactoring. Journal of Systems and Software 107 (2015),
1–14. https://doi.org/10.1016/j.jss.2015.05.024

[7] Ana Carla Bibiano, Eduardo Fernandes, Daniel Oliveira, Alessandro Garcia, Mar-
cos Kalinowski, Baldoino Fonseca, Roberto Oliveira, Anderson Oliveira, and
Diego Cedrim. 2019. A Quantitative Study on Characteristics and Effect of
Batch Refactoring on Code Smells. In 13th International Symposium on Empirical
Software Engineering and Measurement (ESEM). 1–11.

[8] Arnaud Blouin, Valéria Lelli, Benoit Baudry, and Fabien Coulon. 2018. User
interface design smell: Automatic detection and refactoring of Blob listeners.
Information and Software Technology 102 (2018), 49 – 64. https://doi.org/10.1016/
j.infsof.2018.05.005

[9] Aline Brito, Andre Hora, and Marco Tulio Valente. 2020. Refactoring Graphs:
Assessing Refactoring over Time. In 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE.

[10] Diego Cedrim, Leonardo da Silva Sousa, Alessandro F. Garcia, and Rohit Gheyi.
2016. Does Refactoring Improve Software Structural Quality? A Longitudinal
Study of 25 Projects. In Proceedings of the 30th Brazilian Symposium on Software
Engineering. ACM, New York, NY, USA, 73–82. https://doi.org/10.1145/2973839.
2973848

[11] Diego Cedrim, Alessandro Garcia, Melina Mongiovi, Rohit Gheyi, Leonardo
Sousa, Rafael de Mello, Baldoino Fonseca, Márcio Ribeiro, and Alexander Chávez.
2017. Understanding the Impact of Refactoring on Smells: A Longitudinal Study
of 23 Software Projects. In Proceedings of the 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 465–475.
https://doi.org/10.1145/3106237.3106259

[12] Alexander Chávez, Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, and
Alessandro Garcia. 2017. How Does Refactoring Affect Internal Quality At-
tributes? A Multi-Project Study. In Proceedings of the 31st Brazilian Sympo-
sium on Software Engineering (SBES’17). ACM, New York, NY, USA, 74–83.
https://doi.org/10.1145/3131151.3131171

[13] Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N. Nguyen. 2007.
Refactoring-Aware Configuration Management for Object-Oriented Programs.
In Proceedings of the 29th International Conference on Software Engineering
(ICSE ’07). IEEE Computer Society, Washington, DC, USA, 427–436. https:
//doi.org/10.1109/ICSE.2007.71

[14] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. 1999.
Refactoring: Improving The Design Of Existing Code (1st ed.). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA. 464 pages.

[15] Kenji Fujiwara, Kyohei Fushida, Norihiro Yoshida, and Hajimu Iida. 2013. As-
sessing Refactoring Instances and the Maintainability Benefits of Them from
Version Archives. Springer Berlin Heidelberg, Berlin, Heidelberg, 313–323.

https://doi.org/10.1007/978-3-642-39259-7_25
[16] Birgit Geppert, Audris Mockus, and Frank Rossler. 2005. Refactoring for Change-

ability: A Way to Go?. In Proceedings of the 11th IEEE International Software
Metrics Symposium (METRICS ’05). IEEE Computer Society, Washington, DC,
USA, 13–. https://doi.org/10.1109/METRICS.2005.40

[17] Mark Harman and Laurence Tratt. 2007. Pareto optimal search based refactoring
at the design level. In 9th Genetic and Evolutionary Computation Conference
(GECCO). 1106–1113.

[18] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A Field
Study of Refactoring Challenges and Benefits. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering (FSE
’12). ACM, New York, NY, USA, Article 50, 11 pages. https://doi.org/10.1145/
2393596.2393655

[19] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2014. An
Empirical Study of Refactoring Challenges and Benefits at Microsoft. IEEE
Transactions on Software Engineering 40, 7 (2014), 633–649. https://doi.org/10.
1109/TSE.2014.2318734

[20] H. Kirinuki, Y. Higo, K. Hotta, and S. Kusumoto. 2016. Splitting Commits via
Past Code Changes. In 2016 23rd Asia-Pacific Software Engineering Conference
(APSEC). 129–136. https://doi.org/10.1109/APSEC.2016.028

[21] Martin Kuhlemann, Liang Liang, and Gunter Saake. 2010. Algebraic and cost-
based optimization of refactoring sequences. In 2nd International Workshop on
Model-driven Product Line Engineering (MDPLE). 37–48.

[22] Michele Lanza and Radu Marinescu. 2010. Object-Oriented Metrics in Practice:
Using Software Metrics to Characterize, Evaluate, and Improve the Design of Object-
Oriented Systems (1st ed.). Springer Publishing Company, Incorporated.

[23] Yun Lin, Xin Peng, Yuanfang Cai, Danny Dig, Diwen Zheng, and Wenyun Zhao.
2016. Interactive and guided architectural refactoring with search-based recom-
mendation. In 24th International Symposium on Foundations of Software Engineer-
ing (FSE). 535–546.

[24] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Taeyoung Kim, Kisub Kim,
Anil Koyuncu, Suntae Kim, and Yves Le Traon. 2019. Learning to Spot and
Refactor Inconsistent Method Names. In Proceedings of the 41st International
Conference on Software Engineering (ICSE ’19). IEEE Press, Piscataway, NJ, USA,
1–12. https://doi.org/10.1109/ICSE.2019.00019

[25] Isela Macia. 2013. On The Detection Of Architecturally Relevant Code Anomalies
In Software Systems. Ph.D. Dissertation. Pontifical Catholic University of Rio de
Janeiro.

[26] Isela Macia, Roberta Arcoverde, Alessandro Garcia, Christina Chavez, and Arndt
von Staa. 2012. On the Relevance of Code Anomalies for Identifying Architecture
Degradation Symptoms. Proceedings of the 16th European Conference on Software
Maintenance and Reengineering (2012), 277–286. https://doi.org/10.1109/CSMR.
2012.35

[27] Mehran Mahmoudi, Sarah Nadi, and Nikolaos Tsantalis. 2019. Are Refactorings
to Blame? An Empirical Study of Refactorings in Merge Conflicts. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 151–162.

[28] Leandra Mara, Gustavo Honorato, Francisco Dantas Medeiros, Alessandro Garcia,
and Carlos Lucena. 2011. Hist-Inspect: A Tool for History-Sensitive Detection of
Code Smells. In Proceedings of the 10th International Conference on Aspect-oriented
Software Development Companion (AOSD ’11). ACM, New York, NY, USA, 65–66.
https://doi.org/10.1145/1960314.1960335

[29] Panita Meananeatra. 2012. Identifying Refactoring Sequences For Improving
Software Maintainability. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ACM Press, New York, New
York, USA, 406–409. https://doi.org/10.1145/2351676.2351760

[30] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyanmoy Deb,
and Mel Ó Cinnéide. 2014. Recommendation system for software refactoring
using innovization and interactive dynamic optimization. In 29th International
Conference on Automated Software Engineering (ASE). 331–336.

[31] E. Murphy-Hill and A. P. Black. 2008. Refactoring Tools: Fitness for Purpose.
IEEE Software 25, 5 (Sep. 2008), 38–44. https://doi.org/10.1109/MS.2008.123

[32] E. Murphy-Hill, C. Parnin, and A. P. Black. 2012. How We Refactor, and How We
Know It. IEEE Transactions on Software Engineering 38, 1 (2012), 5–18. https:
//doi.org/10.1109/TSE.2011.41

[33] Mel ÓCinnéide and PaddyNixon. 2000. Composite refactorings for Java programs.
In Proceedings of the Workshop on Formal Techniques for Java Programs, co-located
with the 14th European Conference on Object-Oriented Programming (ECOOP).
1–6.

[34] Mark O’Keeffe andMel Ó Cinnéide. 2008. Search-based Refactoring: An Empirical
Study. J. Softw. Maint. Evol. 20, 5 (Sept. 2008), 345–364. https://doi.org/10.1002/
smr.v20:5

[35] William F. Opdyke. 1992. Refactoring Object-oriented Frameworks. Ph.D. Disserta-
tion. Champaign, IL, USA. UMI Order No. GAX93-05645.

[36] Ali Ouni, Marouane Kessentini, Mel Ó Cinnéide, Houari Sahraoui, Kalyanmoy
Deb, and Katsuro Inoue. 2017. MORE: A multi-objective refactoring recommen-
dation approach to introducing design patterns and fixing code smells. Journal

11

https://doi.org/10.1145/3238147.3238217
https://doi.org/10.1109/RSSE.2012.6233419
https://doi.org/10.1109/SCAM.2012.20
https://doi.org/10.1109/SCAM.2012.20
https://doi.org/10.1016/j.jss.2015.05.024
https://doi.org/10.1016/j.infsof.2018.05.005
https://doi.org/10.1016/j.infsof.2018.05.005
https://doi.org/10.1145/2973839.2973848
https://doi.org/10.1145/2973839.2973848
https://doi.org/10.1145/3106237.3106259
https://doi.org/10.1145/3131151.3131171
https://doi.org/10.1109/ICSE.2007.71
https://doi.org/10.1109/ICSE.2007.71
https://doi.org/10.1007/978-3-642-39259-7_25
https://doi.org/10.1109/METRICS.2005.40
https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1109/TSE.2014.2318734
https://doi.org/10.1109/TSE.2014.2318734
https://doi.org/10.1109/APSEC.2016.028
https://doi.org/10.1109/ICSE.2019.00019
https://doi.org/10.1109/CSMR.2012.35
https://doi.org/10.1109/CSMR.2012.35
https://doi.org/10.1145/1960314.1960335
https://doi.org/10.1145/2351676.2351760
https://doi.org/10.1109/MS.2008.123
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1002/smr.v20:5
https://doi.org/10.1002/smr.v20:5


1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

MSR’20, May 2020, Seoul, Korea Sousa, et al.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

of Software: Evolution and Process 29, 5 (2017), e1843.
[37] Ali Ouni, Marouane Kessentini, and Houari Sahraoui. 2013. Search-based refac-

toring using recorded code changes. In 17th European Conference on Software
Maintenance and Reengineering (CSMR). 221–230.

[38] 2020 Replication Package. 2020. https://figshare.com/s/81f7973d07ceb7e4796c.
[39] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. An

exploratory study on the relationship between changes and refactoring. In 2017
IEEE/ACM 25th International Conference on Program Comprehension (ICPC). IEEE,
176–185.

[40] E. Piveta, J. Araujo, M. Pimenta, A. Moreira, P. Guerreiro, and R. T. Price. 2008.
Searching for Opportunities of Refactoring Sequences: Reducing the Search
Space. In 2008 32nd Annual IEEE International Computer Software and Applications
Conference. 319–326. https://doi.org/10.1109/COMPSAC.2008.119

[41] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim. 2010. Template-Based Recon-
struction of Complex Refactorings. In Proceedings of IEEE International Conference
on Software Maintenance. 1–10. https://doi.org/10.1109/ICSM.2010.5609577

[42] Jacek Ratzinger, Thomas Sigmund, and Harald C Gall. 2008. On The Relation of
Refactorings and Software Defect Prediction. In Proceedings of the International
Workshop on Mining Software Repositories. ACM Press, New York, New York, USA,
35–38. https://doi.org/10.1145/1370750.1370759

[43] Veselin Raychev, Max Schäfer, Manu Sridharan, and Martin Vechev. 2013. Refac-
toring with synthesis. ACM SIGPLAN Notices 48, 10 (2013), 339–354.

[44] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We Refac-
tor? Confessions of GitHub Contributors. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2016). ACM,
New York, NY, USA, 858–870. https://doi.org/10.1145/2950290.2950305

[45] Gábor Szőke, Gábor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy. 2017.
Empirical study on refactoring large-scale industrial systems and its effects on
maintainability. Journal of Systems and Software 129 (2017), 107–126.

[46] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. 2018.
Ten years of JDeodorant: Lessons learned from the hunt for smells. In 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 4–14.

[47] Nikolaos Tsantalis, MatinMansouri, LalehM. Eshkevari, DavoodMazinanian, and
DannyDig. 2018. Accurate and Efficient Refactoring Detection in Commit History.
In Proceedings of the 40th International Conference on Software Engineering (ICSE
’18). ACM, New York, NY, USA, 483–494. https://doi.org/10.1145/3180155.3180206

[48] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2015. When and Why Your
Code Starts to Smell Bad. In Proceedings of the 37th International Conference on
Software Engineering (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 403–414.

[49] Carmine Vassallo, Giovanni Grano, Fabio Palomba, Harald C. Gall, and Alberto
Bacchelli. 2019. A large-scale empirical exploration on refactoring activities in
open source software projects. Science of Computer Programming 180 (2019), 1 –
15. https://doi.org/10.1016/j.scico.2019.05.002

[50] Aiko Yamashita and Leon Moonen. 2013. Exploring the Impact of Inter-Smell
Relations on Software Maintainability: An Empirical Study. Proceedings of the
International Conference on Software Engineering (2013), 682–691. https://doi.
org/10.1109/ICSE.2013.6606614

[51] Aiko Yamashita and Leon Moonen. 2013. To What Extent can Maintenance
Problems be Predicted by Code Smell Detection? An Empirical Study. Information
and Software Technology 55, 12 (2013), 2223–2242. https://doi.org/10.1016/j.infsof.
2013.08.002

[52] Young Seok Yoon and Brad A. Myers. 2015. Supporting Selective Undo in a Code
Editor. In Proceedings of the 37th International Conference on Software Engineering
- Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 223–233. http://dl.acm.
org/citation.cfm?id=2818754.2818784

[53] Trevor J. Young. 2005. Using AspectJ to build a software product line for mobile
devices. Ph.D. Dissertation. https://doi.org/10.14288/1.0051632

12

https://figshare.com/s/81f7973d07ceb7e4796c
https://doi.org/10.1109/COMPSAC.2008.119
https://doi.org/10.1109/ICSM.2010.5609577
https://doi.org/10.1145/1370750.1370759
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1016/j.scico.2019.05.002
https://doi.org/10.1109/ICSE.2013.6606614
https://doi.org/10.1109/ICSE.2013.6606614
https://doi.org/10.1016/j.infsof.2013.08.002
https://doi.org/10.1016/j.infsof.2013.08.002
http://dl.acm.org/citation.cfm?id=2818754.2818784
http://dl.acm.org/citation.cfm?id=2818754.2818784
https://doi.org/10.14288/1.0051632

	Abstract
	1 Introduction
	2 Related Work and Example
	3 Characterizing and Identifying Composite Refactoring
	3.1 A Conceptual Framework
	3.2 Element-Based Heuristic
	3.3 Composite Synthesis Heuristics

	4 Study Planning
	4.1 Research Questions
	4.2 Study Phases

	5 Composites: Occurrence and Effect
	5.1 Synthesized Composites
	5.2 Effect of Composites on Code Smells

	6 Composite-smell Patterns
	6.1 Feature Envy
	6.2 God Class

	7 Threats to Validity
	8 Conclusion
	References

