A Graph-based Approach to API Usage Adaptation

Hoan Anh Nguyen,'®
Miryung Kim,?¢

Tung Thanh Nguyen,!

Gary Wilson Jr.,2¢ Anh Tuan Nguyen,'?

Tien N. Nguyen'/

Iowa State University! and The University of Texas at Austin?
{hoan?,tung®,anhnt? tienf } @iastate.edu, gwilson@austin.utexas.edu®, miryung@ece.utexas.edu®

Abstract

Reusing existing library components is essential for re-
ducing the cost of software development and maintenance.
When library components evolve to accommodate new fea-
ture requests, to fix bugs, or to meet new standards, the
clients of software libraries often need to make correspond-
ing changes to correctly use the updated libraries. Existing
API usage adaptation techniques support simple adaptation
such as replacing the target of calls to a deprecated API,
however, cannot handle complex adaptations such as creat-
ing a new object to be passed to a different API method,
or adding an exception handling logic that surrounds the
updated API method calls.

This paper presents LIBSYNC that guides developers in
adapting API usage code by learning complex API usage
adaptation patterns from other clients that already migrated
to a new library version (and also from the API usages within
the library’s test code). LIBSYNC uses several graph-based
techniques (1) to identify changes to API declarations by
comparing two library versions, (2) to extract associated API
usage skeletons before and after library migration, and (3) to
compare the extracted API usage skeletons to recover API
usage adaptation patterns. Using the learned adaptation pat-
terns, LIBSYNC recommends the locations and edit opera-
tions for adapting API usages. The evaluation of LIBSYNC
on real-world software systems shows that it is highly cor-
rect and useful with a precision of 100% and a recall of 91%.

Categories and Subject Descriptors D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement

General Terms Algorithm, Design, Experimentation, Re-
liability

Keywords Software Evolution, API Usage Model, API
Evolution, API Usage Adaptation, Program Differencing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA/SPLASH’10, October 17-21, 2010, Reno/Tahoe, Nevada, USA.
Copyright © 2010 ACM 978-1-4503-0203-6/10/10. .. $10.00

1. Introduction

Reusing existing software components by accessing their
implementations through their Application Programming In-
terfaces (APIs) can reduce the cost of software development
and maintenance. When libraries provide their functionality
through public interfaces (e.g., types, methods, and fields in
Java), clients are expected to respect the contract assumed by
the libraries by using the correct names of the APIs, passing
the right arguments, following the intended temporal orders
of API invocations, etc.

When library components evolve to accommodate new
feature requests, to fix bugs, and to meet new standards,
changes in API declarations in libraries could cause exist-
ing clients to break. For example, when an API signature
modification requires more input parameters or a different
return type, clients need to pass additional input arguments
or to process a returned object differently.

Existing analysis techniques that can be used for adapt-
ing API usage code in client applications have the follow-
ing limitations. First, existing research techniques such as
CatchUp! [15] and MolhadoRef [11] require library main-
tainers and client application developers to use the same
development environment to record and replay refactor-
ings. Other techniques require library developers to man-
ually write expected adaptations in client code as rules [7].
Second, existing API usage modeling and extraction tech-
niques [1,12,37,39] are limited by simplified representations
such as a sequence of method calls. Thus, they cannot cap-
ture the complex control and data dependencies surrounding
the use of APIs. For example, SemDiff [8] models API us-
ages in terms of method calls, so it can support changing the
target of calls to modified APIs but cannot add the control
structure that surrounds the calls to a new replacement API.

Hypothesizing that changes to API usage caused by
the evolution of library components may involve complex
changes, we developed a set of graph-based models and al-
gorithms that can capture updates in evolving libraries and
updates in client applications associated with changes in the
libraries, and an algorithm that generalizes common edit op-
erations from a set of API usage code fragments before and
after library migration.

Our API usage code adaptation framework takes as in-
put the current version of a client application, both the old
version and the new version of a library under focus, and a
set of programs that already migrated to the new library ver-
sion. Our framework consists of four main components: (1)
an ORIGIN ANALYSIS TOOL (OAT) that maps corresponding
code elements between two versions, (2) a CLIENT API US-
AGE EXTRACTOR (CUE) that extracts API usage skeletons
from client code and the use of APIs within the library, (3) an
API USAGE ADAPTATION MINER (SAM) that automatically
infers adaptation patterns from a set of API usage skeletons
before and after the migration from the old library version to
the new library version, and (4) LiBSYNC that recommends
which API usage code needs to be adapted and how those
code fragments need to be updated by locating API usage
fragments in the client that need to be adapted and suggest-
ing edit operations required for adaptation.

OAT models a Java program as a project tree, in which
nodes represent code elements (packages, classes, interfaces,
method-headers, fields, and method-bodies). It uses a tree-
based alignment and differencing algorithm to map code
elements and detect addition, deletion, renaming, moving,
and modification of those elements.

CUE extracts the skeleton of API usage code in client sys-
tems and the test code of the APIs. We make the assump-
tion that client systems use library components by access-
ing their APIs via invocation—directly calling API meth-
ods or instantiating objects from API classes—and via in-
heritance—declaring classes in the client by subtyping API
classes. We call those two ways of using APIs as APl i-usage
(invocation) and API x-usage (extension). We also use the
term API usage to refer to both types of API usages.

In particular, CUE extends Nguyen et al.’s graph-based
object usage model (GROUM) [25] that represents both con-
trol and data dependencies among method calls and field ac-
cesses. In order to capture API usage, we extended GROUM
to explicitly note the usages of external APIs via invoca-
tion and extension by modeling the types of objects passed
to APIs as arguments and by modeling overriding and in-
heritance relationships between client methods and methods
provided by external API types. In particular, CUE repre-
sents API i-usages by an invocation-based, graph-based ob-
ject usage model, iGROUM, in which, action nodes repre-
sent method invocations, control nodes represent surround-
ing control structures, and data nodes represent use of types
provided by external libraries. The edges represent depen-
dencies between the nodes, for example, usage orders, input
and output relations. CUE represents API x-usage by another
graph-based model called xGROUM, in which each node
represents a method-header and two kinds of edges represent
overriding and inheritance relationships between a method-
header in the client and a method-header in the library.

SAM uses an approximate graph alignment and differenc-
ing algorithm to map nodes between two usage models based

on their similarity of labels and neighborhood structures, and
calculates the editing operations based on the alignment. For
example, the aligned nodes having different attributes are
considered as replaced or updated, while unaligned nodes
are considered as deleted or added. Since API usage changes
are detected as change sets of editing operations, SAM mines
the frequent subsets of such change sets using a frequent
item set mining algorithm [2] and considers them as API us-
age adaptation patterns.

LiBSYNC has a knowledge base of API usage adaptation
patterns for each library version. Given a client system and
the desired version of library to migrate to, LIBSYNC identi-
fies the locations of API usages in the client system that are
associated with changed APIs. It then matches each usage
with the best matched API usage pattern in its knowledge
base and derives the edit operations for adapting API usages.

We have conducted an empirical evaluation of LIBSYNC
on three large open-source subject systems, each uses up to
300 libraries. We have done several experiments to evaluate
the correctness and usefulness of our tool in two usage sce-
narios: (a) API usage adaptation in different locations within
a client program, and (b) adaptation in different branches of
a client program (e.g. back-porting). The evaluation shows
that OAT and CUE detect changes to API declarations and
API usages with high accuracy, and LiBSYNC provides use-
ful recommendation in most cases, even when API usage
adaptation involves complex changes to the control logic
surrounding API usages.

The key contributions of the paper include:

1. OAT, a tree-based origin analysis technique to automati-
cally identify corresponding APIs between two versions
of a library and find corresponding usage code fragments
in client systems.

2. CUE, a graph-based representation that models the con-
text of API usages by capturing control and data depen-
dencies surrounding API usages; in particular, it supports
API usages via method invocations and subtyping of the
API types provided by an external library under focus.

3. SAM, a graph alignment algorithm that identifies API us-
age changes in client applications and an API usage adap-
tation pattern mining algorithm that generalizes common
edit operations from multiple API usage skeletons before
and after migration.

4. LIBSYNC, a tool that takes as input a client system and a
given library version to be migrated to, and recommends
the locations and potential edit operations for adapting
API usage code in the client.

5. An empirical evaluation for the correctness and useful-
ness of LIBSYNC in adapting API usage code.

Section 2 presents motivating examples that require complex
API usage adaptation in client applications that are caused
by updates to libraries. Sections 3, 4, 5, and 6 detail individ-

T

| XYSeries set = new XYSeries(attribute, false,);
for (inti=0;i < data.size(); i++)
set.add(new Integer(i), (Number)data.get(i));

\ DefaultTableXYDataset dataset = new DefaultTableXYDataset(set);

| ’ dataset.addSeries(set) ‘;
‘ JFreeChart chart = ChartFactory.createXYLineChart(..., dataset,...);

|
|
|
|
|

Figure 1. API usage adaptation in JBoss caused by the
evolution of JFreeChart

ual models and algorithms that we have developed to build
LiBSYNC. Section 7 shows the empirical evaluation of LiB-
SyNc. Section 8 describes related work and Section 9 sum-
marizes this paper’s contributions.

2. Motivating Examples

JBoss [31] is a large project that has been developed more
than 6 years ago, with 47 releases. It has about 40,000 meth-
ods and uses up to 262 different libraries. Using the Subver-
sion [32] and code search functionality in Eclipse, we man-
ually scanned the version history of JBoss and the external
libraries used by JBoss. We examined more than 200 meth-
ods that changed due to the modification of external APIs
based on associated documentation, change logs, and bug re-
ports. This section presents API usage adaptation examples
that motivate our approach.

2.1 Examples of API usage via method invocations

Figure 1 illustrates an API usage adaptation example in
JBoss with respect to the use of JFreeChart library. The code
changes are represented with and deleted-code.
The changes from JBoss version 3.2.7 to 3.2.8 were due to
the modification of external APIs, XYSeries and DefaultTableXY-
Dataset, in JFreeChart from version 0.9.15 to 0.9.17. To en-
able a new auto-sorting feature, the XYSeries constructor with
two input arguments is deprecated and a new constructor
with three input arguments is provided instead. The Default-
TableXYDataset constructor that accepts XYSeries as an input is
also deprecated. The new constructor accepts a boolean input
to activate the new auto-pruning feature for data points in
DefaultTableXYDataset. It implies that the XYSeries object must be
added after the initialization of the DefaultTableXYDataset Object.
Thus, the parameter set is replaced by a value false, and a call
to DefaultTable XYDataset.addSeries is added. This example illus-
trates the following:

1. JBoss uses JFreeChart via creating objects from API
classes (e.g. XYSeries, DefaultTableXYDataset) and calling API
methods (e.g. DefaultTableXYDataset.addSeries, ChartFactory.createXY-
LineChart). Since an object instantiation is represented as a
constructor call to an external API type, we consider this
type of API usage as an usage via invocation.

2. API usage must follow specific protocols due to the
dependencies between API elements. For example, a Default-
TableXYDataset object needs to be created before any XYSeries

|
|
|

SnmpPeer peer=new SnmpPeer(this.address

’ ,this.port, this.localAddress, this.localPort ‘);

|
|

Figure 2. API usage adaptation in JBoss caused by the
evolution of OpenNMS

object could be added to the set. A chart needs to be created
with an object of Dataset.

3. As API evolves, such usage protocols could change,
requiring corresponding API usage adaptations. For exam-
ple, the calls to deprecated methods are replaced with newly
provided ones, or new method calls are added, etc. In this
example, the following edit operations occurred in the client
code: replacement (e.g. the constructor of XYSeries), addition
(e.g. DefaultTable XYDataset.addSeries), and update of input/out-
put dependencies (e.g. the object XySeries no longer imme-
diately depends on DefaultTableXYDataset.<init> but instead on
DefaultTableXYDataset.addSeries).

This example shows that existing state-of-the-art adap-
tation approaches (e.g. SemDiff [8], CatchUp [15]) could
not support the API usage adaption because they assume
that the adaptation needed in client code is simply individ-
ual method-call replacements or type declarations. They do
not consider the context of API usages, the dependencies be-
tween method calls, and the differences between the exten-
sion and invocation of API methods.

Figure 2 shows another API usage adaptation example.
From version 1.6.10 to 1.7.10, in the OpenNMS library, a
new constructor with four parameters is added for initializ-
ing SnmpPeer. Such API change requires adding a call to the
new constructor and the removal of two subsequent calls to
setter methods as in Figure 2. This adaptation from JBoss
version 3.2.5 to 3.2.6, although simple in meaning, is com-
plex in term of edit operations: it involves one constructor-
call replacement and two method-call deletions. Importantly,
all edited calls are dependent. SemDiff [8] could suggest the
replacement of the old constructor call, however, it does not
suggest the setter method-call deletions because it does not
consider the usage context when recommending adaptations.

2.2 Examples of API usage via inheritance

Figure 3 shows an API usage example via inheritance. The
API class Serializer in the org.apache.axis.encoding package pro-
vides the writeSchema method. The AttributeSerializer class in
JBoss inherits the Serializer class and overrides the writeSchema
method. When the input signature of the writeSchema is
changed by requiring a Class type argument and returning Ele-
ment instead of boolean, the signature of the overriding method
needs to be updated accordingly to properly override the
writeSchema method.

Figure 4 shows another example. Class C'=EJBProvider in
JBoss inherits the class with the same name A=EJBProvider in

Change in Apache Axis API

Change in Apache Axis API

|
|

package org.apache.axis.encoding;
class Serializer ...{

public abstract beelean writeSchema(Types t)...

package org.apache.axis.providers.java;
class EJBProvider ... {

| protected Object getNewServieeObjeet| makeNewServiceObject ‘ (.r)

Change in JBoss

Change in JBoss

|
|

package org.jboss.net.jmx.adaptor;
class AttributeSerializer extends Serializer {

public boetean writeSchema(Types types)...

class ObjectNameSerializer extends Serializer {

public beotean writeSchema(Types types)...

Figure 3. API usage adaptation in JBoss caused by the
evolution of Axis

the Apache Axis library. The method method m=getNewService-

Object of A was renamed into makeNewServiceObject. Thus, its
overriding method C.m is also renamed accordingly.

2.3 Observations

We make the following observations based on API usage
adaptation examples. First, in object-oriented programming
(OOP), there are two common ways to use the API func-
tionality (1) via method invocation, i.e. directly calling to
API methods or creating objects of API classes; and (2) via
inheritance, i.e. declaring classes in client code that inherit
from the API classes and override their methods. Second,
to use APIs correctly, client code must follow specific or-
der of method calls or override certain methods. Thus, API
usage model and API usage adaptation model must capture
complex context surrounding API usages: (1) data and order-
ing dependencies among API usages, (2) control structures
around API usages, and (3) the interaction among multiple
objects of different types.

Those observations imply the necessity of a recommen-
dation tool that helps developers in API usage adaptation to
cope with evolving libraries. The tool should provide rec-
ommendations regarding where and how to do API usage
adaptation. That is, given a client program using libraries
and the changes to external API declarations, the tool should
identify the locations to update and suggest adaptations.

3. Origin Analysis Tool (OAT)

This section discusses the origin analysis technique we have
developed to map corresponding code elements (packages,
classes, and methods) between two program versions. This
technique is used for two different purposes: to identify
modification to API declarations between two versions of a
library and to map corresponding API usage code fragments
between two versions of a client. This origin analysis works
at or above the level of method-headers since API usages
via both invocation and inheritance only refer to classes

package org.jboss.net.axis.server;
class EJBProvider extends org.apache.axis.providers.java.EJBProvider {

| protected Objectge{NewSefvieeijeet’ makeNewServiceObject ‘ (.r)

Figure 4. API usage adaptation in JBoss caused by the
evolution of Axis

and methods. OAT views a program P (either a library or
client) as a project tree T'(P), where each node represents
a package, class, interface, or method. Each node has the
following set of attributes:

e Declaration (declare(u)): For a package node, it is a fully
qualified name. For a class node, it is a simple name fol-
lowed by the names of the classes and interfaces that the
node extends or implements. For a method node, it is a
simple name, a list of parameter types, all modifiers, a
set of exceptions, a return type, and associated annota-
tions such as deprecated.

e Parent (parent(u)): It refers a node’s container element.

e Content (content(u)): It represents a set of descendant
nodes. For a method node, it represents the body of the
method. When the source code is available, it represents
the abstract syntax tree of the method body. Otherwise, it
represents a sequence of byte code instructions extracted
from a jar file.

For a client system P, OAT views each used library L as
a sub-system, and represents L as a project tree T'(L). Thus,
each client program is represented as a forest of several
project trees. Figure 8 shows an example of a project tree
of org.apache.axis.providers. Due to space limit, we show only a
subset of methods of EJBProvider with some of their attributes:
name, parameter types, and visibility (red square for private,
yellow rthombus for protected and green circle for public).

Section 3.1 describes the types of transformations that
OAT supports, Section 3.2 describes similarity measures that
were used to derive one-to-one mapping between tree nodes,
and Section 3.3 describes our tree alignment algorithm that
maps tree nodes and derives the tree transformations from
the alignment result.

3.1 Transformation Types

Suppose that two versions P; and P; of a program P are
represented as two trees T'(P;) and T'(P;). The changes
between 2 versions are represented as the following types of
transformations from one tree to another: add(u), delete(u),

move(u)—changes to the location of node u, and update(u)-
changes to u’s attributes. An updated node could also be
moved. For a class, an update can be performed on its name,
its superclass, or its interfaces. For a method, the update can
be change to its name, return type, visibility modifiers, or
input signature. Those types of transformations are derived
from an alignment result by considering unmapped nodes as
added or deleted, and mapped nodes as moved or updated.

Figure 8 shows an example of changes found in the Axis
library. Neither packages nor classes were deleted or added.
Under the EJBProvider class, its method getContext was added, its
method getNewServiceObject was renamed to makeNewServiceOb-
ject, the input signature of its methods getServiceClass and getE-
JBHome was changed to take an additional SOAP type argu-
ment, and its method getStroption changed its visibility from
private tO protected.

3.2 Similarity Measures

The similarity score between two nodes is computed by sum-
ming up their declaration attribute similarity, sg, and their
content attribute similarity s., which are defined differently
for each type of nodes.

Method Level Similarity. s, is computed based on weighted
sum of textual similarities of return types, method names,
and a list of parameter types:

sa(u,u’) = 0.25* strSim(returntype, returntype’)

+ 0.5 * seqSim(name, name’)

+ 0.25 * seqSim(parameters, parameters’)
in which seqSim computes the similarity between two word
sequences using the longest common subsequence algorithm
[16], and strSim computes a token-level similarity between
two strings by using an idea from our prior work (Kim et
al. [18]’s API matching). For example, given the two meth-
ods, getNewServiceObject(Context,String) and makeNewServiceObiject(-
SOAP,Context,String), Sg 1S 0.875.

sa(u,u’) =0.25 * strSim(Object,Object)

+ .5 * seqSim(getNewServiceObject,makeNewServiceObject)

+ .25 * seqSim/([Context,String],[Context,String])

=0.25* (1/1) + 0.5 * (3/4) + 0.25 * (2/2) = 0.875

If the content is represented as an AST, s, is computed by
extracting a characteristic vector v(u) from a method u using
our prior work Exas [24]. Exas is a method to approximate
the structural information of labeled trees and graphs by vec-
tors and to measure the similarity of such trees and graphs
via vector distance. If the content consists of byte code in-
structions, its characteristic vector v(u) is an occurrence-
counting vector of all the opcodes. Then, the similarity be-
tween 2 methods u and v is computed as follows:

2 x ||Common(v(u),v(u'))||1
lo(w)[lx +[lv(w)[h

se(u,u’) =

in which v(u) a vector representation of the method content,
and Common(V, V") is defined as Common(u,v)[i] =
min(uli], v[i]). This formula is the ratio of the common part
over their average size to measure the similarity.

Class and Package Level Similarity. The declaration simi-
larity sq is defined similarly to that for methods. The content
similarity s, is computed based on how many of their chil-
dren can be mapped.

(€, C) = 2 x |MaxMatch(content(C), content(C"), sim)|
el - |content(C)| + |content(C")|

The M ax M atch function takes two sets of entities C' and
C’ and returns a set of pairs such that sim(u,u’) is greater
than a chosen threshold and there exists no ' such that
sim(u,u”) > sim(u,u).

3.3 Mapping Algorithm

OAT takes two project trees as input, aligns them, and com-
putes the transformations from one tree to another. It maps
nodes in a top-down order, mapping parent nodes before
their children. When method m is class C’s child and C” is
mapped to C, we first try to map m to C”’s child. If a match
is not found, we assume that m is moved to another class.
We adopted this strategy from UMLDIff [41] to reduce the
number of candidate matches that need to be examined.

At any time, each node is placed in one of three sets:
(1) AM, it is already mapped to another node, (2) PM, its
parent node is mapped but it is not mapped to any node, and
(3) UM, the node and its parent are not mapped. OAT maps
nodes in U M first and the children of mapped ones are put in
P M for further consideration. For example, when a package
is mapped, its sub-packages are put in PM. The mapped
ones are moved to AM, and the remaining ones that were
not mapped to their parent’s children are put back to UM
for later processing.

When there are a large number of unmapped nodes, a
pairwise comparison of all nodes in UM would be ineffi-
cient. To overcome this problem, OAT uses the following
hash-based optimizations: OAT first hashes the nodes in U M
by their name and only compares the nodes with the same
name to find the mapped nodes in U M. For the remaining
nodes in U M, it then hashes those nodes in each set by their
structural characteristic vectors using the Locality Sensitive
Hashing scheme (LSH) [4]. This LSH-based filtering helps
OAT divide the remaining nodes in U M into the subsets with
the same hashcode, and apply the Maxz M atch function on
the nodes in each subset.

The characteristic vector of a class is summed-up from
the normalized vectors of their methods. We normalize
methods’ vectors to have the same length of 1 before sum-
ming them up to build the vector of the containing class to
avoid the problem of unbalanced sizes between those meth-
ods. However, in other cases for comparing methods, their
corresponding vectors will not be normalized.

When mapping method nodes in U M, in addition to sub-
dividing the nodes using their hash values, we also use sq4 to
quickly identify methods with a similar declaration. Figure 6
summarizes our origin analysis algorithm.

—

— O 0 00 NN N AW =

function MaxMatch(C, C’, sim) // find maximum weighted match
L=10
for (u,u’) € C x C'
if(sim(u,u’) > 8)
L=LU(u,u)
sortDescendingly(L)
while(L # ()
(u,u) = L.top()
M= MU (u,u’)
for (v,v') : (v,u') €LV (u,v') € L
L.remove((v,v"))

Figure 5. Greedy Matching Algorithm

Figure 8 illustrates a matching process between two
project trees. Two package nodes org.apache.axis.providers.java
and org.apache.axis.providers.java are mapped first, and OAT then
maps their class nodes. When EJBProvider classes are mapped,
OAT maps their method nodes such as getNewService and mak-
eNewService based on their declaration and content similarity.

4. Client API Usage Extractor (CUE)

This section describes CUE, a client API usage extractor.
Section 4.1 presents the model and extraction algorithm for
API usages via invocation. Section 4.2 presents the model
and extraction algorithm for API usages via inheritance.

4.1 API Usage via Invocation

This section presents our graph-based representation for API
usages via invocation and the corresponding extraction.

4.1.1 i-Usage Model

An API provides the functionality via its elements. Those el-
ements provide the computation (via methods) or the storage
of data (via objects). To use a function provided by an API,
a client could call the computational elements (e.g. invoking
a method) or process the data elements (e.g. initializing an
object, using it as an input/output parameter). When multi-
ple API methods/objects are used, the relations, e.g. the or-
ders and dependencies, among those elements are important
because they must follow the intended API usage specifica-
tions. Such usages are often related to the control structures
(e.g. if, while) due to the branching or repetition of the compu-
tation and data processing.

CUE represents the API i-usages in clients via a graph-
based model called iGROUM (invocation-based, GRaph-
based Object Usage Model). In general, each usage is repre-
sented by a labeled, directed, acyclic graph, in which, the us-
ages of API elements are represented as nodes, while the de-
pendencies are modeled by edges. An action node represents
a method invocation (i.e. a usage of an API computation el-
ement). A data node represents an object (i.e. a usage of an
API data element). The label of each node is the fully qual-

eI e R S N R R

10
11
12
13
14
15
16
17
18
19

21
22
23

25
26

28
29

function Map(T, T") // find mapped nodes and change operations

UM .addAI(T, T")

for packages p € T, p' € T' // map on exact location
if location of u and v’ is identical then Map(p, p’)

for packagesp € TNUM, p' € T' N UM // unmapped pkgs
if Sim(p,p’) > & then SetMap(p, p’) // map on similarity

for each mapped pairs of packages (p,p’) € M
MapSets(Children(p), Children(p’))) // map parent—mapped

classes

for classes C €e TNUM, C' € T' N UM // unmapped classes
if (C and C’ are in a text—based/LSH—based filtered subset
and sim(C,C") > §) then SetMap(C, C") // map on similarity

for each mapped pairs of classes (C,C') € M
MapSets(Children(C'), Children(C"))) // parent—mapped meths

for methods m € TNUM, m’ € T' N UM // unmapped meths
if (m and m’ are in a text—based or LSH—based filtered subset
and sim(m, m') > § and dsim(m,m’) > u then

SetMap(m, m’) // map on similarity
Op = ChangeOperation(M)
return M, Op

function SetMap(u, u") // map two nodes
M .add((u, u'))
U M .remove(u, u')
P M .add(content(u), content(w))

function MapSets(S, S") #/ map two sets of nodes
M2 = MaxMatch(S, S’, sim) // use greedy matching
for each (u,u’) € M2
SetMap(u, u’)

Figure 6. Tree-based Origin Analysis Algorithm

ified name and the signature of the corresponding method
or class. An edge from an action node to another node repre-
sents the control and data dependencies. An edge from a data
node to an action node shows that the corresponding object
is used as an input of the corresponding call. Similarly, an
edge with the opposite direction shows an output relation.
Action nodes have some attributes to represent their input
signature (e.g. a list of parameter types, modifiers, a return
type, and exceptions that could be thrown).

DEFINITION 1 (iGROUM). An invocation-based, graph-
based object usage model is a directed, labeled, acyclic
graph in which:

1. Each action node represents a method call;

2. Each data node represents a variable;

3. Each control node represents the branching point of a
control structure (e.g. i, for, while, switch);

4. An edge connecting two nodes x and y represents the
control and data dependencies between x and y,; and

5. The label of an action, data, control, and operator node
is the name, data type, or expression of the corresponding
method, variable, control structure, or operator, along with
the type of the corresponding node.

[DefaultTableXYDataset.addSeries]‘

Figure 7. API i-Usage models in JBoss before and after migration to a new JFreeChart library version

Figure 7 shows two graph-based API usage models ex-
tracted from the code in Figure 1. The usage changes be-
tween two models are illustrated by the gray nodes with bold
edges. For simplicity, in the figure, a label is displayed with
only class and method names, even though our model actu-
ally retains the fully qualified class name and the signature
of a method. In Figure 7b, an edge from the action node
1/ =DefaultTableXYDataset. <init> to the action node z’=DefaultTable-
XYDataset.addSeries represents that ¢’ is used before 2. An edge
from the action node x=XYSeries.<init> to the data node s=xv-
Series shows that s is used to store the output of z. An edge
coming out of s changes its target from y to z’. That means,
s’ is now used as an input to 2’ instead of y’. Note that z
and z’ represent different API elements—u is a deprecated
constructor with two parameters while x’ is a new construc-
tor with three parameters. The figure also shows a for loop
related to the invocation of method XYSeries.add.

4.1.2 i-Usage Extraction

CUE extends our prior work (Nguyen et al.’s graph-based
object usage model [25]) to build API usage models from
each method in client code. It parses the source code into
Abstract Syntax Trees (AST), traverses the trees to analyze
the AST nodes of interest within a method such as method
invocations, object declarations and initializations, and con-
trol statements (e.g. if, while, for), and builds the corresponding
action, data, and control nodes along with control and data
dependencies between them. Static methods, type casting,
and type checking operations of a class are considered as
special invocations of the corresponding objects. After ex-
traction, CUE removes all action and data nodes and the
edges that do not represent the usages of API elements or
have no dependencies with those API elements. In other
words, CUE determines a sub-graph of the original object
usage model that is relevant to the usage of API elements by
performing program slicing from the API usage nodes via
control and data dependency edges. Moreover, since a par-
ticular API could be used by multiple methods in client, CUE
uses a set of iGROUM models to represent API i-usages.

While building an iGROUM, CUE also takes into account
subtyping information, which is described in details in Sec-
tion 4.2. CUE uses the inheritance information of the system
to create nodes and labels more precisely. For example, if a
method C.m is called in an iGROUM, CUE checks whether
C.m is inherited from a method A.m, i.e., C.m is not ex-
plicitly declared in the body of the class C. If that is the
case, the action node corresponding to the call would be a
node with the label built from A.m, rather than from C.m.
If C.m overrides A.m, the label is built from C.m.

Furthermore, CUE also performs an intra-procedural
analysis on object instantiation, assignment, and type cast-
ing statements to keep track of the types of variables used
within a method. For example, if it encounters a method call
o.m with o being an object declared with type C, and later
finds that o is casted into an object of class C’, then the label
of action node for o0.m is built from C’.m, rather than C.m.

4.2 API Usage via Inheritance

This section presents our graph-based representation for API
usages via inheritance and the corresponding extraction.

4.2.1 Method Overriding and Inheritance

Assume that class C in a client code directly inherits from
an API class A. Method C.m overrides a non-static method
A.mif C.mis declared in class C' and has the same signature
with A.m. In Object-Oriented Programming, method A.m is
not considered to be overridden in C' when the method C.m
with the same signature as A.m is not explicitly declared in
C'. However, because C.m could still be invoked, CUE still
considers that C.m exists and inherits from A.m. If A.m
and C.m are static, CUE does not consider that C.m over-
rides A.m because they are called based on the declaring
types. If A.m is static and C.m is not explicitly declared in
C, CUE does not consider the existence of C.m.

1. If C.m inherits A.m, a call to C.m will be a call to A.m.
Thus, if A.m is changed, not only the calls to A.m need
to be adapted in response to the change of A.m, but also
all the calls to C.m need to be considered for adaptation.

L") Axis_new

[BasicProviderJ [BSFProvider] [ComProvider}

L) Axis_old

org.apache.axis
providers

[BasicProvwder] { BSFProvider J [ComProvwder]

[EJBProvider} RPCProvider

RPCProvider
/ \\

m ",
getNewServiceObject getStrOption getServiceClass getEJBHome <init> makeNewServiceObject getStrOption getServiceClass getEJBHome getContext
(Context, String) (String, Handler) ||| (Context, String) (Context, String) 0 (Context, String) (String, Handler) (String, SOAP,Context) (SOAP,Context,String) (Properties)
Iy

[JavaProvider] [Msngvider] EJBProvider [JavaProvider] [MsgPruwderJ

W
»

rename /

A1 _changevsmind T h <l T

4
7
] add parameter

\

41
i add parameter
T

— py

~—

.

H \
&/ N

-
it SN —

~ o
S— o

P

getServiceClass ’ getEJBHome ‘}
(Context, String) (Comex‘ String) }

\
<init> getNewServiceObject ||t getStrOption ‘,
0 (Context, String) l(Smng, Handler) }

<init>
0

T rename 1

makeNewServmeOb]ect
(Context String) (Smng Handler) }

etContext ‘:
(Properties) }

Q

i
getStrOptlon I getServiceClass \ getEJBHome ‘I
(String, SOAP,Context) ||} (SOAP,Context,String) }

L)

add parameter |

generateWSDL
(Context)

C) jBoss_old

generateWSDL
(Context)

C') jBoss_new

Figure 8. API x-Usage models in JBoss before and after migration to a new Axis library version

For example, if A.m has a newly added parameter, all
method calls to A.m and C.m must be considered for
the adaptation of adding a new parameter. Otherwise,
the program might not be compiled or such calls might
be accidentally dispatched as a call to another method
that has the same-signature as A.m (e.g. a parent method
A,.m of A.m).

2. If C.m overrides A.m, they need to have the same signa-
ture. Thus, if A.m is changed, C.m needs to be consid-
ered to be changed correspondingly (see Figures 3 and 4).

3. A call to A.m might be a call to C.m in run-time due
to dynamic dispatching. Thus, if C.m is changed, not
only all the calls to C.m and C;.m, with C being a de-
scendant class of C', are considered for adaptation corre-
spondingly, but also all calls to A.m must be taken into
consideration.

In CUE, the overriding and inheritance relationships are
defined in the same way as above among the methods of
two API classes A and A; in which A; inherits from A, and
among the methods of two client classes C' and C in which
C inherits from C.

4.2.2 x-Usage Model

Now, let us describe the model and extraction algorithm for
API usages via inheritance. CUE uses xGROUM (Extension-
based, GRaph-based Object Usage Model) to represent all
API x-usages in the client system and and all libraries by
considering each library a sub-system of the client system
under investigation.

An xGROUM is a directed, labeled, acyclic graph in
which each node represents a class or a method in the client

system and its libraries. The label of a node is its fully
qualified name and signature. Interfaces are considered as
special classes.

Edges between class nodes represent subtyping relations.
Edges from class nodes to method nodes represent the con-
tainment relations. Between method nodes, there are two
kinds of edges: o-edge (overriding) and i-edge (inheriting):

¢ An o-edge from a node C.m to A.m shows that C.m
overrides A.m. This means that C inherits from A, and
C.m is declared in C' and has the same signature as A.m.

¢ An i-edge from a node C.m to A.m shows that C.m
inherits from A.m. This means that C inherits from A,
and C'.m is not explicitly declared in C even though C.m
could be invoked and has the same signature as A.m.
C.m is called an ¢-node in XxGROUM, and other method
nodes are called o-nodes.

Figure 8 illustrates the XxGROUM for Figure 4. Fig-
ures 8L and 8C show the API class A=EJBProvider in package
org.apache.axis.providers.java and the client class C'=EJBProvider
in package org.jboss.net.axis.server. Figures 8L’ and 8C’ show
those two classes in their new versions. The o-edges and o-
nodes, such as C.getNewServiceObject, are illustrated with solid
double lines, meaning that they are of interest. The i-nodes
such as C.getEJBHome and the i-edges are shown in dashed
lines, meaning that they are just placeholders and not being
really declared or created.

Added nodes such as A.getContext(Properties) are painted
in gray color. Updated nodes are represented in double
lines along with bi-directional arrows between them in the
graphs of two versions. For example, an arrow with the la-

bel rename from node A.getNewServiceObject (in Figure 8L) to
A.makeNewServiceObject (in Figure 8L’) shows that those two
nodes represent a renamed method. An arrow from node
A.getServiceClass(Context, String) in Figure 8L to node A.getService-
Class(String, SOAP, Context) in Figure 8L signifies the change in
the parameter list of the corresponding method. As shown in
Figure 8C’, class C' in JBoss is adapted accordingly to the
changes to class A in Axis.

To build xGROUM, CUE extends the inheritance hierar-
chy by adding o-edges between methods. The i-nodes and
i-edges are not explicitly created, but being computed on
demand. Note that only one XGROUM is built for the en-
tire client system and its libraries.

S. Usage Adaptation Miner (SAM)

This section describes our API usage adaptation miner,
SAM. SAM uses iGROUMs to represent API i-usages in
any client code as well as in the library’s test and demo
code. Thus, the adaptation of API usages could be modeled
as a generalization of changes to the corresponding individ-
ual iGROUMs. SAM also uses a graph alignment algorithm
to identify API i-usage changes that are caused by changes
to APIs, and a mining algorithm that generalizes common
edit operations from multiple API usage changes to find API
usage adaptation patterns. LIBSYNC uses such patterns to
recommend the locations and edit operations.

5.1

Using OAT, LiBSYNC derives sets AL and AP containing
the changed entities (including packages, classes, methods)
of the library and the client program respectively. It is able to
align such code entities between two versions as well. Thus,
for any method m € AP, LiBSyNc builds two iGROUMs
U and U’ for m in two corresponding versions. Then, it uses
GroumDiff, our graph-based alignment and differencing al-
gorithm, to find the changes between the corresponding us-
age models U and U’.

Our graph alignment algorithm, GroumDiff, maps the
nodes between two iGROUMs such that the aligned nodes
represent the unchanged, updated, or replaced nodes while
unmapped nodes represent the added/deleted nodes. Let us
illustrate the pseudo-code of our GroumDiff algorithm (Fig-
ure 9) via the example in Figure 7. The mapped nodes in
Figure 7 would be the ones with identical labels (e.g. and
2’,y and). New nodes like 2’, b1, bs would not be mapped.
As we could see, mapped nodes tend to have highly similar
labels and structures. For example, unchanged API elements
would have identical names; replaced ones tend to have sim-
ilar names; and both types tend to have similar neighborhood
structure with the others.

The idea of GroumDiff algorithm is to map the nodes
between two graphs based on the similarity of their labels
and neighborhood structures with other nodes. The simi-
larity of node labels, lsim(u,v), is based on string-based

i-Usage Change Detection

DN =

0NN AW

11
12
13
14

function GroumDiff(U, U") // align and differ two usage models
for allu € U,v € U’ // calculate similarity between u and v
based on label and structure
sim(u,v) = a e lsim(u,v) + 3 ® nsim(u,v)
M =MaximumWeightedMatching(U, U’, sim) // matching
for each (u,v) € M:
if sim(u,v) < A then M.remove((u, v)) #/remove low matches
else switch // derive change operations on nodes
case Attr(u) # Attr(v): Op(u) = Op(v) = “‘replaced”’
case Attr(u) = Attr(v), nsim(u,v) < 1: Op(u)="‘updated”’
default: Op(u) = ‘‘unchanged’’
for each u € U, u ¢ M: Op(u) = “‘deleted’’ // unaligned nodes
for each v € U',v & M: Op(v) = “‘added’’ // are deleted/added
Ed = EditScript(Op)
return M, Op, Ed

Figure 9. API Usage Graph Alignment Algorithm

Levenshtein distance [17]. It also takes into account the re-
named API elements: the similarity level of the labels rep-
resenting renamed or moved API elements is set as high as
that for unchanged ones. Neighborhood structures of nodes
is approximated by Exas characteristic vectors [24], thus,
their similarity measurement nsim(u, v) is based on the dis-
tance of such vectors. GroumDiff calculates and combines
the similarity of labels and neighborhood structures of all
pairs of nodes u and v between two graphs as sim(u,v) =
a e lsim(u,v) + 5 e nsim(u,v) (line 3). Since each node u
in a graph should be mapped to only one node v that has
the highest possible similarity, GroumDiff finds the max-
imum weighted matching on such nodes using the calcu-
lated similarity values as weights (line 4). The resulting
pairs of matched nodes are the alignment results (lines 7-10).
Matched nodes having little similarity would be reported as
unmapped nodes (lines 11-12).

Then based on the alignment results, SAM derives a se-
quence of graph edit operations. That is, the un-aligned (un-
mapped) nodes are considered added or deleted (lines 11-
12). Aligned nodes with different labels, or the same la-
bels but different structures or attributes are considered up-
dated or replaced (lines 8-9). Other nodes are considered
unchanged (line 10). From this information, GroumDiff de-
rives an edit script to describe the changes as a sequence of
graph operations (line 13). This edit script is then used to
mine the API usage adaptation patterns.

Let us revisit Figure 7. GroumDiff aligns nodes with iden-
tical names in Figures 7a and 7b. Node 2’ = DefaultTableXY-
Dataset.addSeries and two nodes, boolean b; and by, are not
mapped; thus, they are considered as added. The nodes with
the label <init> (x and z’) are replaced. The node s=xYSeries
is updated because its neighboring nodes changed. Thus, the
derived editing script is

Replace XYSeries.<init> (...,
XYSeries.<init> (...,

boolean)

boolean, boolean)

‘ protected JFreeChart createXyLineChart() throws JRException {

JFreeChart jfreeChart=ChartFactory.createXYLineChart(..., getDataset(),...)

return jfreeChart

| ’ ChartFactory.setChartTheme(StandardChartTheme.createLegacy Theme()); “

Figure 10. API Usage Changes in JasperReports

Replace DefaultTableXYDataset.<init> (XYSeries)

DefaultTableXYDataset.<init> (boolean)
Add DefaultTableXYDataset.addSeries (XYSeries)

Improvement. To improve the alignment accuracy and to
deal with renamed nodes, SAM uses OAT to find API meth-
ods and classes whose declaration changed. Then, it makes
the action nodes representing the calls to them to have the
same labels in two iGROUMs under comparison. That is, if
m is updated into m/ in the library through renaming, the la-
bel of an action node representing an invocation of m’ is re-
placed by the label built from m. Note that those two nodes
must also have similar neighborhoods. In brief, SAM uses
the knowledge of the origin analysis result to improve the
alignment of nodes in the corresponding iGROUMs.

5.2 x-Usage Change Detection

Changes to an xGROUM are detected by OAT and rep-
resented as editing operations: (1) Add/Delete nodes and
edges: e.g., a new class is added, a method is deleted, or an
overriding edge changes its target method; (2) Replace/Up-
date nodes and edges: e.g an edge is changed from ¢-edge to
o-edge when a new method overrides a parent method. It is
changed from o-edge to i-edge when an overriding method
is deleted.

Note that when the signature of a method C'.m is changed
into C.m’ that overrides some parent method A.m/, SAM
considers this change as the addition of a new o-node for
C.m/, the old node C.m having the same signature with A.m
will become an ¢-node.

5.3 Usage Adaptation Pattern Mining

Given a library L and a client system P, SAM identifies the
locations and edit operations required to adapt API usages
when migrating to the version ¢ of L. Since individual API
usages can have different edit operations between two cor-
responding iGROUMs, SAM finds a common subset of edit
operations that occur frequently among multiple API usages.
We call such frequent edit operations an adaptation pattern.
For example, JasperReports version 3.5.0 migrated to use
JFreeChart API version 1.0.12. Analyzing JasperReports’
code, we found that the addition of the invocation statement
ChartFactory.setChartTheme(StandardChartTheme.createLegacyTheme());
before the call to ChartFactory.create*Chart occurs in 53 methods
(Figure 10). That is, JFreeChart at version 1.0.12 has a new

FROS I NS I

O 0 3 N W

function ChangePattern(A P;, AL;) //mine usage change patterns
for each (U, U’) € UsageChange(AP;, AL;) //compute changes
Add(GroumDiff(U, U")) into E // add to dataset of sets of ops
F' = MaximalFrequentSet(E, o) //mine maximal frequent subset
of edit operations
for each f € F":
Find U, U’ : f C GroumDiff(U, U") //find usages changed by f
Extract (U, (f), UL(f)) from (U, U") // extract ref models
Add (Us(f),Us(f)) into Ref(f) // add to reference set for f
return F, Ref

Figure 11. Adaptation Pattern Mining Algorithm

feature, which specifies the style or theme of a chart object.
This new feature requires that the instantiation of a chart
object needs to create a ChartTheme object first. JFreeChart’s
ChartFactory, the factory class for creating chart objects, now
has a new method ChartFactory.setChartTheme to set the theme for
a chart object. JFreeChart also provides a class StandardChart-
Theme as the default implementation of ChartTheme which has
a method named StandardChartTheme.createLegacyTheme() tO cre-
ate and return a ChartTheme that does not apply any changes
to the JFreeChart defaults.

Mining Algorithm. The algorithm to recover the API i-
usage adaptation patterns is illustrated in Figure 11. It re-
ceives two inputs: (1) AL; is the set of API elements that
changed at or before version 7 and (2) AP; contains pro-
gram entities in client code that changed after migration to
the version i of L. The change set, AL;, is computed by ap-
plying OAT to the version history of the library L backward
from the version ¢. Similarly, AP; is computed by running
OAT on two versions of the client program before and after
migration to L;.

The first step is to determine all API i-usages that changed
due to the changes A L; (UsageChange(AP;,AL;) in line 2). This
step is necessary since some i-usage changes are irrelevant to
the API changes. To do that, SAM determines all methods in
both L and P that are affected by the change in L; by using
the information produced from the location detection algo-
rithm (Section 6.2.1 will detail this algorithm). More specif-
ically, it uses the output of that algorithm, i.e. the change
set [U (P, AL;) that contains the methods and classes in the
client code and library that are affected by the API’s changes
at version ¢ via method overriding and inheritance relations.
Then, SAM removes API i-usage changes that have nothing
to do with the set ITU (P, AL;).

Next, for each of such usage changes, SAM extracts from
the corresponding surrounding code the pairs of usage mod-
els (U, U’) before and after the change at version i (line 2).
To do this, for each changed method m € AP, containing
such usage changes, SAM builds the corresponding usage
models (U,U’), and determines whether U and/or U’ have
any action nodes that represent any method(s) in the change
set IU(P, AL;). If such a pair exists, their changes would be

related to the API changes. SAM uses GroumDiff to find the
changes between U and U’ in term of a set of graph editing
operations. That set of operations is added into the set £ of
API usage changes caused by the API’s changes (line 3).

Then, SAM mines the maximal frequent subset of editing
operations for all the sets in F, using the frequent itemset
mining algorithm in [2]. This algorithm finds every set f
that occurs in the sets in I with a relative frequency (i.e.
confidence) at least o, with o is a chosen threshold, and with
its size as large as possible (line 4). For each of such f, SAM
finds all pairs (U,U’) whose change operations include f
(line 6). For each pair (U, U’), it extracts the usage skeletons
Uo(f) and U.(f) (line 7). This pair of usage skeletons are
called reference models, which provide the context of the
change f (will be explained next). Then, it adds that pair
into a set Ref(f) for each mined frequent subset f (line 8),
which is now considered as an adaptation pattern of API
usages (i.e. frequent changes on API usage models).

Relative frequency. The relative frequency of a set of
change operation f is calculated as follows. Assume that
f is a subset of edit operations from U to U’. Freq(f) de-
notes the frequency of f, i.e. the number of sets of change
operations in E contain f. NUsage(f) is the number of
API usages of the nodes affected by f, i.e. the number of all
iGROUMs containing U (f). Then, the relative frequency of
f is defined as Freq(f)/NUsage(f).

Reference model. U,(f) is defined as the set of mapped
nodes in U that are affected by f and their dependent nodes
via control and data dependencies. U/ (f) is similarly de-
fined. U,(f) and U/(f) provide the contextual information
on the change f. Thus, they are called the reference mod-
els of f. If another usage V' contains U, (f), one could con-
sider that V' also has a context that could be adapted by the
frequent adaptation f. Thus, U,(f) and U.(f) are used to
model the usage skeletons corresponding to the adaptation
pattern f.

Figure 12 shows an adaptation pattern and its reference
models found in JasperReports with respect to JFreeChart
library migration. The pattern includes the addition of two
method calls StandardChartTheme.createLegacyTheme and Chart-
Factory.SetChartTheme, which lead to the addition of two new
action nodes and one data node, along with the associated
edges, and the addition of an edge from the data node Chart-
Factory. Since setChartTheme and createAreaChart use the same
data node ChartFactory, SAM derives the reference models of
this change as Uy and U} as in Figure 12. U} contains not
only the added sub-graph but also the nodes having depen-
dencies with the changed nodes.

The use of reference model is also useful in the cases
of newly added API elements. Suppose that m is a newly
added method in the new version of a library and a call to
m is added in U’. In this case, no node in U can be mapped
to the data node m. However, there might have some other
currently existing nodes that are dependent on m and they

could be mapped back to U. Thus, SAM could use those
nodes as referenced nodes for mapping between U and U’
in the case of newly added nodes. In such cases, SAM will
also add those dependent nodes into the reference model for
later mapping.

Improvements. To improve the accuracy of the mined pat-
terns of usage changes, A P; contains the code taken from
different sources: client code on different systems, or test
code and demo code provided inside the API’s source code.
The threshold o will be slightly different. For example, on
test code and demo code, a usage pattern might be tested
or demonstrated for only once. Therefore, we could choose
small . Test code might contain the initialization of test data
and the assertion of test results, which might not be parts of
API usage specifications. To improve the quality of mined
protocols, SAM discards such initializations and assertions
when building the iGROUMs on the test code.

6. Recommending Adaptations

Sections 6.1 and 6.2 discuss how LIBSYNC suggests the code
locations to be adapted and edit operations required for those
API usage adaptations.

6.1 API i-Usage Adaptation Recommendation

After detecting API changes via OAT and mining usage
adaptation patterns on relevant codebases via SAM, LiB-
SyNC has a knowledge base of API usage skeletons and
corresponding adaptation patterns for an API L of inter-
est. For each version ¢ of the library L, the knowledge base
contains the set of usage adaptation patterns F' at that ver-
sion. Each pattern f has a set of reference usage models
Ref(f) = (U, U)). It also contains A L;, the set of changed
entities of L from any two consecutive versions. With this
knowledge, LiBSYNC provides API usage adaptation recom-
mendations on any given client code () that needs to be
adapted to a version ¢ of L.

6.1.1 Location Recommendation

First, LIBSYNC determines the code locations in the client
system () that potentially need adaptation to L;. Using
AL; and XGROUM model of () at that version, LIBSYNC
computes two change sets of methods XU (Q,AL;) and
IU(Q,AL;) that are potentially affected by the changed
entities in AL;. Details of the method to derive those two
change sets will be explained in Section 6.2.2. IU(Q, AL;)
is the set of methods and classes in L and @ that are af-
fected by changed entities in AL; (including overridden and
inherited methods). XU (Q, AL;) is the set of methods and
classes in () that are affected by the changed entities in AL;
via method overriding and inheritance. Every code location
that uses an entity in 7U(Q,AL;) will be considered for
adaptation to the changes AL; of L. We use AU(Q,AL)
to denote the set of the corresponding iGROUMSs of such
code locations.

JFreeChart jfreeChart=ChartFactory.createAreaChart(...);
configureChart(jfreeChart);

Chart Fact ory. set Chart Thene(St andar dChart Thene. cr eat eLegacyThene());
JFreeChart jfreeChart=ChartFactory.createAreaChart(...);
configureChart(jfreeChart);

StandardChartTheme --P[StandardChartTheme.createLegacyTheme]

ChartFactory.setChartTheme]

~
r”’ ‘
--{C hartFactory.createAreaCh art}—- -—{C hartFactory.createAreaC hart}-
/

d
this.configureChart

Usage model U

this.configureChart

Usage model U'

StandardChartTheme --P{ StandardChartTheme.createLegacyTheme]

--{ChartFactory.createAreaChart]

Reference model U,

ChartFactory.setChartTheme]

v ‘
e
l”
—’[ChanFactory.createAreaChart}

Reference model U’y

Figure 12. API Usage Change Patterns and Reference Models

To improve the performance, LIBSYNC uses some pre-
processing techniques. Based on text-based filtering, it finds
the source files that could involve the usages of L. Each
source file is tokenized. If a file does not contain any token
similar to the names of classes/methods in IU(Q, AL;), it
will be discarded from further processing. In the next step,
the remaining source files are parsed and extracted to build
API i-usage models. For each model V, LiBSYNC checks
whether V' contains some nodes representing the usages of
any entity in IU(Q, AL;). If that is the case, it will report V'
as a location for consideration of adaptation, i.e. V' will be
added to AU(Q, AL;).

Let us revisit the example in Figures 1 and 7: L =
JFreeChart, ¢ = 0.9.17, Q) = JBoss 3.2.7. Assume that JBoss
is currently using JFreeChart 0.9.15. Using OAT, LIBSYNC
could detect IU(Q,AL;) = {A,B,x,2',y,y'} with the
following information:

Id Label Change

A XYSeries modified class
B DefaultTableXYDataset modified class
x XYSeries. <init>(String,boolean) deprecated

' XYSeries. <init>(String, boolean, boolean) added

Yy DefaultTableXYDataset. <init>(XYSeries) ~ deprecated

Yy’ DefaultTableXYDataset. <init>(boolean) added

Using text-based filtering, LIBS YNC detects that the source
file ManageSnapshotServietjava in Q = JBoss 3.2.7 has some to-
kens XYSeries and DefaultTableXYDataset. Extracting iGROUMs
from this file for further analyzing, it finds that the iGROUM
V' of method doit has the nodes whose labels appear in
IU(Q, AL;) (Figure 7). Thus, it reports V' as a code location
that may need the adaptation, and adds V to AU(Q, AL;)
for further operation recommendation.

DN =

(@) QY. TN SN OS]

function Adapt(V, F) //adapt API usage based on change patterns
for each U, € Ref(F'): //for each change pattern f: calculate
similarity to reference models
Relevant(V, U,) = sim(GroumDiff(V, U,))
(f*,Uy) = Max(Relevant) //find the most suitable
Ed = GroumDiff(U}, U*) //derive referenced change operations
Recommend(Ed, V') //and recommend

Figure 13. Usage Adaptation Recommending Algorithm

6.1.2 Operation Recommendation

LiBSYNcC uses the API i-usage change patterns in its knowl-
edge base to derive the recommended operations for each
iGROUM V in the set AU (Q, AL;) of usage models that are
considered for adaptation. Figure 13 illustrates the algorithm
for this task. First, LIBSYNC determines the change pattern
f* that is most suitable for V' (lines 2-3). For each pair of
reference models (U,, U!) in the set of all reference mod-
els in the knowledge base Ref(F'), LIBSYNC maps U, and
V' using the GroumDiff algorithm (Figure 9), and computes
the relevant degree between V' and U, based on the number
of matched nodes over the size of U, (line 4). Next, it ranks
them to find the reference model U,* that is best matched
to V (i.e. with highest relevance) (line 4). At last, LIBSYNC
finds the changes of the best matched reference model U x
(line 5) and recommends such changes as edit operations on
iGROUM V (line 6).

Notes. Since a usage model could use many usage proto-
cols, LIBSYNC may find more than one usage change pat-
terns f that could be mapped against V. Thus, it ranks them
based on their similarity with V' and their frequencies (the
higher the frequency is, the more correct the recommenda-

tion would be). If no change pattern is suitable (e.g. the sim-
ilarity is too little), V' will be considered as an API usage
irrelevant to API changes in AL;.

After processing all usage models, for each model V' in
recommended list AU(Q, AL;), LIBSYNC reports its loca-
tion, its ranked usage adaptation patterns fs (with similarity
levels and frequencies). It also provides with each pattern
a code skeleton that was collected during the usage pattern
mining process. If users choose a code location and a usage
change pattern for adaptation, LIBSYNC provides the recom-
mendation for adaptation at that location.

Let us revisit the example in Figures 10 and 12 for L =
JFreeChart, ¢ = 1.0.12, @) = JasperReports 3.5.0. LIBSYNC
detects the changed set A L; of JFreeChart at that version as:

Id Label Change
A StandardChartTheme added class
B ChartFactory added class

a StandardChartTheme.createLegacyTheme added
b ChartFactory.setChartTheme added

Mining on the code base P = JasperReports, LIBSYNC
recovers the change pattern f = [Add a, Add b] with 53
pairs of reference models (one pair is the iGROUMs (U, U")
for code fragments in Figure 10). In (), LIBSYNC determines
that iGROUM V uses a method of class ChartFactory. Since
ChartFactory is in AL, it is put into U (Q, AL;), and thus, V'
is put into AU(Q, AL;), meaning that it should be adapted.

Matching V' with the change patterns and reference mod-
els, LIBSYNC finds U as the best match for V' with the change
pattern f. In the matching, it also finds the maps between the
action nodes for two method calls ¢ and d with the label Chart-
Factory.createXYLineChart in U and V. Differencing U and U’
gives the operations Ed = [Add a, Add b]. Thus, LIBSYNC
recommends to add those two method calls, a and b, into V,
along with their dependencies: a is called before b and the
output of a is the input of b; b is called before ¢ due to such
dependencies in U. To help in adaptation, LIBSYNC also pro-
vides the reference code in JasperReports (Figure 10).

6.2 API x-Usage Adaptation Recommendation

This section describes how LiBSYNC recommends adapta-
tions for inheritance-based library usages.

6.2.1 Location Recommendation

To find the changes of XxGROUM and recommend relevant
adaptation, LIBSYNC starts with the change set of API AL
and the change set AP of classes and methods in the client
code. Those two change sets are obtained from the execution
of OAT on two versions of both API and client sides.

The outputs of this location recommendation algorithm
are two change sets XU (P, AL) and IU (P, AL) of classes
and methods that would be affected by the changes in AL in
the API, taking into account x-usages and i-usages respec-
tively. Thus, they are also classes and methods that could
need the adaptation. This algorithm is carried out as follows:

o If Am € AL, any method C.m overriding A.m is
considered to be adapted. Thus, as A.m changes, C.m
is added into XU(P,AL). C.m is also added into
IU (P, AL) for the consideration of usage adaptation.

e If Am € AL, any method D.m inheriting A.m is also
considered for adaptation for API usages via invocation,
i.e. D.mis added into IU (P, AL), because a method call
to D.m could be actually a call to A.m.

o If Am € AL, and if C.m € AP and C.m overrides
A.m, then A.m and any ancestor method A,.m of A.m
(i.e. overridden or inherited) is also considered to be
adapted (i.e. A.m and A,.m are added to IU (P, AL)),
because a call to A,.m or A.m might be dynamically
dispatched as a call to C.m.

Let us take an example with P = JBoss, L = Axis. The
changes are in Figures 3, 4, and 8. The set AL contains the
following classes and methods:

Id Label Change

A EJBProvider modified class in Axis
B Serializer modified class in Axis
An EJBProvider.getNewServiceObject renamed

A.p EJBProvider.getContext added

A.q EJBProvider.getEJBHome
B.m Serializer.writeSchema

changed in parameter
changed in parameters, RetType

Then, based on the xGROUM, two methods D.m and
E.m (overriding B.m) and the method C.n (overriding A.n)
are considered to be adapted, i.e. added to XU (P, AL) (see
the Table below for the ids). Their corresponding classes
are also added to XU (P, AL). Thus, the set XU (P, AL)
contains the following classes/methods:

Id Label Change

C EJBProvider extend modified class in JBoss
D AttributeSerializer extend modified class in JBoss
E ObjectNameSerializer extend modified class in JBoss

C.n EJBProvider.getNewServiceObject should be renamed

C.q EJBProvider.getEJBHome should be changed in paras
D.m AttributeSerializer.writeSchema change in paras, RetType
E.m ObjectNameSerializer.writeSchema change in paras, RetType

They are also added to IU(P,AL), along with A.p
(newly added method) and other ¢-nodes, i.e. the placehold-
ers such as C.p. The IU (P, AL) set contains the followings:

Id Label Change

A EJBProvider modified class in Axis

B Serializer modified class

C EJBProvider modified class in JBoss

D AttributeSerializer modified class in JBoss

E ObjectNameSerializer modified class in JBoss
A.n EJBProvider.getNewServiceObject renamed

C.n EJBProvider.getNewServiceObject should be renamed

A.p EJBProvider.getContext added

C.p EJBProvider.getEJBHome inherited from added method
C.q EJBProvider.getEJBHome should be changed in paras
D.m AttributeSerializer.writeSchema change in paras, RetType
E.m change in paras, RetType

ObjectNameSerializer.writeSchema

The outputs XU (P, AL) and IU (P, AL) are used in the
mining algorithm (Figure 11), in location/operation recom-
mendation for API i-usages (Section 6.1.1), and operation
recommendation for x-usages (Section 6.2.2).

6.2.2 Operation Recommendation

After detecting XU (P, AL), LiBSYNC will recommend for
adaptation of API x-usages for the methods in XU (P, AL).
Currently, the recommendation for x-usages is as follows:

¢ Pointing out the classes/methods that need API x-usage
adaptation. For example, two methods AttributeSerializer.write-
Schema and ObjectNameSerializer.writeSchema in Figure 3.

e Showing the changes to the API classes and methods
in use. For example, it shows the changes to Serial-
izer.writeSchema with two operations: Add a new parameter
and Replace the return type.

e Suggesting the operation of classes and methods in client
code that need adaptation. For example, it suggests to
Add a parameter of type Class, and to Replace return
type into org.w3c.dom.Element. It recommends fully qualified
names to help the developers to use correct packages.

7. Evaluation

This section presents the evaluation of our framework. For
OAT, the parameter setting, § = 0.75 and p = 0.625, is
used. For SAM, the parameter setting, « = 0.5, 8 = 0.5 and
A = 0.5 is used in GroumDiff algorithm, and ¢ = 0.5 is
used in ChangePattern.

7.1 Precision and Recall of Origin Analysis

To evaluate the quality of change detection in OAT, we
conducted two experiments. First, we manually checked the
results. Second, we compared our results with Kim et al.’s
API matching results [18], which has been compared with a
number of origin analysis tools [19, 38,40, 41]. In the first
experiment, we executed OAT on four different version pairs
of JHotDraw (see Table 1). JHotDraw was chosen due to the
availability of source code and its rich set of documentation.

The result is shown in Table 1. Columns Mapped and
Checked show the numbers of method-level matches that were
returned from our tool OAT and the ones that were man-
vally checked respectively. Between two versions 5.4b2-
6.0b1, OAT returned 3,250 pairs, and we checked randomly-
selected 100 pairs. Columns 4/ and X display the correctly
and incorrectly detected matches. Precision shows the preci-
sion value, which is the ratio between the number of cor-
rectly detected pairs over the total number of checked, de-
tected pairs. The precision of OAT is very high with only
a couple of incorrect pairs. For two versions 5.4b1-5.4b2,
there are only 9 method-level matches because those ver-
sions are beta releases with minor changes. In other cases,
OAT’s precision ranges from 97% to 100%.

In the second experiment, we executed both OAT and
Kim’s tool on several consecutive version pairs of JFreeChart
and JHotDraw. From the outputs of two tools, all method-
level matches were compared to find the common set of
matches (column (), and to identify a set of matches that
were returned by OAT but not by Kim’s (column OAT-Kim),

Table 1. Precision of Origin Analysis Tool OAT

Version Pairs | Mapped | Checked Vv | X Precision
5.2-5.3 71 71 69 2 97%
5.3-5.4b1 70 70 68 2 97%
5.4b1-5.4b2 9 9 8 1 89%
5.4b2-6.0b1 3,250 100 | 100 0 100%

and a set of matches that were found by Kim’s but not by
OAT (column kim-OAT). Those differences were further man-
ually checked to see if they are correct (column /), incorrect
(column X)) or undecidable (column 7). For each group, we
also computed the number of correct pairs and incorrect
pairs over the total number of pairs: column TP (True Posi-
tive) and Fp (False Positive) respectively. Table 2 shows the
comparison results. On average, OAT reports fewer pairs but
its accuracy is often higher. In addition, the gap between
(TP + FP) to 100% is smaller in OAT than Kim’s tool.
This means that OAT produced fewer cases that were hard
to determine the correctness of the involved matches.

7.2 Adaptation of i-Usage

We evaluated the quality of LIBSYNC in recommending API
i-usage adaptations. In order to recommend API i-usage
adaptation, LIBSYNC needs to detect API i-usage changes
and derive adaptation patterns.

The experiments were carried out on large-scale, real-
world systems in different application domains with long
histories of development. Table 3 shows the details about
those subject systems. For example, JBoss is a middle-ware
framework that has been developed for more than 6 years
with more than 40 releases. It has about 40 thousand meth-
ods and uses hundreds of different libraries.

7.2.1 Detection of i-Usage Changes

In this experiment, our evaluation questions are (1) can CUE
detect API usage changes correctly? and (2) are the client-
side, API usage changes detected by CUE and SAM indeed
caused by the evolution of libraries used by the client?

We ran our tool on those three subject client systems to
report all API usage changes along with edit operations.
For each client, we randomly picked 30 to 40 of the API
usage changes. We manually checked the correctness of
detected edit operations in API usage skeletons. In addition,
we also examined whether the identified API usage changes
are indeed caused by the changes to APIs.

Table 4 shows the result of this investigation. Column
Changes shows the number of checked cases in detected API
usage changes. Column Libs shows the number of libraries
involved in those reported usage changes. The next two
columns (Operations) display the numbers of correctly (see
column /) and incorrectly detected API i-usage changes
(column x) respectively. Similarly, the last two columns (col-
umn API) show how correctly our tool relates an API usage
change to the changes to API(s).

Table 2. Comparison of Origin Analysis Tools

JFreeChart
Pairs OAT Kim ﬂ OAT - Kim Kim - OAT
> NP ? ™[PP > v X ? TP FP
0.9.5-0.9.6 5 5 5 0 0 0 0 100% 0% 0 0 0 0 100% 0%
0.9.6-0.9.7 368 366 364 4 2 1 1 50% 25% 2 0 0 2 0% 0%
0.9.7-0.9.8 3157 3158 3121 36 36 0 0 100% 0% 37 7 30 0 19% 81%
0.9.9-0.9.10 144 159 130 14 3 10 1 21% 71% 29 14 2 13 48% 7%
0.9.10-0.9.11 9 7 7 2 2 0 0 100% 0% 0 0 0 0 100% 0%
0.9.11-0.9.12 66 66 35 31 12 10 9 39% 32% 31 19 6 6 61% 19%
0.9.12-0.9.13 134 133 133 1 1 0 0 100% 0% 0 0 0 0 100% 0%
0.9.13-0.9.14 84 96 74 10 6 3 1 60% 30% 22 12 6 4 55% 27%
0.9.14-0.9.15 6 12 6 0 0 0 0 100% 0% 6 6 0 0 100% 0%
0.9.15-0.9.16 79 75 65 14 13 0 1 93% 0% 10 2 4 4 20% 40%
0.9.16-0.9.17 205 240 171 34 4 30 0 12% 88% 69 27 42 0 39% 61%
0.9.17-0.9.18 36 45 36 0 0 0 0 100% 0% 9 0 9 0 0% 100%
0.9.18-0.9.19 140 282 102 38 30 8 0 79% 21% 180 41 139 0 23% T7%
Avg. 341.00 357.23 326.85 14.15 8.38 4.77 1.00 73% 21% 30.38 9.85 18.31 223 51% 32%
JHotDraw
Pairs OAT | Kim N OAT - Kim Kim - OAT
> NAEPS 2 ™[FP| > v X 2 TP FP
5.2-5.3 71 77 66 5 3 2 0 60% 40% 11 2 4 5 18% 36%
5.3-5.4b1 70 69 56 14 12 1 1 86% 7% 13 5 6 2 38% 46%
5.4b1-5.4b2 9 13 8 1 1 0 0 100% 0% 5 3 1 1 60% 20%
5.4b2-6.0b1 3,250 3,239 3,239 11 11 0 0 100% 0% 0 0 0 0 100% 0%
Avg. 850 849.5 842.25 7.75 6.75 0.75 0.25 86% 12% 7.25 2.5 2.75 2 54% 26%
Table 3. Subject Systems NumberAxis yAxis = new NumberAxis(yTitle);
Client Life Cycle Releases | Methods | Used APIs yhxis-setMinimtmAxisvalue{-6:2);
TBoss (JB) 1072003 - 05/2009 47 10-40K 45262 is: t t 4,
TasperReports (JR) | 0172004 - 02/2010 36 11K 747 ‘ ’ yAxis.setRange(-0.2, 0.4) |
Spring (SP) 12/2005 - 06/2008 29 | 10-18K 45-262 DecimalFormat formatter = hew DecimalFormat("0.##%");
yAxis.setTickUnit(new NumberTickUnit(0.05, formatter));

Table 4. Precision of API Usage Change Detection

Client Changes | Libs | Operations APIL

v X Vv | X
JasperReports 30 5 30 0 | 27 3
JBoss 40 17 | 38 2 | 38 2
Spring 30 15 | 30 0 | 30 0

In most cases, our tool correctly detected the edit op-
erations and correctly related the API usage changes on the
client-side and the library-side changes (see two columns /).
In 93 cases out of 100 checked cases, our tool correctly de-
tected API usage changes and related them to library-side
API declaration changes.

Example 1. Let us discuss an interesting case in Figure 14.
This usage of JFreeChart creates a NumberAxis object and sets
up its range and ticking unit. In the versions before 0.9.12
of JFreeChart, setting up the range of a NumberAxis object is
carried out by invoking two methods setMinimumAxisvalue and
setMaximumAxisValue. However, from version 0.9.12, those two
methods are deprecated, a new method setRange is added and
should be used instead. SAM correctly identified API usage
skeletons but did make some mistakes in deriving edit op-
erations for adaptation. Instead of reporting two deletions
and one addition, it reported one replacement and one ad-
dition. Importantly, however, SAM is able to recognize and
correlate that the API usage change is due to the change in
JFreeChart API specification.

Figure 14. Create NumberAxis in jFreeChart

In some other cases, our tool wrongly related client-side
updates with library-side updates even though the library-
side updates did not affect the corresponding usage in the
client code such as a method’s access visibility modification.
Another case is when the API method changes the types of
exceptions that could be thrown, but the client code always
catches the general exception type, Exception. Another one is
when the API method changes the type of one parameter
into its super-type (e.g. from String to Comparable). In those
cases, there were some changes to those API usages but
these changes were irrelevant to changes in the declaration
of the API. Our tool mistakenly related them. Let us explain
another interesting case of API usage changes due to the
evolution of a library.

Example 2. Ruby, a scripting language/framework for Web
applications, provides a new method parse in the version
0.8.0. This method accepts two string inputs: one referring
to the piece of code required to compile and one referring to
the compiling configuration. It returns a Node as the root node
of the parse-tree. Using this newly added feature of Ruby,
developers of Spring changed their implementation of the
method createJRubyObject, Which receives a string scriptSource as
the input script, and returns an Object created by that script.
In the old version of this method, it calls the evalScript method

“I.RubyObject rubyObject = ruby.evalScript(scriptSource); /direct evaluatation
if (rubyObject instanceof RubyNil) {
throw new ScriptCompilationException(...);

Node scriptRootNode = ruby.parse(scriptSource, ™); //parse the script
IRubyObject rubyObject = ruby.eval(scriptRootNode); // eval the parse—tree
if (rubyObject instanceof RubyNil) { //if cannot eval the whole script
String className = findClassName(scriptRootNode); /just find class name
rubyObject = ruby.evalScript("\n"+className+".new”); /to create an object

¥
if (rubyObject instanceof RubyNil) {
throw new ScriptCompilationException(...);

Figure 15. API usage changes in Spring with respect to the
evolution of Ruby

directly on scriptSource. This direct evaluation could have a
disadvantage in which the script is not well-formed, or more
severely, is crafted as malicious code that exploits some
vulnerabilities of the system. In the new version (Figure 15),
Spring code first calls parse to parse the scriptSource into a
tree, and then calls the eval method to execute this parsed
code. If the script is ill-formed or maliciously crafted, the
parsing will not return a well-formed parse tree and the eval
method simply does not execute, thus, resolving the above
vulnerability issue. LIBSYNC was able to mine this API usage
adaptation pattern based on the API usage changes in the
client code of Spring at 2.0 (JRubyScriptUtils.java).

7.2.2 Recommendation of Adaptation Locations

This section describes the evaluation of LIBSYNC in recom-
mending the code locations for adaptation to a target library
version. We chose six pairs of a library and its client. For
each pair, let Vo and V4 be the versions of the client sys-
tem and the library respectively. For each V4, we selected
another version V) of the library such that the client sys-
tem had been changed in a later version than V. We ran
LiBSYNC on V4 and V} to detect library-side changes and
client-side API usage updates. LIBSYNC was run to rec-
ommend the locations for adaptation. Then, we manually
checked in the history of the client code after that version
Ve to see whether the code at those locations have been ac-
tually updated to work with the new library version V}}.

Table 5 shows the result. JFree and Jasper are used as ab-
breviations for JFreeChart and JasperReports, respectively.
Column Version shows the pairs of versions of the library and
the client system. Column Rec. shows the number of the rec-
ommended locations. Columns +/, X, Miss show the correctly,
incorrectly, and missed detected locations respectively. Col-
umn Hint represents the cases in JasperReports corresponding
to the changes of JFreeChart in which the API methods are
deprecated, but developers have not updated yet. As shown,
LiBSYNC provides highly correct locations. It missed in only
one case out of 67 recommendation locations in total.

Table 5. Accuracy of i-Usage Location Recommendation

API - Client Version | Rec. v/ | Hint | X | Miss
JFree - Jasper 3.0.1-3.1.0 12 9 3 0 0
Mondrian - Jasper 1.3.4-2.0.0 3 3 0 0 0
Axis - JBoss 3.2.5-4.0.0 8 5 1 2 0
Hibernate - JBoss 420-42.1 29 | 25 0 3 1
JDO2 - Spring | 2.0ml - 2.0m2 8 8 0 0 0
JRuby - Spring 2.03-2.04 7 7 0 0 0

Table 6. Accuracy of i-Usage Operations Recommendation

Mine on Adaptto | Usages | Rec. v/ | Miss
325-32.8 | 3.2.5-4.05 6 4 4 2
4.0.5-4.2.3 | 4.0.5-5.0.1 26 25 | 25 1

7.2.3 Recommending Edit Operations for Adaptation

In this experiment, LIBSYNC was run on a development
branch in JBoss’ history to mine adaptation patterns for all
libraries used by JBoss. We then ran LiBSYNcC for adapta-
tion recommendation on another branch which derives from
the same branching point with the first branch but are in-
dependently developed onward. We manually checked the
recommended operations against the actual adaptations in
the second branch. A recommendation is considered correct
if it has at least one correct operation at a correct location.

Table 6 shows the result. The first two columns show
the development branches on which LIBSYNC mined the
adaptation patterns and applied adaptation recommenda-
tions respectively. Column Usages shows the number of us-
age adaptations. Column Rec shows the numbers of recom-
mended adaptations. As shown in Table 6, LIBSYNC provides
highly correct recommendations. The recommended opera-
tions were correct as developers changed all of them except
for three missing cases in which old usages were completely
abandoned and totally new usages were used.

L1BSYNC was able to correctly recommend the adaptation
for all examples in this paper. For example, LIBSYNC could
recommend the correct adaptation for the case of JFreeChart
in JBoss in Figure 1. This change happened in JBoss 3.2.8
in the branch from version 3.2.5 to 3.2.8 and was learned to
adapt from version 4.0.1 to 4.0.2 in the branch from version
3.2.5 t0 4.0.5. Those two changes were actually the patches
to fix a bug of NullPointerException when using the deprecated
constructor of DefaultTableXYDataset.

7.3 Adaptation of x-Usage

This section describes our evaluation of LIBSYNC in recom-
mending the code locations for the adaptation of x-usages
in JBoss. We used a wide range of versions in JBoss as de-
scribed in Table 3. For each change in JBoss from version
1 to 7, we used OAT to collect all changed APIs into the
change set AL. We identified a set XU (P, AL;), all meth-
ods in JBoss at version ¢ that override some API’s methods.

Each method in XU (P, AL;) is considered for adapta-
tion recommendation with the same operations as those op-
erations that are detected on the overridden method in the
API. A recommendation to a method at version ¢ was con-

Table 7. Accuracy of x-Usage Recommendation
Rec. X
Name 6
Class name

Package name

Deprecated

Change parameter type

Del parameter

Change return type

Change exception

Add parameter-Change Exception
Add parameter-Change Return type

0| = —=[o[<] wof o] =| &<

B =] = | OV qf B[W | —=
o|lo|o|o|o|o| || o o

sidered correct if that method was really changed in the same
way in the version j, otherwise, it was marked incorrect.

The result is shown in Table 7. Each row represents one
particular type of changes in the external API(s). For ex-
ample, the row Name is only for the methods with changed
names. The row of Add parameter-Change Exception is for the
methods changing in both parameter and exception that
could be thrown. Therefore, the numbers in a column are
exclusive from row to row. Column Rec shows the number
of recommended locations. Columns +/ and X respectively
show the correctly and incorrectly detected locations for x-
usage adaptation.

LiBSYNC provides highly correct recommendations. It
is incorrect in only two cases out of the total of 33 cases.
These two wrong cases have the same nature in which
they are both caused by the incorrect mapping results
from OAT when detecting the changes of the class Persis-
tencelnfolmpl in javax API that is used in JBoss from version
4.0.3SP1 to 4.0.4GA. Instead of reporting two deleted meth-
ods (getPersistenceXmiFileUrl and setPersistenceXmiFileUrl), and two
added methods (getPersistenceUnitRootUrl and setPersistenceUnit-
RootUrl), OAT reported two renaming operations. Therefore,
the recommendation was two renaming operations while the
correct adaptation should be two deletions and two addi-
tions. For other types of changes, the recommendations are
all correct.

8. Related Work

This section describes related work on API evolution, API
usage modeling, and adaptation.

8.1 Library Evolution and Client Adaptation

There are several existing approaches to support client adap-
tations to cope with evolving libraries. Chow and Notkin [7]
proposed a method for changing client applications in re-
sponse to library changes—a library maintainer annotates
changed functions with rules that are used to generate tools
that will update client applications. Henkel and Diwan’s
CatchUp [15] records and stores refactorings in an XML file
that can be replayed to update client code. However, its up-
date support is limited to three refactorings: renaming oper-
ations (e.g. types, methods, fields), moving operations (e.g.
classes to different packages, static members), or change op-
erations (e.g. types, signatures). The key idea of CatchUp,

record-and-replay, assumes that the adaptation changes in
client code are exact or similar to the changes in the library
side. Thus, it works well for replaying rename or move refac-
torings or supporting API usage adaptations via inheritance.
However, CatchUp cannot suggest programmers how to ma-
nipulate the context of API usages in client code such as
the surrounding control structure, or the ordering between
method-calls such as the example shown in Section 2. More-
over, CatchUp requires that library and client application de-
velopers use the same development environment to record
API-level refactorings, limiting its adoption in practice.

SemDiff [8] mines API usage changes from other client
code or the evolution of library itself, similar to our work.
The key difference of LIBSYNC from SemDiff is that our
work uses a graph-based representation to capture the con-
text of an API usage, including the dependencies among
method calls and with a surrounding control logic. In our
work, an adaptation pattern is captured in term of a frequent
set of graph editing operations that are common to multiple
API usage skeletons before and after library migration. In
contrast, SemDiff defines an adaptation pattern as a frequent
replacement of a method invocation. That is, if a method
call to A.m is changed to B.n in several adaptations, B.n
is likely to be a correct replacement for the calls to A.m. As
SemDiff models API usages in terms of method calls, it can-
not support complex adaptations that involve multiple ob-
jects and method calls and that require the knowledge of the
surrounding context of those calls. LIBSYNC’s key departure
point is that when a library’s API declarations are modified,
such evolution often involves coordinating uses of multiple
objects and multiple method calls under certain contexts.

Xing and Stroulia’s Diff-CatchUp [43] automatically rec-
ognizes API changes of the reused framework and suggests
plausible replacements to the obsolete APIs based on work-
ing examples of the framework codebase. Dig et al.’s Mol-
hadoRef [11] uses recorded API-level refactorings to resolve
merge conflicts that stem from refactorings; this technique
can be used for adapting client applications in case of sim-
ple rename and move refactorings occurred in a library.

Tansey and Tilevich’s approach [33] infers generalized
transformation rules from given examples so that application
developers use the inferred rules to refactor legacy applica-
tions. However, this approach focuses on annotation refac-
torings that replace the type and naming requirements to the
annotation requirements of a target framework. Furthermore,
this approach does not focus on updating client applications
to cope with evolving libraries.

Andersen and Lawall [3] proposed spdiff that identifies
common changes made in a set of files. API developers could
use spdiff to extract a generic patch and apply it to other
clients. Their approach models the changes at the level of
text-line changes. On the other hand, LIBSYNC uses a graph-
based representation to capture more thorough syntactic and
semantic information for adapting API usages. SmPL [21,

27] is a domain-specific source transformation language that
captures textual patches with a more semantic description of
program changes. However, it does not explicitly distinguish
API changes from their usage changes.

8.2 Program Differencing and Origin Analysis

Existing differencing techniques use similarities in names
and structures to match code elements at a particular gran-
ularity: (1) lines and tokens [35], (2) abstract syntax tree
nodes [13,23], (3) control flow graph nodes [5], (4) program
dependence graph nodes [6], etc. For example, diff com-
putes line-level differences per file using the longest com-
mon subsequence algorithm [17]. Our API usage compari-
son algorithm is similar to program differencing algorithms
that it detects changes between two versions of an internal
program representation using name-, content- and structure-
based similarities. Zou and Godfrey [47] first developed an
origin analysis technique to support software evolution anal-
yses by mapping corresponding code elements between two
program versions. Several other techniques [10,18,19,38,41,
47] improved and extended prior origin analysis techniques;
some of these derive refactoring transformations—move a
method, rename a class, add an input parameter, etc.—based
on the matching result between two versions. OAT is similar
to these techniques in that it maps corresponding code API
declarations and API usage code fragments.

8.3 API Usage Specification Extraction

There exist several approaches for extracting API usage
specifications. The forms of recovered API usage specifi-
cations and patterns include finite state automaton [37,46],
pairs of method calls [22, 39], partial orders of calls [1,34],
Computation Tree Logic formulas [36]. The API usage rep-
resentations in those static approaches are still limited, for
example, the patterns are without control structures and in-
volve only individual objects belonging to one class. Our
graph-based API usage representation captures multi-object
API usage patterns with control structures.

In contrast to those static approaches, dynamic approaches
recover the specifications by investigating the execution
traces of programs [14, 28-30, 44]. These dynamic ap-
proaches require a huge amount of execution traces. Our
graph-based representation, iGROUM, captures API usage
patterns with control and data dependencies among method
calls, and surrounding control logic such as while loop and if
statement. The API usage representations in this paper ex-
tend our prior work on GrouMiner [25] to tailor the original
multi-object usage representation in order to capture the rel-
evant context surrounding the use of external APIs. In par-
ticular, iIGROUM explicitly captures API types and methods
that appear in action and data nodes, so that program slic-
ing can isolate only a sub-graph that is relevant to the use
of a particular library. We also created a new model called
xGROUM to represent overriding and inheritance relation-
ships between client methods and API methods.

8.4 Empirical Studies of API Evolution

Dig and Johnson [9] manually investigated API changes us-
ing the change logs and release notes to study the types of
library-side updates that break compatibility with existing
client code, and discovered that 80% of such changes are
refactorings. Xing and Stroulia [42] used UMLDIfT to study
API evolution in several systems, and found that about 70%
of structural changes are refactorings. Kim et al.’s signa-
ture change pattern analysis [20] categorizes API signature
changes in terms of data-flow invariant. Yokomori et al. [45]
investigated the impact of library evolution on client code
applications using component ranking measurements. Padi-
oleau et al. [26] found that API changes in the Linux ker-
nel lead to subsequent changes on dependent drivers, and
such collateral evolution could introduce bugs into previ-
ously mature code. These studies motivate the need for sup-
porting complex client adaptations beyond replaying library-
side refactorings in client code.

9. Conclusion and Future Work

This paper presents LIBSYNC that guides developers in
adapting API usages in client code to cope with evolving
libraries. LIBSYNC uses several graph-based techniques to
recover the changes of API usage skeletons from codebase
of other client systems, and recommends the locations and
edit operations for adapting API usage code. The evaluation
of LIBSYNC on real-world software systems shows that it is
highly correct and useful. Especially, LIBSYNC can recover
and recommend on complex API usage adaptations, which
current state-of-the-art approaches are hardly able to sup-
port. One limitation of our approach is that it requires a set
of programs that already migrated to a new library version
under focus or adequate amount of API usages within the
library itself. As it is not straightforward to identify which
version of a library is used by client systems, we are cur-
rently in the process of developing a co-evolution analysis
framework that can automatically extract the versioning in-
formation of libraries used by client systems in order to
build a large corpus of API usage skeletons and to build a
repository of API usage adaptation patterns.

References

[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns
as partial orders from source code: from usage scenarios to
specifications. In ESEC-FSE '07: Proceedings of the 6th joint
meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of
software engineering, pages 25-34. ACM Press, 2007.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules in large databases. In VLDB ’94: Proceedings of
the 20th International Conference on Very Large Data Bases,
pages 487-499. Morgan Kaufmann Publishers Inc., 1994.

[3]1 J. Andersen and J. Lawall. Generic patch inference. In
ASE ’ 08: Proceedings of the 23rd IEEE/ACM International

Conference on Automated Software Engineering, 2008, pages
337-346. IEEE Computer Society, 2008.

[4] A. Andoni and PiotrIndyk. E2 Ish 0.1 user manual.
http://web.mit.edu/andoni/www/LSH/manual.pdf.

[5] T. Apiwattanapong, A. Orso, and M. J. Harrold. A differenc-
ing algorithm for object-oriented programs. In ASE '04: Pro-
ceedings of the 19th IEEE International Conference on Au-
tomated Software Engineering, pages 2—13. IEEE Computer
Society, 2004.

[6] D. Binkley, S. Horwitz, and T. Reps. Program integration
for languages with procedure calls. ACM Transactions on
Software Engineering and Methodology, 4(1):3-35, 1995.

[7] K. Chow and D. Notkin. Semi-automatic update of appli-
cations in response to library changes. In ICSM ’96: Pro-
ceedings of the 1996 International Conference on Software
Maintenance, page 359. IEEE Computer Society, 1996.

[8] B. Dagenais and M. P. Robillard. Recommending adaptive
changes for framework evolution. In ICSE "08: Proceedings
of the 30th International Conference on Software Engineer-
ing, pages 481-490. ACM Press, 2008.

[9] D. Dig and R. Johnson. The role of refactorings in API evo-
lution. In ICSM ’05: Proceedings of the 21st IEEE Interna-
tional Conference on Software Maintenance, pages 389-398.
IEEE Computer Society, 2005.

[10] D. Dig and R. Johnson. Automated detection of refactorings
in evolving components. In ECOOP ’06: Proceedings of Eu-
ropean Conference on Object-Oriented Programming, pages
404-428. Springer, 2006.

[11] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen. Refactoring-

aware configuration management for object-oriented pro-
grams. In ICSE ’07: Proceedings of the 29th International
Conference on Software Engineering, pages 427-436. IEEE
Computer Society, 2007.

[12] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: a general approach to inferring
errors in systems code. In SOSP ’0I: Proceedings of the
eighteenth ACM symposium on Operating systems principles,
pages 57-72. ACM Press, 2001.

[13] B. Fluri, M. Wiirsch, M. Pinzger, and H. C. Gall. Change
distilling—tree differencing for fine-grained source code
change extraction. [EEE Transactions on Software Engi-
neering, 33(11):18, November 2007.

[14] M. Gabel and Z. Su. Javert: fully automatic mining of gen-
eral temporal properties from dynamic traces. In SIGSOFT
"08/FSE-16: Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of software engineering,
pages 339-349. ACM Press, 2008.

[15] J. Henkel and A. Diwan. CatchUp!: capturing and replaying
refactorings to support API evolution. In ICSE "05: Proceed-
ings of the 27th International Conference on Software Engi-
neering, pages 274-283. ACM Press, 2005.

[16] J. W. Hunt and M. Mcilroy. An algorithm for differential file
comparison. Technical report, 1976.

[17] J. W. Hunt and T. G. Szymanski. A fast algorithm for com-

puting longest common subsequences. Communications of
the ACM, 20(5):350-353, 1977.

[18] M. Kim, D. Notkin, and D. Grossman. Automatic inference of
structural changes for matching across program versions. In
ICSE ’07: Proceedings of the 29th International Conference
on Software Engineering, pages 333-343. IEEE Computer
Society, 2007.

[19] S. Kim, K. Pan, and J. E. James Whitehead. When functions
change their names: Automatic detection of origin relation-
ships. In WCRE ’05: Proceedings of the 12th Working Con-
ference on Reverse Engineering, pages 143—152. IEEE Com-
puter Society, 2005.

[20] S. Kim, E. J. Whitehead, and . J. Bevan, Jr. Properties of
signature change patterns. In ICSM ’06: Proceedings of the
22nd IEEE International Conference on Software Mainte-
nance, pages 4—13. IEEE Computer Society, 2006.

[21] J. L. Lawall, G. Muller, and N. Palix. Enforcing the use of
API functions in Linux code. In ACP4IS ’09: Proceedings of
the 8th workshop on Aspects, components, and patterns for
infrastructure software, pages 7-12. ACM Press, 2009.

[22] B. Livshits and T. Zimmermann. Dynamine: finding common
error patterns by mining software revision histories. SIG-
SOFT Softw. Eng. Notes, 30(5):296-305, 2005.

[23] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding source
code evolution using Abstract Syntax Tree matching. In
MSR’05, pages 2—6. ACM Press, 2005.

[24] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. M. Al-Kofahi,
and T. N. Nguyen. Accurate and efficient structural charac-
teristic feature extraction for clone detection. In FASE '09,
pages 440-455. Springer Verlag, 2009.

[25] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi,
and T. N. Nguyen. Graph-based Mining of Multiple Object
Usage Patterns. In Proceedings of the 17th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ES-
EC/FSE 2009). ACM Press, 2009.

[26] Y. Padioleau, J. L. Lawall, and G. Muller. Understanding col-
lateral evolution in linux device drivers. SIGOPS Operating
Systems Review, 40(4):59-71, 2006.

[27] Y. Padioleau, J. L. Lawall, and G. Muller. SmPL: A domain-
specific language for specifying collateral evolutions in linux
device drivers. Electronic Notes Theoretical Computer Sci-
ence, 166:47-62, 2007.

[28] M. Pradel and T. R. Gross. Automatic generation of object
usage specifications from large method traces. In Proc. 24th
1IEEE/ACM International Conference on Automated Software
Engineering (ASE 2009), pages 371-382. IEEE Computer
Society, 2009.

[29] M. K. Ramanathan, A. Grama, and S. Jagannathan. Path-
sensitive inference of function precedence protocols. In ICSE
'07: Proceedings of 29th international conference on Soft-
ware Engineering, pages 240-250. IEEE CS, 2007.

[30] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static speci-
fication mining using automata-based abstractions. In ISSTA
’07: Proceedings of the international symposium on Software
testing and analysis, pages 174—184. ACM Press, 2007.

[31] JBoss: An open source, standards-compliant, J2EE based ap-
plication server. http://sourceforge.net/projects/jboss/.

[32] Subversion.tigris.org. http://subversion.tigris.org/.

[33] W. Tansey and E. Tilevich. Annotation refactoring: inferring
upgrade transformations for legacy applications. In OOPSLA
"08: Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and appli-
cations, pages 295-312. ACM Press, 2008.

[34] S. Thummalapenta and T. Xie. Alattin: Mining alternative
patterns for detecting neglected conditions. In Proc. 24th In-
ternational Conference on Automated Software Engineering
(ASE 2009), pages 283-294. IEEE Computer Society, 2009.

[35] W. F. Tichy. The string-to-string correction problem with
block moves. ACM Transactions on Computer Systems,
2(4):309-321, 1984.

[36] A. Wasylkowski and A. Zeller. Mining temporal specifica-
tions from object usage. In Proc. 24th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE
2009), pages 295-306. IEEE Computer Society, 2009.

[37] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object
usage anomalies. In ESEC-FSE ’07: Proceedings of the 6th
Jjoint meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on Foundations of
software engineering, pages 35-44. ACM Press, 2007.

[38] P. Weissgerber and S. Diehl. Identifying refactorings from
source-code changes. In ASE ’06: Proceedings of the 21st
IEEE/ACM International Conference on Automated Software
Engineering, pages 231-240. IEEE Computer Society, 2006.

[39] C. C. Williams and J. K. Hollingsworth. Automatic mining of
source code repositories to improve bug finding techniques.
IEEE Trans. Softw. Eng., 31(6):466—480, 2005.

[40] W. Wu, Y.-G. Gueheneuc, G. Antoniol, and M. Kim. Aura: A
hybrid approach to identify framework evolution. In /CSE
"10: Proceedings of the 32nd International Conference on
Software Engineering. ACM Press, 2010.

[41] Z. Xing and E. Stroulia. Umldiff: an algorithm for object-
oriented design differencing. In ASE ’05: Proceedings of
the 20th IEEE/ACM International Conference on Automated
Software Engineering, pages 54—65. ACM Press, 2005.

[42] Z. Xing and E. Stroulia. Refactoring practice: How it is and
how it should be supported - an Eclipse case study. In ICSM
'06: Proceedings of the 22nd IEEE International Conference
on Software Maintenance, pages 458—468. IEEE Computer
Society, 2006.

[43] Z. Xing and E. Stroulia. API-evolution support with Diff-
Catchup. IEEE Trans. Softw. Eng., 33(12):818-836, 2007.

[44] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Per-
racotta: mining temporal API rules from imperfect traces. In
ICSE °06: Proceedings of the 28th international conference
on Software engineering, pages 282-291. ACM Press, 2006.

[45] R. Yokomori, H. Siy, M. Noro, and K. Inoue. Assessing
the impact of framework changes using component ranking.
In Proceedings of the International Conference on Software
Maintenance, pages 189—198. IEEE Computer Society, 2009.

[46] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource
specifications from natural language API documentation. In
Proceedings of the 24th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2009), ACM Press,
2009.

[47] L. Zou and M. W. Godfrey. Using origin analysis to detect
merging and splitting of source code entities. /IEEE Transac-
tions on Software Engineering, 31(2):166-181, 2005.

