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ABSTRACT
Refactoring consists of a program transformation applied to im-
prove the internal structure of a program, for instance, by con-
tributing to remove code smells. Developers often apply multiple
interrelated refactorings called composite refactoring. Even though
composite refactoring is a common practice, an investigation from
different points of view on how composite refactoring manifests
in practice is missing. Previous empirical studies also neglect how
different kinds of composite refactorings affect the removal, preva-
lence or introduction of smells. To address these matters, we pro-
vide a conceptual framework and two heuristics to respectively
characterize and identify composite refactorings within and across
commits. Then, we mined the commit history of 48 GitHub soft-
ware projects, in which we identified and analyzed 24,911 composite
refactorings involving 104,505 single refactorings. Amongst several
findings, we observed that most composite refactorings occur in the
same commit and have the same refactoring type. We also found
that several refactorings are semantically related to each other,
which occur in different parts of the system but are still related to
the same task. Moreover our study is the first to reveal that many
smells are introduced in a program due to "incomplete" composite
refactorings. Additionally, our study is also the first to reveal 111
patterns of composite refactorings that frequently introduce or re-
move certain smell types. These patterns can be used as guidelines
for developers to improve their refactoring practices as well as for
designers of recommender systems.
ACM Reference Format:
Leonardo Sousa, Diego Cedrim, Alessandro Garcia, Willian Oizumi, Ana
C. Bibiano, Daniel Oliveira, Miryung Kim, and Anderson Oliveira. 2020.
Characterizing and Identifying Composite Refactorings: Concepts, Heuris-
tics and Patterns. In Proceedings of (MSR’20). ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Software refactoring is a widely used technique in practice [9, 11,
13, 18, 19, 32, 47]. Refactoring consists of a program transforma-
tion used to improve software structure, such as removing code
smells [14]. Well-known refactoring types include Extract Method,
Rename Method, and Move Method. Since the term refactoring first

MSR’20, May 2020, Seoul, Korea
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

appeared in the literature [14, 35], studies have been actively in-
vestigating it [2, 3, 8, 11, 13, 18, 19, 24, 31, 32, 42, 47]. Most of these
studies analyze the characteristics and the impact of each single
refactoring on the software structure.

However, from 40% to 60% of the times, developers apply more
than one refactoring in conjunction [7, 32], even for removing
simple code smells, such as Long Methods [14]. In other words,
developers often apply which we call here as composite refactoring.
A composite refactoring – from now on also called composites –
comprises two or more interrelated refactorings that affect one
or more elements [7, 9, 33, 41]. There are two broad categories of
composites: (i) temporally-related composite, i.e., those refactorings
applied in the same commit and are likely to be related to the same
developer’s task, and (ii) spatial composite, i.e., a set of refactorings
applied in structurally related code elements, regardless whether
they are performed at the same change (commit) or not.

However, recent studies (e.g., [7, 9, 39, 48]) have strictly focused
their analysis on a single category of composite (Section 2). For
example, Palomba et al. [39] and Tufano et al. [48] only analyze
temporally-related composites, while Bibiano et al. [7] and Brito
et al. [9] explore spatial composites. As there is no study that ana-
lyzes these different categories all together, a more comprehensive
understanding of composites is missing. There is not even a unified
conceptual framework that supports such a holistic characterization
and study of composites.

Moreover, when composite categories are studied only under a
single perspective, the actual impact of refactoring on the program
structure – e.g., removal or introduction of smells – is not properly
understood (Section 2). For example, while certain complex smells
are likely to be fully removed over time (e.g., a God Class) through
a spatial composite refactoring, other smells (e.g., Shotgun Surgery)
may be removed in a single commit, but require changes in non-
structurally related parts of the program. Unfortunately, existing
studies that assess the impact of refactoring on code smells [5, 7,
11, 48] do not consider both categories of composites.

To address the aforementioned issues, we mined the commit
history of 48 GitHub software projects (i) to identify the charac-
teristics of different categories of composite refactorings, and (ii)
their effect on either removing or introducing smells. To support
our study, we provide a conceptual framework and two heuristics
for detecting composites. The heuristics are named commit-based
and range-based heuristics, and they serve to automatically identify
composites in software projects. The first supports the analysis of
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refactorings which have a temporal relation. The second intends to
capture refactorings that have a spatial relation. These heuristics
enabled us to investigate composites and their impact on smells
from different perspectives. We expect that our contributions and
study findings can help tool builders by uncovering the blind spots
on the relation between composite refactoring and smells that have
not been properly addressed by the community. Our contributions
and study findings can be summarized as follows.

First, we provide a formal and unambiguous definition for com-
posites, which also serves to guide researchers who aim to further
investigate composites. Our two proposed heuristics enabled us
to reveal characteristics of composites in practice, which are over-
looked by previous studies [7, 9, 32]. We present some of these
characteristics below.

Second, we observe that nearly 41% of composites are complex,
i.e., are comprised by 3 to 20 interrelated refactorings, which con-
tradicts a recent finding [7]. The majority of the composites are
confined to the same commit and homogeneously formed by refac-
torings of the same type, e.g., various syntactically related method
extractions. There is also a non-negligible frequency of: (i) hetero-
geneous and cross-commit composites, and (ii) semantically related
composites within the same commit, i.e., sequences of refactorings
located in different parts of the code, but still related to the same
task (e.g., removing non-trivial, scattered smells).

Third, contradicting previous findings [6, 7, 11, 44], we observe
that refactoring do have a considerable effect on smells. We found
that nearly 50% of composites either remove or introduce smells.
Previous studies often suggest otherwise. For instance, Bavota et
al [6] stated that refactorings are not related to smell removal.
Cedrim et al. [11] and Bibiano et al [7] reported that refactorings
are most often neutral, i.e., neither introduce nor remove smells.
These studies either analyze each single refactoring individuallyy
or multiple refactorings affecting only a single element.

Fourth, our heuristics enabled us to identify patterns of compos-
ites that recurrently introduce or remove specific smell types. No
existing study in the literature, including recent studies (e.g., [7, 11]),
systematically derived and documented such a comprehensive set
of smell-affecting composite patterns. A manual analysis confirmed
a total of 111 composite-smell patterns: 84 smell-removing patterns
and 27 smell-introducing patterns. As refactoring tools tend to be
underused [32], these patterns can be used to improve recommenda-
tion systems [17, 23, 30, 34, 36] by recommending removal patterns
that developers do in practice; thus, increasing the chance of them
adopt automated refactoring tools.

Fifth, our study also contributes with a comprehensive replica-
tion package [38]. Our dataset is available for other researchers who
are interested in studying composites and their effects on smells.
We also provide the scripts that we used to implement the proposed
heuristics as well as the catalog of composite-smell patterns for
eleven smell types.

2 RELATEDWORK AND EXAMPLE
Diverse views on composite refactoring.Many researchers have
investigated composites [7, 9, 27, 32, 45, 48, 49]. However, they use
different terms (e.g., batch refactoring [7]) or definitions to refer
to composite refactoring. Some studies consider a composite as a

commit1
UserCtrl

+ userDao
+ mediaDao

+ saveUser (u:User)
+ saveMedia (m:Media)

commit2
UserCtrl

+ userDao

+ saveUser (u:User)

MediaCtrl

+ mediaDao

+ saveMedia (m:Media)

commit3

UserCtrl MediaCtrl

AbstractCtrl

Extract
Superclass

Move
Method

Move
Method

Extract
Method

Extract
Method

Move
Method

Move
Attribute

r1 r7r5r4r3r2 r6

God
Class

Speculative
Generality

Figure 1: Refactorings applied to the Mobile Media

set of two or more interrelated refactorings applied by the same
developer [7, 23, 30, 32, 46]. Other studies define a composite as
a set of refactorings applied by multiple developers [19, 27, 45].
Bibiano et al. [7] consider the scope of a composite refactoring
as an individual code element. Other studies consider that a com-
posite refactoring may be applied in the scope of multiple ele-
ments [19, 27, 30, 32, 45, 46]. There is even a study that assumes
time constraints to define a composite [32]. There are also studies
that have proposed approaches to recommend composite refactor-
ings [23, 30, 46].

To the extent of our knowledge, Bibiano et al. [7], Vassalo et
al. [49], and Brito et al. [9] are the most recent studies that investi-
gate composites. Unfortunately, these studies tend to only investi-
gate composite through a single perspective. Additionally, neither
of them provided both a clear definition of composite refactoring
and also a systematic investigation about its effects on smells. For
example, Bibiano et al. [7] only provided a partial view on com-
posite refactoring since they analyze only composites in the scope
of individual code elements. Hence, composite refactorings that
crosscut two or more elements were not completely investigated.
Moreover, their overly restrictive definition of composite can lead
to some findings that may not hold in practice. Next, we present an
example that illustrates how their restrictive analysis of composites
can lead to misleading results.

Effect of composites on smells. For this discussion, we will
rely on the example of Figure 1. This figure shows three commits of
Mobile Media (MM), a software product line to derive mobile appli-
cations [53]. A developer performed seven refactorings: 𝑟1, 𝑟2, .., 𝑟7
along these commits.Wemay have different instances of composites
according to the chosen composite definition. Bibiano et al. [7] de-
fine composite as two or more refactorings within the scope of a sin-
gle element. Thus, they would consider only 𝑐𝑟1 = [𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5]
and 𝑐𝑟2 = [𝑟3, 𝑟6, 𝑟7] as composites. But only restricting composites
to those occurring in the context of an element may be inappropri-
ate to investigate the effects of composites on smells. For example,
in Figure 1, the refactorings 𝑟1 and 𝑟2 removed the God Class. As
these refactorings belong to the composite 𝑐𝑟1, Bibiano et al. would
conclude that composites have a positive effect on the program
structure since 𝑐𝑟1 reduced the incidence of smells. However, this
conclusion is misleading due to their narrow composite definition.

Let us consider the 𝑟3 refactoring (Extract Superclass), which
crosscuts multiple elements. This refactoring creates a superclass
(AbstractCtrl) shared by UserCtrl and MediaCtrl, which led to the
introduction of the Speculative Generality [14]. Since the smell is
introduced in the scope of another element, Bibiano et al. would
not consider it when assessing the effect of a composite. In this
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scenario, the composite removed a smell (God Class) but introduced
another (Speculative Generality). Therefore, Bibiano et al. should
have concluded that composites have no effect on the introduction
or removal of smells. As Bibiano et al. do not consider the scope
of all elements affected by the refactorings, they only provide a
partial view of the effects of composite on smells. To have a better
understanding on composite refactorings and their effect on smells,
we propose two heuristics (Section 3.3) to identify composites that
affect the scope of one to multiple elements.

3 CHARACTERIZING AND IDENTIFYING
COMPOSITE REFACTORING

In this section, we define basic concepts for supporting the under-
standing of composite refactoring (Section 3.1). We use them to
identify the limitations of an existing heuristic (Section 3.2) and to
propose two new heuristics (Section 3.3).

3.1 A Conceptual Framework
This section presents a conceptual framework for composite refac-
toring. We used this framework to provide a foundation for our
heuristics (Section 3.3) and our empirical study. Other researchers
can also use it to conduct studies based on unambiguous concepts.

3.1.1 Composite Refactoring. Composite refactoring occurs when
two or more interrelated refactorings are applied to a set of code
elements. Thus, 𝑐𝑟 = [𝑟1, 𝑟2, · · · , 𝑟𝑛] is a composite of size 𝑛 if 𝑛 ≥ 2.
Additionally, the refactorings within the composite should be inter-
related. The notion of interrelation depends on the composite scope
(Section 3.1.4). Most studies restrict the composite to refactorings
applied by the same developer [7, 32, 37, 43]. However, developers
can work together to apply a composite [19]. This scenario can hap-
pen, for example, when they have to team up to plan and perform
a major restructuring in the system, or when they create branches
to apply refactoring exclusively [19].

3.1.2 Composite Uniformity. All the refactorings in the compos-
ite can have the same type or not, which we define as composite
uniformity. In this context, 𝑡𝑦𝑝𝑒 (𝑟𝑖 ) is a function that returns the
type of the refactoring 𝑟𝑖 . In our example of Figure 1, 𝑡𝑦𝑝𝑒 (𝑟1) =
Move Method. Therefore, the composite 𝑐𝑟 = [𝑟1, 𝑟2, · · · , 𝑟𝑛] is het-
erogeneous if and only if |𝑡𝑦𝑝𝑒 (𝑟1) ∪ 𝑡𝑦𝑝𝑒 (𝑟2) · · · ∪ 𝑡𝑦𝑝𝑒 (𝑟𝑛) | > 1.
If |𝑡𝑦𝑝𝑒 (𝑟1) ∪ 𝑡𝑦𝑝𝑒 (𝑟2) · · · ∪ 𝑡𝑦𝑝𝑒 (𝑟𝑛) | = 1, then the composite is
homogeneous. Most studies do not consider that a composite only
exists if all refactorings have the same type [32, 37, 40, 43].

3.1.3 Composite Timespan. A developer can start a composite in
a commit and finish it in the same commit or in the subsequent
commits. In this sense, composite timespan indicates if the composite
is either single-commit or cross-commit. To identify the timespan,
let us define the function 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟 ) to find the commit where the
refactoring 𝑟 was performed. Thus, a composite 𝑐𝑟 = [𝑟1, 𝑟2, · · · , 𝑟𝑛]
is cross-commit if and only if |𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟1) ∪ · · · ∪ 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟𝑛) | > 1.
Similarly, if |𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟1) ∪ · · · ∪ 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟𝑛) | = 1, then 𝑐𝑟 is single-
commit. Several studies of refactoring only consider major version
[6] or a single commit [11], or the entire project history [7].

3.1.4 Refactoring and Composite Scope. Elements directly affected
by the refactoring constitute the refactoring scope. Given a refactor-
ing 𝑟 , 𝑠𝑐𝑜𝑝𝑒 (𝑟 ) is a function that returns the set of elements belong-
ing to the scope of 𝑟 . For instance, the refactoring 𝑟1 in Figure 1
(Move Method) moved the method mediaDao from class UserCtrl to
MediaCtrl. Hence, the refactoring scope is {𝑚𝑒𝑑𝑖𝑎𝐷𝑎𝑜,𝑈𝑠𝑒𝑟𝐶𝑡𝑟𝑙,

𝑀𝑒𝑑𝑖𝑎𝐶𝑡𝑟𝑙}. Similar to a single refactoring, composites also have a
scope. The composite scope is the set of code elements affected by the
refactorings within a composite. The composite scope also indicates
how the refactorings within the composite are interrelated.

One might naturally say the union of all refactoring scopes from
a composite determines the composite scope, but this is not neces-
sarily true in all scenarios. Related studies have different ways to
define the composite scope. In general, these studies can be divided
into two groups: composite refactoring affects only the scope of a
single element [21, 29, 40] or the scope of multiple elements [19, 37].
In the first group, all refactorings within the composite are related
to each other because they affect the same element. In the second
group, if a refactoring crosscuts two elements, then all refactorings
in one element will be related to the refactorings in the other ele-
ment. For example, a developer applied refactoring 𝑟1 to class A and
𝑟2 to class B. These two refactorings are not related to each; thus
they do not compose a composite. However, the developer applied
a refactoring 𝑟3, which moves a method from A to B. Thus, the three
refactorings became related to each other, creating a composite. In
this case, the composite scope includes both classes.

3.1.5 Composite Synthesis. The process of grouping interrelated
refactorings to find composites is defined as composite synthesis. To
synthesize a composite, we need first to detect the refactorings that
occurred in the system. Related studies have different strategies
to identify refactorings applied by developers. A strategy is to
analyze the commit message to identify the refactorings [42]. Other
strategy is to use a tool that compares two subsequent commits to
identify them [47]. For the sake of explanation, let assumes that a
refactoring detection tool implements a function 𝑅. This function
expresses all refactorings in the history 𝐻 of a system 𝑠 , which is
composed of all refactorings detected between subsequent pairs
of commits: 𝐻 (𝑠) =

⋃ |𝐶𝑜𝑚𝑚𝑖𝑡𝑠 (𝑠) |−1
𝑖=1 𝑅(𝑐𝑖 , 𝑐𝑖+1). To illustrate the

output of function 𝐻 (𝑠), let us visit the MM system presented
in Figure 1. This system has four commits, where three of them
are represented in the figure. The fourth one is produced as the
result of applying the refactorings {𝑟4, 𝑟5, 𝑟6, 𝑟7}. Hence, 𝐻 (𝑠1) =
𝑅(𝑐1, 𝑐2) ∪ 𝑅(𝑐2, 𝑐3) ∪ 𝑅(𝑐3, 𝑐4). In other words, 𝐻 (𝑠1) contains all
refactorings presented in Figure 1, which are {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7}.

3.2 Element-Based Heuristic
This section presents a formal definition of the element-based heuris-
tic [7], which we will use in our study.

Formal Definition. A heuristic that synthesizes composites
using as scope an individual code element, i.e., either a method
or a class. The goal of this heuristic is to investigate how com-
posites affect an specific element. Formally, a given composite
𝑐𝑟 = [𝑟1, 𝑟2, · · · , 𝑟𝑛] is synthesized by the element-based heuristic if
and only if there is an element 𝑒 such as 𝑒 ∈ 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑖 ) ∀𝑟𝑖 ∈ 𝑐𝑟 . For
instance, let 𝐶𝑅𝑒 (ℎ) be the function that implements the element-
based heuristic over a particular refactoring history ℎ (Figure 1).
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So, 𝐶𝑅𝑒 (𝐻 (𝑠1)) = {𝑐𝑟𝑎 [𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5], 𝑐𝑟𝑏 [𝑟3, 𝑟6, 𝑟7]}. Thus, this
heuristic synthesizes two composites. The first one, 𝑐𝑟𝑎 , is a com-
posite because [𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5] affected the same element: UserCtrl.
The second composite, 𝑐𝑟𝑏 , affects the MediaCtrl class.

Scope. In this heuristic, the composite scope is determined by the
element used to synthesize the composites. In this way, 𝑠𝑐𝑜𝑝𝑒 (𝑐𝑎) =
{𝑈𝑠𝑒𝑟𝐶𝑡𝑟𝑙}, and 𝑠𝑐𝑜𝑝𝑒 (𝑐𝑏 ) = {𝑀𝑒𝑑𝑖𝑎𝐶𝑡𝑟𝑙}.

The element-based heuristic focuses on the element to find com-
posites. Focusing on the element is a strength as it allows us to
investigate what occurs with the element during its evolution. At
the same time, focusing on the element is also a weakness. The
scope of some refactoring types goes beyond a single element. Sup-
pose a developer applies an Extracted Method in class A, and then a
Move Method from class A to B. The heuristic will only synthesize a
composite in class A. Since class B is out of scope, the effects of the
composite in B will not be considered. As the effect in each element
will be treated independently, this heuristic may not be entirely
appropriate to investigate the effect of composites on smells.

3.3 Composite Synthesis Heuristics
We propose here two heuristics to synthesize composites.

3.3.1 Commit-Based Heuristic. The composite scope also indicates
how the refactorings are interrelated (Section 3.1.4). Sometimes the
refactorings are not structurally related to each other but they occur
in the same context. For example, a developer may apply several
refactorings to address a task associated with a commit. Hence,
it makes sense to group these refactorings. For this purpose, this
heuristic considers a single commit as the timespan (Section 3.1.3).
In fact, there is a commit policy, widely accepted in the commu-
nity, that recommends developers not to perform code changes for
multiple tasks in the same commit [20]. Thus, each commit should
have refactorings somehow related to the same task.

Formal Definition. The commit-based composite heuristic syn-
thesizes as a composite all refactorings performed within a commit.
The goal of this heuristic is to capture a temporal relation among
the refactorings made at the time frame of a single commit. For-
mally, a composite 𝑐𝑟 = [𝑟1, 𝑟2, · · · , 𝑟𝑛] is synthesized if and only
if |𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟1) ∪ 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟2) · · · ∪ 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟𝑛) | = 1. For instance,
consider 𝐻 (𝑠1) = [𝑟1, · · · , 𝑟7] (Figure 1). Now, let 𝐶𝑅𝑐 (ℎ) be the
function that implements the commit-based heuristic over a refac-
toring history ℎ. Thus, the commit-based heuristic produces two
composites: 𝐶𝑅𝑐 (𝐻 (𝑠1)) = {𝑐𝑟𝑐 [𝑟1, 𝑟2], 𝑐𝑟𝑑 [𝑟4, 𝑟5, 𝑟6, 𝑟7]}.

Scope. The composite scope includes the elements affected by
the refactorings within the commit. Thus, 𝑠𝑐𝑜𝑝𝑒 (𝑐𝑟𝑐 ) = {𝑈𝑠𝑒𝑟𝐶𝑡𝑟𝑙,

𝑀𝑒𝑑𝑖𝑎𝐶𝑡𝑟𝑙}, and 𝑠𝑐𝑜𝑝𝑒 (𝑐𝑟𝑑 ) = {𝑈𝑠𝑒𝑟𝐶𝑡𝑟𝑙, 𝑀𝑒𝑑𝑖𝑎𝐶𝑡𝑟𝑙, 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝐶𝑡𝑟𝑙}.
The commit-based heuristic is useful to observe the effect of all

refactorings that occur in a commit. Assuming that all the changes
within a commit are related to the same task [20], researchers can
use this heuristic to understand how refactorings affect elements
related to a task. This heuristic solves (partially) the limitation of the
element-based heuristic. Instead of considering only the scope of a
single element, it considers all elements affected by the refactorings
made along the commit’s task.

As this heuristic considers all elements, it does not discard refac-
torings that crosscut elements. However, there are cases that the
commit-based heuristic discards refactorings to which it should not.

A developer can start a composite in a commit and finish it in the
subsequent commits. For example, a developer can start a compos-
ite, then, s/he can commit the changes and continue on refactoring
the same elements. In this case, the commit-based heuristic would
synthesize two composites rather than one.

3.3.2 Range-Based Heuristic. Some refactorings are structurally
related to each other because they affect elements that are located in
the same part of the source code. Thus, if we want to understand the
effect of composites on the program structure, we need to analyze
how these structurally related refactorings affect the elements. For
example, if a refactoring crosscuts two elements, both elements
should be analyzed to understand the effect of the refactoring. We
propose the range-based heuristic to identify composites in which
their refactorings affect the same location in the code.

Formal Definition. The range-based composite heuristic con-
siders the notion of refactoring scope to synthesize composites.
In this heuristic, the scope of all refactorings form the composite
scope. A composite starts with an arbitrary refactoring 𝑟𝑎 . A second
refactoring 𝑟𝑏 is part of the same composite if and only if 𝑟𝑎 and
∃𝑒 ∈ 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑏 ) such as 𝑒 ∈ 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑎). A possible third refactor-
ing 𝑟𝑐 will be added to the composite if ∃𝑒 ∈ 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑐 ) such as
𝑒 ∈ 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑎) or 𝑒 ∈ 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑏 ). This process continues until all
refactorings in a particular history are explored.

Scope. In this heuristic, the composite scope is determined
by the union of the scopes of all refactorings. In this way, the
scope is defined as ∪𝑛

𝑖=1𝑠𝑐𝑜𝑝𝑒 (𝑟𝑖 ). The 𝑟1 and 𝑟2 refactorings in Fig-
ure 1 moved elements from UserCtrl to MediaCtrl classes. Hence,
𝑠𝑐𝑜𝑝𝑒 (𝑟1) = 𝑠𝑐𝑜𝑝𝑒 (𝑟2) = {𝑈𝑠𝑒𝑟𝐶𝑡𝑟𝑙, 𝑀𝑒𝑑𝑖𝑎𝐶𝑡𝑟𝑙}. The composite
synthesis in this example starts with 𝑟1. As 𝑟2 was applied in one
element of 𝑠𝑐𝑜𝑝𝑒 (𝑟1), then the composite grows bigger and turns
into [𝑟1, 𝑟2]. The 𝑟3 refactoring affects elements of 𝑠𝑐𝑜𝑝𝑒 (𝑟1), then
the composite is now [𝑟1, 𝑟2, 𝑟3]. The same reasoning can be used
for the remaining refactorings, so the composite synthesis produce
the composite 𝑐𝑒 = [𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7].

4 STUDY PLANNING
4.1 Research Questions
In the previous section, we proposed heuristics to identify com-
posites. These heuristics allow one to analyze composites from
different, albeit complementary, perspectives. To propose them, we
formally defined concepts that characterize a composite. Our goal
is to use these concepts to understand (i) how composites manifest
in software systems and (ii) their effect on smells. To achieve this
goal, we aim to answer the following research question:

RQ1. What are the characteristics of composites in software
systems?

We address RQ1 by applying the heuristics to identify three
categories of composites: element-based, commit-based, and range-
based composites. We rely on the concepts defined in our conceptual
framework to compare these categories of composites. The analysis
of these categories also allows us to have a better understanding of
the effect of composites on the program structure. For this purpose,
we investigate if composites affect the incidence of code smells.
Thus, our following research question addresses this investigation:
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RQ2. How does composite affect the incidence of smells?

We addressRQ2 by investigating the influence of the composites
on the incidence of code smells. Notice that such investigation is
not trivial. First, we need to identify the elements affected by each
category of composite, but taking into consideration their compos-
ite scope. Then, we analyze what happened with the smells before
and after developers apply the composites. To support this analysis,
we rely on the classification of each composite according to their
effect on the incidence of smells. Thus, we classify a composite as
a positive one if it reduces the number of code smells. Conversely,
we classify it as negative composite if it increases the number of
smells. Otherwise, we classify it as neutral composite, i.e., if it
neither increases nor decreases the number of smells. This type
of analysis has been applied in other empirical studies [7, 10–12].
Consequently, we can directly contrast our findings with theirs.

As a complement to RQ2, understanding and distinguishing the
effect of specific types of composites on smells is an essential inves-
tigation. First, our investigation may help tool builders by uncover-
ing the blind spots on the relation between refactoring and smells.
Second, this investigation aims (i) to identify topics that require
further investigation and (ii) to contrast the results with findings
established in the literature. For example, Fowler [14] presented a
catalog of composite types that can be used to remove code smells,
which we named as a composite-smell pattern. A composite-smell
pattern establishes a frequently observed relationship between a
composite type and the introduction or removal of a smell type.
For instance, suppose that there is a method affected by the Fea-
ture Envy code smell. In this case, Fowler recommends to apply a
composite pattern composed of Extract Method followed by a Move
Method. Unfortunately, we do not know if developers apply this
composite pattern in practice. More specifically, we do not know
which patterns govern the relation between refactorings and smells.
These patterns are the focus of our next research question:

RQ3.What are the patterns governing composites and smells?

We address RQ3 by investigating creational and removal pat-
terns. A creational pattern represents a recurring case where the
composite tends to introduce a code smell. A removal pattern
represents a recurring case where the composite tends to remove a
smell. We detect these patterns by analyzing the impact of compos-
ites on smells located in the elements forming the composite scope.
There is no empirical study in the literature that reports composites
that typically remove or introduce smells. By answering RQ3, we
are able to reveal composites used by developers not only to remove,
but also to inadvertently introduce smells. The knowledge about
creational patterns make developers informed about the risks of in-
troducing certain smells along composite refactoring. The removal
patterns can be useful to implement recommendation systems to
support developers when removing smells.

4.2 Study Phases
This section presents the five phases of the study design.

Phase 1: Dataset Acquisition. In this phase, we choose a set
𝑆 of software projects to analyze. We established GitHub as the
source of projects. To select them, we followed criteria based on
closely related studies [7, 11]. We selected projects with (1) different

levels of popularity – based on the number of Github stars, (2) an
active issue tracking system, and (3) at least 90% of code written in
Java. These criteria allowed us to select 48 projects with a diversity
of structure, domain, size and popularity. The replication package
contains information about them [38], including name, domain,
number of lines of code, commits, and Github stars.

Phase 2: Smell and Refactoring Detection. In this phase, we
detected (i) the refactorings in all subsequent pairs of commits 𝑐𝑖
and 𝑐𝑖+1, and (ii) all smells in each commit 𝑐𝑖 ∈ 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑠). We
chose Refactoring Miner [47] to detect refactorings for two reasons.
First, the tool has precision of 98% and recall of 87% as reported by
Tsantalis et al. [47], which leads to a very low rate of false positives
and false negatives. Second, the tool identifies the most common
refactoring types applied by developers [32]. We considered all 14
refactoring types identified by the tool. Refactoring Miner gives us
as output a list of refactorings 𝑅(𝑐𝑖 , 𝑐𝑖+1) = {𝑟1, · · · , 𝑟𝑘 } as defined
before, where 𝑘 is the number of identified refactorings.

Code smells are often detected with metric-based strategies [4].
Each strategy is defined based on a set of metrics and thresholds. Af-
ter collecting metrics for all projects, we applied the rules to detect
smells [6, 22, 26]. These rules were used because: (i) they repre-
sent refinements of well-known rules proposed by Lanza et al. [22],
which are used in related studies [7, 11, 28, 51]; and (ii) they have,
on average, precision of 72% and recall of 81% [25]. We collected
19 smells: Brain Class, Brain Method, Class Data Should Be Private,
Complex Class, Data Class, Dispersed Coupling, Divergent Change,
Feature Envy, God Class, Intensive Coupling, Large Class, Lazy Class,
Long Method, Long Parameter List, Message Chain, Refused Bequest,
Shotgun Surgery, Spaghetti Code, Speculative Generality.

Phase 3: Manual Validation.We randomly sampled refactor-
ings from each type to manually validated them. To ensure an
acceptable confidence level in the results, we calculated the sample
size of each refactoring type based on a confidence level of 95% and
a confidence interval of 5 points. We recruited ten undergraduate
students from another research group to also analyze the samples.
The samples were divided into ten disjointed sets, and each student
validated one. For each pair of elements, they had to mark it as a
valid refactoring or not. Thus, we estimated the number of false
positives generated by the Refactoring Miner [47]. We highlight
that our goal was to ensure the trustability of the tool for our set
of systems. For that matter, we relied on students, familiar with
refactoring, to validate the tool. After the manual validation, we
observed that the tool achieve high precision for all refactoring
types, in which the median was 88.36%. The precision for all refac-
toring types is within one standard deviation (7.73). Applying the
Grubb outlier test (alpha=0.05), we did not find any outlier. This
result indicates that no refactoring type is strongly influencing the
median precision. Thus, the precision for all the refactorings in the
validated sample provides trustability to our results.

Some smells can be introduced by functional changes, such as
the implementation of a new feature. Thus, we also validated if the
smells were introduce or removed by the refactorings. First, we ran
the eGit plugin and the Linux diff tool to find changes between
commits. Then, we manually analyzed each change. When we iden-
tified a functional change, we classified it as non-pure refactoring
[32]; otherwise, we classified it as pure refactoring. We validated
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1,168 pure refactorings and 3,817 non-pure refactorings. We used
the pure refactorings to confirm some results in Sections 5 and 6.

Phase 4: Synthesis and Classification of Composites. The
heuristics to synthesize composites require a refactoring history
as input (Section 3.3). We collected this history for each project in
Phase 2. Each refactoring history was submitted to the algorithms
that implement the heuristics, allowing us to collect: (i) element-
based, (ii) range-based, and (iii) commit-based composites. After
collecting them, they were classified according to their effect on
smells. Thus, composites were classified as positive, negative, and
neutral. Finally, we identified composite patterns related to the
introduction and removal of specific types of smell. More details
about the composite patterns are provided in Section 6. The al-
gorithms (scripts) that implement the heuristics and classify the
composites are available in the replication package [38].

Phase 5: Systematic Validation of Composite Patterns. To
increase the reliability of our results, we conducted a systematic
manual validation of a random sample of composites. First, we se-
lected 130 composites associated with the introduction and removal
of Feature Envy and God Class. We focused on these smells since
they are the ones with the most complex composites (Section 6).
Then, we randomly divided the composites among 4 researchers.
For each composite, the researcher conducted the following steps.

(1) Select the GitHub project where the composite happened;
(2) Identify the commits where the composite occur;
(3) Validate the refactorings and the smells in the elements;
(4) Confirm if the composite is a creational or removal pattern;
(a) If yes: confirm if the composite explicitly introduced/re-

moved the smell or if it is at least associated with the smell
introduction/removal.

(b) If no: verify if the composite is an incomplete one, i.e., if
one or more refactorings in the removal pattern would
have removed the smell.

(5) Analyze the commit messages to find the developer’s inten-
tion when performing the composite.

We validated 40 creational patterns, 43 removal patterns and
47 incomplete composites. We will use the validated composites
to exemplify our discussions. In these cases, we will identify the
composite by the “#” symbol followed by its id, e.g., composite
#21517). Our replication package contains all the validated instances
and the detailed steps and information to validate them.

5 COMPOSITES: OCCURRENCE AND EFFECT
We identified 27,911 composites in our dataset. We present their
characteristics (Section 5.1) and smell effects (Section 5.2).

5.1 Synthesized Composites
5.1.1 Quantity and Size. This section addresses our RQ1. Table
1 shows, for each heuristic (1𝑠𝑡𝑐𝑜𝑙𝑢𝑚𝑛), the quantity (2𝑛𝑑𝑐𝑜𝑙𝑢𝑚𝑛)
and size of composites.

Providing a broader view on the composites. In Section 3.2,
we discussed the element-based heuristic proposed by Bibiano et
al. [7]. We mentioned that there were several elements affected
by the refactorings that they were probably ignoring. Indeed, the
number of refactored elements in the element-based composites
is lower when compared to the other categories of composites

Table 1: Quantity and size of composites by heuristic

Heur. №
Comp.

Ref. in
Comp.

Size Std.
Dev.

Grubbs
Test

№
Elem.Min Med. Max Avg

Element 12,636 28,394
(54%) 2 2 333 3.9 6.6 49.89538 4,579

Commit 11,545 47,218
(91%) 2 3 2,562 8.0 44.4 57.76980 51,472

Range 3,730 28,883
(55%) 2 2 2,556 7.7 62.2 41.09278 18,132

(last column in the Table 1). When we compare the average size
of element-based composites with the commit-based and range-
based composites (7𝑡ℎ𝑐𝑜𝑙𝑢𝑚𝑛), we notice a huge difference in the
number of refactorings in each category of composite. Comparing
the number of elements with the average size, we notice that the
commit-based and range-based composites are fragmented in the
element-based composites. This result shows how the element-
based heuristic only provides a partial view of the composites. The
analysis of refactored elements leads to our first finding:

Finding 1: Commit-based and range-based heuristics allow
a broader assessment on the interrelation among refactored
code elements.

Capturing complex composites. We also observed that our
heuristics are helpful to find complex composites. A composite is
considered complex when it is composed of a high number of refac-
torings, usually affectingmultiple code elements.Whenwe consider
the average of refactorings in a composite (7𝑡ℎ𝑐𝑜𝑙𝑢𝑚𝑛), it becomes
clear that the size of commit-based (8.0) and range-based (7.7) com-
posites is near twice the size of element-based composites (3.9). This
comparison shows that the number of interrelated refactorings (in
commit-based or range-based composites) is much larger than any
occurrence in the context of a single element. We also have found
that 1,545 (41%) out of 3,761 composites of range-based heuristic,
and 5,793 (50%) out of 11,659 composites of commit-based heuristic
have 3 to 20 interrelated refactorings in conjunction. Therefore,
studies that investigated only single refactorings or only refactor-
ings affecting an element [6, 8, 11–13, 15, 16, 42, 52] are not able to
identify complex composites. Thus, they are oversimplifying the
study on refactoring. This result leads us to our next finding:

Finding 2: There is a non-ignorable frequency of complex
composites that most empirical studies missed.

Most refactorings are interrelated.After applying the heuris-
tics, a given refactoring will be either classified as a single refac-
toring or interrelated with others in a composite. In this vein, the
3𝑟𝑑𝑐𝑜𝑙𝑢𝑚𝑛 of Table 1 presents the quantity of interrelated refac-
torings. As expected, the commit-based heuristic was the one that
grouped the highest number of interrelated refactorings. The heuris-
tic synthesized 11,545 composites, totaling 47,218 interrelated refac-
torings, which represents 91% of the total of refactorings in our
dataset. This result indicates that refactoring composites are much
more complex. Previous empirical studies [11, 32] reported that
Extract Method and Rename Method are the commonest refactoring
types applied by developers. These studies may give the simplistic
impression that developers tend to most commonly apply single
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refactorings with a very strict scope, i.e., refactorings that affect
one or two methods of a single class. However, this is not the case.

Even though Extract and Rename Method are the most com-
mon refactoring types, they are most often interrelated with other
refactorings and they tend to be complex. For example, when we
manually validated the 130 composite instances, we found that
when these two refactoring types are applied, they are frequently
part of a much more complex transformation that goes beyond the
scope of a single method or class. For instance, when developers
had the intention to improve the source code, all the refactorings
were associated to the same task: code improvement (e.g., compos-
ites #22691 and #227031). This is even clearer for the commit-based
composites. Since most of the refactorings occur within a commit
(91%), the refactorings are associated with the task’s commit.

Finding 3: Refactoring composites are much more complex
than what existing empirical studies suggest.

Semantic relation among refactorings.Whenwe analyze the
commit-based composites, only 9% of the refactorings do not belong
to a composite. This result indicates that 91% of the refactorings
are interrelated. Thus, either these refactorings are part of range-
based composites (55%) or they occur in elements that are not
structurally related to each other. This result indicates that when
developers are working on a task, there are several refactorings
that are not syntactically related to each other. As the refactorings
in the commit-based composites are not syntactically related, we
investigated if they had any relation. We found that several of
these refactorings are semantically associated with the task that the
developer is addressing in the commit. For example, several of the
refactorings were applied to remove smells in different elements.
These refactorings were not structurally related to each other, but
they were semantically related to each since they aimed to remove
smells (Section 5.2). Notice that if one analyzes only the range-based
composite, s/he would not be able to identify the semantic relation
between the refactorings. This result leads us to our next finding:

Finding 4: Several commit-based composites contain refac-
torings that are semantically related to each other.

This finding may jeopardize most refactoring recommendation
systems [17, 23, 30, 34, 36, 37]. These systems tend to consider only
the structurally related refactorings to learn how to recommend
refactorings. However, they do not explore the semantic relation
among refactorings. Only considering structurally related refactor-
ings may not suffice to provide recommendations for developers.

In our dataset, we also found extremely large composites, as
presented in Table 1. However, we consider these composites as
being outliers, since they are extremely rare. For the commit-based
heuristic, for example, 87% of the composites are composed by 10
or less refactorings. On the other hand, only 0.004% of the commit-
based composites have more than 100 refactorings. Thus, to confirm
that large composites are outliers, we applied the Grubbs test for one
outlier. Table 1 shows the Grubbs score in the penultimate column.
The test is calculated as the highest size minus mean, divided by
standard deviation. We observed p-values smaller than 0.00001 for
all heuristics. This means that we can accept the hypothesis that
1These composites are available in our replication package [38]

the highest sizes of all heuristics are outliers. In our replication
package [38], we have a manual analysis about these outliers.

5.1.2 Heterogeneity and Timespan of Composites. Table 2 presents
the results about the timespan and uniformity of composites.

Table 2: Timespan and uniformity characteristics

Timespan Uniformity

Heur. Single-Commit Cross-Commit Homoge. Heteroge.

Element 9,094 (72.0%) 3,542 (28.0%) 11,107 (87.9%) 1,529 (12.1%)
Commit 11,545 (100.0%) 0 (0.0%) 6,484 (56.0%) 5,061 (44.0%)
Range 3,486 (93.5%) 244 (6.5%) 2,875 (77.0%) 855 (23.0%)

Most composites are single-commit. Different from our ex-
pectation, Table 2 shows that most composites are single-commit.
This occurs even in the case of the range-based composites, where
there is the possibility of having a larger composite scope. We were
expecting that developers could start a composite in a commit and
finish it in the following commits. However, out results show that
developers tend to limit the composites to a single commit. This sug-
gests that they intend to perform all refactorings at once, without
splitting the task into multiple commits.

Most composites are homogeneous. Regarding uniformity,
Table 2 shows that most composites are homogeneous, i.e., they
have the same refactoring type. We were not expecting this result.
Fowler [14] in his book presents a catalog of multiple refactorings
that can be applied to remove some smells. Hence, we assumed
that developers would apply heterogeneous composites in practice.
However, our assumption does not hold in practice. Regardless the
heuristics, most composites are homogeneous. The highest inci-
dence of heterogeneous composites are from the commit-based
composites, which can be explained due to the semantic relation
among refactorings. As discussed, any refactoring performed in a
given commit can be semantically related to the same task, even if
these refactorings are applied in structurally unrelated elements.
The result about uniformity indicates that developers frequently ap-
ply the same refactoring type when restructuring related elements.
After analyzing the uniformity and timespan characteristics, our
results lead us to our next finding:

Finding 5: Even though homogeneous and single-commit
composites are more frequent than their counterparts, het-
erogeneous and cross-commits composites occur with a non-
ignorable frequency, which should not be overlooked.

5.2 Effect of Composites on Code Smells
To answerRQ2, we classified the composites as positive, negative or
neutral according to their effect on the incidence of smells. Table 3
shows the classification for each heuristic.

Table 3: Composite classification by heuristic

Heuristic Positive Neutral Negative

Element-based 751 (6.0%) 11,264 (89.1%) 621 (4.9%)
Commit-based 1,653 (14.3%) 6,019 (52.1%) 3,873 (33.6%)
Range-based 542 (14.5%) 2,020 (54.2%) 1,168 (31.3%)
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Several positive and negative composites. We can notice in
Table 3 that the frequency of positive, negative and neutral compos-
ites differs between the element-based heuristic and the commit-
based and range-based heuristics. First, Bibiano et al. found similar
values for the element-based heuristic. However, if we analyze only
from the perspective of element-based heuristic, we will conclude
that the frequency of positive and negative composites is almost
negligible. However, this conclusion is not correct. The other heuris-
tics show that the positive and negative composites are almost as
frequent as neutral composites. In fact, the frequency of positive,
negative and neutral composites is higher than the results reported
in the literature [6, 7, 11]. As discussed, the scope of some refactor-
ing types goes beyond a single element. However, the element-based
heuristic only consider the scope of a single element. Thus, this
heuristic is not entirely appropriate to investigate refactorings that
crosscut elements. This limitation compromises the study of Bib-
iano et al. [7]. In their study, the effect of several refactorings out
of the composite scope is mistakenly ignored. Thus, they provide a
partial view of composites, which, in the worst scenario, can be an
erroneous view. This result leads to our next finding:

Finding 6: Effects of composites often can only be observed
through the reasoning of refactoring’s relations in the scope
of a range or a commit.

Negative composites are most likely than positive ones.
We had an increase in the number of positive composites when we
compare the element-based composites with the other categories.
As discussed in Finding 4 (Section 5.1.1), several refactorings are not
syntactically related to each other but are semantically related. This
scenario occurred, for instance, when developers had the task of
removing Duplicate Code smell scattered over different parts of the
system. We found several instances of the following commit-based
composite 𝑐𝑟1 = {Extract Superclass, Rename Method} to remove
this smell. The developer applied the Extract Superclass to create a
superclass for the classes with the smell. Then, s/he renamed the
method in the superclass to be consistent with the functionality pro-
vided. We found a case that a system had three different unrelated
instances of Duplicate Code in the same commit. For each instance,
the developer applied the composite 𝑐𝑟1. Despite the increase in
positive composites, developers are most likely to introduce smells,
as shown in Table 3. This result leads to the next finding:

Finding 7: Even though most composites are neutral, a non-
ignorable frequency of composites introduce smells.

Effect of the composite on the smell type. We relied on the
classification of each composite to investigate its influence on the
incidence of smells (Section 4.1). We found a case in which the
developer applied a composite to a class that had two smells: Feature
Envy and Message Chain. After the composite has been applied,
we noticed that the developer removed the Message Chain, but
s/he introduced a God Class. In this case, our classification scheme
would classify the composite as neutral. However, a God Class
would be often considered worse than a Message Chain. Hence, it
would not be fair to label the composite as neutral. Considering
the “criticality” of the smell, this composite is more likely to be
considered negative because the structure is worse than before. To

mitigate the risk of misclassifying neutral composites, we verified
in our datset the smells presented before and after each neutral
composite. We observed only 30 cases, in a set that contains 27,911
composites, in which a smell was replaced by other from a different
type. This investigation leads to our next finding:

Finding 8: The refactorings in neutral composites very often
do not replace a smell type for another type.

6 COMPOSITE-SMELL PATTERNS
To address RQ3, we analyzed removal and creational patterns
emerging from the relationship between range-based composites
and smells (Section 4.1). We focus on discussing here the patterns of
range-based composites that affect Feature Envy and God Class. We
discuss these smells because they are usually associated with the
system structural degradation [1, 26, 50]. Patterns for the other nine
smells are available in our replication package as well as patterns
for the other categories of composites [38]. We manually inspected
several instances of the patterns to understand what happened. In
particular, we also confirmed whether the composites were directly
related to the removal or introduction of the smell. After this analy-
sis, we ended up identifying a total of 111 composite-smell patterns:
84 removal patterns and 27 creational patterns.

6.1 Feature Envy
Feature Envy is a code smell that represents a method much more
interested in the data of a class other than the one it is actually
declared [14]. This smell is the most frequent one in our dataset.
Figure 2 presents all 13 composite types related to Feature Envy.
Green boxes represent the removal patterns; they appear in the
right side of Figure 2. The red ones, in the left side, represent the
creational patterns. The content of each box represents the type of
composite involved in the pattern. There is a caveat regarding the
repetition structure: the {𝑛} symbol indicates the refactoring type
was observed more than once in the composite structure.

The arrow weight indicates the frequency of a pattern with: (i) a
removal behavior if the arrow is pointing to a green box, and (ii)
creational behavior if the arrow is departing from a red box. For
instance, the top-right green box indicates that in 77% of the times
a composite with more than one Inline Method followed by more
than one Extract Method removes one instance of Feature Envy.
The same rationale is used to interpret the creational patterns.

We discussed in Section 5.1.1 that Extract Method is one of the
most common refactorings and it is most often interrelated with
other refactorings. Indeed, Figure 2 shows that all patterns have
by, at least, one Extract Method (EM). Neither the discussion about
Extract Method in Section 5.1.1, nor the identification of compos-
ite patterns would be possible if (i) we had only analyzed single
refactorings or (ii) used the element-based heuristic.

Incomplete composites. We noticed cases of composites con-
sistently introducing Feature Envies in 31 projects. Composites
with Move Attribute, Extract Method introduced Feature Envies in
more than 60% of the cases as shown in Figure 2. These creational
patterns indicate that the composites are “incomplete”, which con-
tributed to the introduction (rather than the removal) of the Feature
Envy. An incomplete composite occurs when a set of refactorings
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Figure 2: Feature Envy patterns

affect the smelly structure, but are not sufficient to fully remove
a smell. In certain cases, it may even worsen the smelly structure.
For instance, the developers moved attributes in the three first
creational patterns in Figure 2; however, they did not move the cor-
responding extracted methods to fully remove the envy structures.
Consequently, the “unmoved methods” became more interested in
the classes to which the attributes were moved. Thus, these com-
posites led to the introduction of the Feature Envy because they
were incomplete; i.e., a Move Method should also be part of such
composites. Examples falling into this scenario include composites
#22092, #22156 and #22419.

This type of scenario reinforces our discussion about the high
number of negative composites (Finding 7 ). As we discussed in
Section 5.2, our heuristics show that several composites are nega-
tive. This increase in the number of negative impacts is related to
the incomplete composites. We found that developers are trying
to improve the program structure during the refactoring process
but, for different reasons, they are not necessarily completing the
restructuring process to fully remove the smelly structure. As a
consequence, incomplete composites lead to the introduction of
smells, such as the Feature Envy. These incomplete composites
were also observed on patterns for the other smell types.

Finding 9: Developers tend to introduce smells, such as Fea-
ture Envies, due to incomplete composites.

Avoiding misleading results. As discussed, Bibiano et al. [7]
do not provide a broader understanding of the effect of composites
on smells, which can lead to misleading results. The same occurs
with studies that only focus on single refactorings [6, 11]. For exam-
ple, Bavota et al. [6] did not find any relation between specific smells
(e.g., Feature Envy) and specific refactorings (e.g., EM). To illustrate
how these studies are not able to either provide a broader view or
find relation between refactorings and smells, let us consider the
EM refactoring since it occurs in all the patterns associated with
the Feature Envy (Figure 2).We applied the Fisher’s Exact Test to
investigate the relation between EM and Feature Envy (Table 4). For
each heuristic (1𝑠𝑡𝑐𝑜𝑙𝑢𝑚𝑛), we present the number of composites
containing EM that removed and introduced Feature Envies, 2𝑛𝑑

and 3𝑟𝑑 columns respectively. The 4𝑡ℎ and 5𝑡ℎ columns show the

same information for composites without EM. The last two columns
show the p-value and odds ratio (OR) for the Fisher’s Exact Test.

Table 4: Fisher’s test results for Feature Envy patterns

Heuristic Positive
With EM

Negative
With EM

Positive
Without EM

Negative
Without EM p-value OR

Element 496 86 0 0 1 0
Commit 15,632 2,013 31,398 39,000 <0.000001 9.64
Range 360 110 25 0 0.002338 0

We ran the test with 95% of confidence, which means that we
can reject the null hypothesis (H0) when the p-value is smaller
than 0.05. In our case, the H0 is that the introduction or removal of
Feature Envies by composites is independent of the presence of EM.
Given the p-values, only in the case of the element-based heuristic
that we cannot reject H0. Therefore, the element-based composites
mislead us to believe that composites without EM will never re-
move or introduce Feature Envies. However, the results of the other
heuristisc show the opposite, especially in the case of commit-based
composites. Thus, our heuristics were able to reveal that EM often
“partially” contributes to the removal (and introduction) of Feature
Envy, when performed with other refactorings (composites). In
summary, only analyzing element-based composites [7] or single
composites [6, 11] does not provide a broader understanding of
composite, or, in the worst-case scenario, it can lead to an erroneous
result. This discussion reinforces Finding 1 (Section 5.1.1).

6.2 God Class
Our second set of composite-smell patterns concerns the God Class.
This smell exists when a class accumulates several responsibilities
[14]. We found out that this smell is more frequent than one might
expect. We found 425 distinct instances of God Class distributed
into 26 projects. Figure 3 presents all the 12 patterns.
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Figure 3: God Class patterns

Palomba et al. showed that when developers implement new
features, they often apply complex refactorings to improve the code
cohesion [39]. Our results provide a new perspective regarding
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this scenario. We found that developers tend to decrease the code
cohesion when interleaving refactorings with additional changes.
For example, when developers apply composites of RenameMethods
and Extract Methods, they tend to introduce God Class, as show
in Figure 3. At first sight, this pattern is not intuitive. Developers
are not expected to increase the size of classes while performing
Rename and Extract Methods. We analyzed these composites to
understand why they led to the God Class.

Inappropriate additional changes. We found that this cre-
ational pattern exists when developers interleave refactoring with
additional changes and if they are not performed in conjunction
with other refactorings (e.g., composites #21517 and #20932). The
additional changes comprise the creation of new methods (Extract
Methods), which are, unfortunately, implementing unrelated func-
tionalities. As a consequence of these additions in the extracted
methods, developers have to change the methods’ name to express
the new functionalities (Rename Methods). As new functionalities
are introduced, the class cohesion decreases, which leads to the
appearance of a God Class. The composites with Rename Methods
and Extract Methods were not the main reason for the introduction
of the God Class. Still, a recommender system can use this pattern
to improve their refactoring recommendation. For example, if a de-
veloper is introducing non-structural changes along with Rename
Methods and Extract Methods, the system can alert the developer
that s/he may introduce a structural problem.

Moving data to remove the God Class. We identified 11 re-
moval patterns associatedwith the God Class. This result shows that
developers often apply a wide range of non-trivial composites to
remove the smell across software project. For example, as discussed
in the previous paragraphs, the God Class was introduced when
the composites of Rename Methods and Extract Methods occurred
with additional changes. We found that these changes introduced
pieces of code that should not be in the classes, contributing to the
God Class. Later on, developers had to apply several refactorings
to move these pieces of code to the classes that suit them better,
removing the God Class. This behavior of applying refactorings
that move data is reflected in the removal patterns. All the removal
patterns had refactorings that moved data between classes, except
for Inline Method and Extract Method. This scenario is another ex-
ample of why an element-based heuristic fails to show the effect
of composites on smells. To remove God Class, developers apply
refactorings that affect multiple elements, such as the classes to
which the data is moved. However, if we analyze only the scope of
a single element, we would not be able to notice that composites
moving data play a central role in the addition and removal of God
Classes. This behavior leads us to our next finding:

Finding 10: The range-based heuristic detects how data is
moved among classes to either introduce or remove God Class.

Providing knowledge based on practice. Although some pat-
terns emerge in the element-based heuristic, they only provide a
partial view of composite effects. Several of the composite patterns
reported here and in the replication package can only be identified
with range-based and commit-based heuristics. Even Fowler’s cat-
alog [14], which lists common composites to remove smells, does
not report our patterns. For example, Fowler’s catalog indicates

that developers should apply Extract Class or Extract Subclass to
remove a God Class. However, we noticed that developers much
more often follow other strategies regarding the refactoring types:
Inline Method, Extract Method, Pull Up Method and Attribute, and
Move Method. Thus, our results suggest that existing refactoring
catalogs [14] may not reflect the practice. We also observed that
existing recommenders for code smell removal do not recommend
these patterns [30, 36, 46]. They should refine their recommenda-
tions with our smell-removal composite patterns.

7 THREATS TO VALIDITY
To apply the heuristics, we had to identify the refactorings that
occurred in each system. For this identification, we relied on the
Refactoring Miner [47]. Thus, there is a threat associated with
the false positives generated by the tool. To minimize this threat,
we conducted a manual validation for each refactoring type ( Sec-
tion 4.2). We observed a high precision for each refactoring type.

Some findings are centered around the difference among positive,
negative and neutral composites. However, if our classification
procedure is somewhat inaccurate in identifying them, thenwe have
a major threat to the validity of our data. In order to mitigate that,
we studied all the cases where the classification procedure could
be inaccurate (Section 5.2). We found a risk of the classification
scheme being wrong on 0.01% of the cases. In this way, this risk
was mitigated by the data disposition.

We also presented several patterns where range-based compos-
ites removed or introduced smells. We computed them by verifying
how often they happen in the analyzed projects, so they might
suffer from lack of generality. To avoid this threat, we only reported
those patterns that happened in more than 50% of the instances in
our dataset. Additionally, to make sure these patterns happened in
all three types of composites, we verified the intersection of the
element-based, commit-based and range-based heuristics. We found
that 16 (out of 27) creational pattern and 80 (out of 84) removal
patterns were found by all heuristics.

8 CONCLUSION
Composite refactoring is common in practice, but a wide empirical
knowledge about it is scarce. To tackle this issue, we conducted
a study with two purposes. First, we provided a conceptual char-
acterization of composites and defined two heuristics to identify
composites in different categories. Second, our study aimed to un-
derstand how composites manifest in practice, and how they affect
the program structure. Our results show that to study composite
refactoring we need indeed to rely on different heuristics: they are
complementary to each other, but most empirical studies tend to use
only a single heuristic (Section 2). For example, the identification of
the semantically-related refactorings was only possible using the
commit-based and range-based heuristics together. Similarly, the
identification of several composite-smell patterns were only possi-
ble with the range-based heuristic. Thus, studies that investigate
only a single composite perspective fall short in providing a full
understanding of temporal and spatial refactoring effects.

Our results can be useful both for researchers and practitioners.
In particular, our study helped to explain conflicting results in the
literature. For instance, different studies (e.g., [6] and [7]) have come
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to different conclusions regarding the relation of refactoring types
with specific code smells. Thus, we provided new evidence that
there are composite patterns strongly related to the introduction
or removal of specific code smells (which explain the divergence in
their results). On the practical side, we contributed with insights
and a set of composite-smell patterns that are useful for improving
existing refactoring detection tools or recommender systems.
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