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ABSTRACT
Debugging big data analytics often requires a root cause anal-
ysis to pinpoint the precise culprit records in an input dataset
responsible for incorrect or anomalous output. Existing debug-
ging or data provenance approaches do not track fine-grained
control and data flows in user-defined application code; thus,
the returned culprit data is often too large for manual inspec-
tion and expensive post-mortem analysis is required.

We design FLOWDEBUG to identify a highly precise set of
input records based on two key insights. First, FLOWDEBUG
precisely tracks control and data flow within user-defined
functions to propagate taints at a fine-grained level by insert-
ing custom data abstractions through automated source to
source transformation. Second, it introduces a novel notion
of influence-based provenance for many-to-one dependencies
to prioritize which input records are more responsible than
others by analyzing the semantics of a user-defined function
used for aggregation. By design, our approach does not re-
quire any modification to the framework’s runtime and can be
applied to existing applications easily. FLOWDEBUG signifi-
cantly improves the precision of debugging results by up to
99.9 percentage points and avoids repetitive re-runs required
for post-mortem analysis by a factor of 33 while incurring an
instrumentation overhead of 0.4X - 6.1X on vanilla Spark.

CCS CONCEPTS
• Information systems → MapReduce-based systems; •
Theory of computation → Data provenance; • Software
and its engineering → Software testing and debugging.

KEYWORDS
Big data systems, data intensive scalable computing, data
provenance, fault localization, taint analysis
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1 INTRODUCTION
As the capacity to store and process data has increased re-
markably, large scale data processing has become an es-
sential part of software development. Data-intensive scal-
able computing (DISC) systems, such as Google’s MapRe-
duce [17], Hadoop [2], and Apache Spark [3], have shown
great promises to address the scalability challenge.

The correctness of DISC applications depends on their
ability to handle real-world data; however, data is inherently
incomplete, continuously evolving, and hard to know a priori.
Erroneous or invalid data could cause failures in a data pro-
cessing pipeline or produce a wrong output. Developers then
need to identify the exact records responsible for such errors
and failures by distinguishing a critical set of input records
from billions of other records.

To address this problem of identifying the root cause of a
wrong result or an application failure, data provenance tech-
niques [15, 25, 30] capture input-output record mappings
at each transformation level (e.g., map, reduce, join) at
runtime and enable backward tracing on a suspicious out-
put. However, these techniques suffer from two fundamental
limitations. First, because these techniques capture input-to-
output mappings only at the level of dataflow operators and
do not analyze the internal semantics of user-defined func-
tions (UDFs) passed to these operators, the backward trace
tends to be much larger and contains input records that may
not logically connected to the output under investigation. For
example, input.map(s:List[Int]=>s.max) takes a
set of collections as input and applies the UDF on each col-
lection, propagating only the maximum value to the succeed-
ing operation. An existing data provenance technique such
as Titian [25] would consider all elements in the collection
relevant to the returned max value. Second, during an aggre-
gation operation such as reduce, even though the degree of

* This research was done while the second author was a graduate student at
UCLA.
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influence towards an aggregated output differs among indi-
vidual inputs depending on the semantics of UDFs, existing
provenance techniques treat UDFs as a black box and naively
consider that the aggregated output depends on all inputs with-
out any priority or selectivity. Suppose that an aggregation
operation calculates the standard deviation of a set of num-
bers. When a user gets a suspiciously high standard deviation
value, she would like to isolate the most influential record(s)
farther away from the mean, instead of the entire input data.
Therefore, they are incapable of identifying the most relevant
subset of inputs that contribute to the suspicious output and
thus return a significantly larger backward trace.

Alternatively, search-based debugging techniques [18, 43]
can be used for post-mortem analysis as they repetitively run
the program with different input subsets and check whether a
test failure appears. Thus, these black-box techniques require
multiple re-runs with different input subsets, which can take
several hours, if not days.

In light of these limitations of existing approaches, we pro-
vide the first influence-based debugging tool for data intensive
scalable computing applications, called FLOWDEBUG. Given
a suspicious output, it identifies the precise record(s) that con-
tributed the most towards generating the suspicious output for
which a user wants to investigate its origin.

The key idea of FLOWDEBUG is twofold. First, FLOWDE-
BUG incorporates white-box tainting to account for the effect
of control and data flows in UDFs, all the way to individ-
ual variable-level in tandem with traditional data provenance.
This fine-grained taint analysis is implemented through au-
tomated transformation of a DISC application by injecting
new data types to capture logical provenance mappings within
UDFs. Second, to drastically improve both performance and
utility of identified input records, FLOWDEBUG incorporates
the notion of influence functions [27] at aggregation opera-
tors to selectively monitor the most influential input subset.
FLOWDEBUG predefines influence functions for commonly
used UDFs, and a user can also provide custom influence
functions to encode their notion of selectivity and priority
suitable for the specific UDF passed as an argument to the
aggregation operator. Taint analysis by definition incurs extra
overhead, while influence functions attempt to reduce the size
of input-output mappings for aggregations. To our knowl-
edge, no prior work combines both approaches to improve
debugging precision.

While existing data provenance techniques modify the run-
time of DISC frameworks, FLOWDEBUG does not require
any modifications to the framework’s runtime and instead pro-
vides an API on top of existing data structures such as Apache
Spark RDDs, making it easier to adopt. Other data provenance
approaches that leverage the notion of influence [10, 40] or
taint analysis [38] are limited in their generalizability, because
they either rely on predefined, operator-specific data-partition

strategies or require the costly practice of intercepting billions
of system calls to process taint marks.

We evaluate FLOWDEBUG on three primary research eval-
uation questions related to precision, recall, and performance
and compare it with state-of-the-art data provenance and
search-based debugging techniques. Compared to Titian [25],
FLOWDEBUG improves precision by up to 99.9 percent-
age points. Compared to BigSift [18], FLOWDEBUG is able
to improve recall by up to 99.3 percentage points. Finally,
FLOWDEBUG is able to perform debugging up to 51X faster
than Titian and 1000X faster than BigSift while adding an
instrumentation overhead of 0.4X - 6.1X compared to Apache
Spark. FLOWDEBUG shows remarkable improvement in to-
day’s automated debugging of large-scale data processing and
reduces manual human effort in a root cause analysis.

2 MOTIVATING EXAMPLE
This section discusses two examples of Apache Spark appli-
cations, inspired by the motivating example presented else-
where [18], to show the benefit of FLOWDEBUG. FLOWDE-
BUG targets commonly used big data analytics running on
top of Apache Spark, but its key idea generalizes to any big
data analytics running on data intensive scalable computing
(DISC) frameworks.

Suppose we want to analyze a large dataset that contains
weather telemetry data in the US over several years. Each
data record is in a CSV format, where the first value is the
zip code of a location where the snowfall measurement was
taken, the second value marks the date of the measurement
in the mm/dd/yyyy format, and the third value represents
the measurement of the snowfall taken in either feet (ft) or
millimeters (mm). For example, the following sample record
indicates that on January 1st of Year 1992, in the 99504 zip
code (Anchorage, AK) area, there was 1 foot of snowfall:
99504, 01/01/1992, 1ft .

2.1 Running Example 1
Consider an Apache Spark program, shown in Figure 1 that
performs statistical analysis on the snowfall measurements.
For each state, the program computes the largest difference
between two snowfall readings for each day in a calendar
year and for each year. Lines 5-18 show how each input
record is split into two records: the first representing the
state, the date (mm/dd), and its snowfall measurement and
the second representing the state, the year (yyyy), and its
snowfall measurement. We use function convertToMm at
line 10 of Figure 1a to normalize all snowfall measurements
to millimeters. Similarly, we uses zipToState at line 7
to map zipcode to its corresponding state. To measure the
biggest difference in snowfall readings (Figure 1), we group
the key value pairs using groupByKey in line 24, yielding
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1 val log = "s3n://xcr:wJY@ws/logs/weather.log"
2 val input :RDD[String] = new

SparkContext(sc).textFile(log)
3
4 val split = input.flatMap{ s:String =>
5 val tokens = s.split(",")
6 // finds the state for a zipcode
7 var state = zipToState(tokens(0))
8 var date = tokens(1)
9 // gets snow value and converts it into millimeter

10 val snow = convertToMm(tokens(2))
11 //gets year
12 val year = date.substring(date.lastIndexOf("/"))
13 // gets month / date
14 val monthdate=

date.substring(0,date.lastIndexOf("/"))
15 List[((String,String),Float)](
16 ((state , monthdate) , snow) ,
17 ((state , year) , snow)
18 )
19 }
20 //Delta between min and max snowfall per key group
21 val deltaSnow = split
22 .groupByKey()
23 .mapValues{ s: List[Float] =>
24 s.max - s.min
25 }
26 deltaSnow.saveAsTextFile("hdfs://s3-92:9010/")
27 def convertToMm(s: String): Float = {
28 val unit = s.substring(s.length - 2)
29 val v = s.substring(0, s.length - 2).toFloat
30 unit match {
31 case "mm" => return v
32 case _ => return v * 304.8f
33 }
34 }

(a) Original Example 1

1 val log = "s3n://xcr:wJY@ws/logs/weather.log"
2 val input :ProvenanceRDD[TaintedString] = new

FlowDebugContext(sc).textFileWithTaint(log)
3
4 val split = input.flatMap{s: TaintedString =>
5 val tokens = s.split(",")
6 // finds the state for a zipcode
7 var state = zipToState(tokens(0))
8 var date = tokens(1)
9 // gets snow value and converts it into millimeter

10 val snow = convertToMm(tokens(2))
11 //gets year
12 val year = date.substring(date.lastIndexOf("/"))
13 // gets month / date
14 val monthdate=

date.substring(0,date.lastIndexOf("/"))
15 List[((TaintedString,TaintedString),TaintedFloat)](
16 ((state , monthdate) , snow) ,
17 ((state , year) , snow)
18 )
19 }
20 //Delta between min and max snowfall per key group
21 val deltaSnow = split
22 .groupByKey()
23 .mapValues{ s: List[TaintedFloat] =>
24 s.max - s.min
25 }
26 deltaSnow.saveAsTextFile("hdfs://s3-92:9010/")
27 def convertToMm(s: TaintedString): TaintedFloat = {
28 val unit = s.substring(s.length - 2)
29 val v = s.substring(0, s.length - 2).toFloat
30 unit match {
31 case "mm" => return v
32 case _ => return v * 304.8f
33 }
34 }

(b) Example 1 with FLOWDEBUG enabled

Figure 1: Example 1 identifies, for each state in the US, the delta between the minimum and the maximum snowfall
reading for each day of any year and for any particular year. Measurements can be either in millimeters or in feet. The
conversion function is described at line 27. The red rectangle highlights code edits to enable FLOWDEBUG’s UDF-aware
taint propagation. Although Scala does not require explicit types to be declared, some variable types are mentioned in
orange color to highlight type difference.

records that are grouped in two ways (1) by state and day
and (2) by state and year. Then, we use mapValues to find
the delta between the maximum and the minimum snowfall
measurements for each group and save the final results.

1 //finds input data with more 6000mm of snow reading
2 def scan(snowfall:Float, unit:String):Boolean = {
3 if(unit == "ft") snowfall > 6000/304
4 else snowfall > 6000
5 }

Figure 2: A filter function that searches for input data
records with more than 6000mm of snowfall reading.

After running the program in Figure 1a and inspect-
ing the result, the programmer finds that a few output
records have suspiciously high delta snowfall values (e.g.,
AK, 1993, 21251 ). To trace the origin of these high out-
put values, suppose that the programmer performs a simple
scan on the entire input to search for extreme snowfall val-
ues using the code shown in Figure 2. However, such scan is
unsuccessful, as it does not find any obvious outlier.

An alternative approach would be to isolate a subset of
input records contributing to each suspicious output by using
search-based debugging [18] or data provenance [25], both of
which have limitations related to inefficiency and imprecision,
discussed below.
Imprecision of Data Provenance. Data provenance is a pop-
ular technique in databases. It captures the input-output map-
pings of a data processing pipeline to explain the output of
a query. In DISC applications, these mappings are usually
captured at each transformation level (e.g., map, reduce,
join) [25] and then backward recursive join queries are
run to trace the lineage of each output record. Most data
provenance approaches [5, 6, 15, 21, 23, 25, 30] are coarse-
grained in that they do not analyze the internal control flow
and data flow semantics of user-defined functions (UDFs)
passed to each dataflow operator and by treating them as a
black box. Thus, they overestimate the scope of input records
related to a suspicious output. For example, Titian would re-
turn all 6,063,000 input records that belong to the key group
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mapValues

RDD
Key:(String,String)
Value: Float

RDD
Data: String

PairRDD
Key:(String,String)
Value: List[Float]

PairRDD
Key:(String,String)
Value: Float

Row: String

textFileWithTaint

flatMap

groupByKey

mapValues

ProvenanceRDD
Key:(TaintedString,TaintedString)
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Data: TaintedString

Row: String

ProvenancePairRDD
Key:(TaintedString,TaintedString)
Value: List[TaintedFloat]

ProvenancePairRDD
Key:(TaintedString,TaintedString)
Value: TaintedFloat

(a) Original DAG (b) Automatic DAG Transformation Using  
FlowDebug’s textFileWithTaint API 

Figure 3: Using textFileWithTaint, FLOWDE-
BUG automatically transforms the application DAG.
ProvenanceRDD enables transformation-level prove-
nance and influence-function capability, while tainted
primitive types enable UDF-level taint propagation.

(AK, 1993), even though the UDF passed to mapValues
in line 24 of Figure 1a uses only the maximum and minimum
values within each key group to compute the final output.
While Titian used the term fine-grained provenance to re-
fer to its record-level provenance, we redefine the term to
refer to more precise, fine-grained provenance that is both
record-level and UDF-semantics aware.
Inefficiency of Search-based Debugging. Delta Debugging
(DD) [41] is a well known search-based debugging technique
that eliminates irrelevant inputs by repetitively re-running
the program with different subsets of inputs and by checking
whether the same failure is produced. In other words, narrow-
ing down the scope of responsible inputs requires repetitive
re-execution of the program with different inputs. For exam-
ple, BigSift [18] would incur 41 runs for Figure 1a, since its
black-box debugging procedure does not recognize that the
given UDF at line 26 selects uses only two values (min and
max) for each key group.
Debugging Example 1 with FLOWDEBUG. To en-
able FLOWDEBUG, we replace SparkContext
with FlowDebugContext that exposes a set of
ProvenanceRDD, enabling both influence-based data
provenance and taint propagation. Figure 3 shows this auto-
matic type transformation and the red box in Figure 1b high-
lights those changes. Instead of textFile which returns
an RDD of type String, we use textFileWithTaint
to read the input data as a ProvenanceRDD of type
TaintedString. The UDF in Figure 1a lines 5-18 now
expects TaintedString as input and returns a list of
tuple with tainted primitive types. Although a user does
not need to explicitly mention the variable types due to
compile-time type inference in Scala, we include them
to better illustrate the changes incurred by FLOWDEBUG.

1 val log = "s3n://xcr:wJY@ws/logs/weather.log"
2 val input :ProvenanceRDD[TaintedString]] = new

FlowDebugContext(sc).textFileWithTaint(log)
3
4 val split = input.flatMap{s: TaintedString =>
5 . . .
6 }
7 val deltaSnow = split
8 .aggregateByKey((0.0, 0.0, 0)){
9 {case ((sum, sum_Sq, count), next) =>

10 (sum + next, sum_sq + next * next,
11 count + 1) },
12 {case ((sum1, sum_sq1, count1),
13 (sum2, sum_sq2, count2)) =>
14 (sum1 + sum2, sum_sq1 + sum_sq2,
15 count1 + count2) },
16 // Optional argument to enable taint propagation
17 enableTaintPropagation = Some(false),
18 // Optional influence function
19 influenceTrackerCtr = Some(
20 () => StreamingOutlierInfluenceTracker(
21 zscoreThreshold=0.96)
22 )
23 }.mapValues{
24 case (sum, sum2, count) =>
25 ((count*sum2) - (sum*sum))/(count*(count-1))}
26
27 deltaSnow.saveAsTextFile("hdfs://s3-92:9010/")

Figure 4: Running example 2 identifies, for each state in
the US, the variance of snowfall reading for each day of
any year and for any particular year. Red rectangle high-
lights the changes to enable influence-based provenance.

The use of FlowDebugContext also triggers automated
code transformation to refactor the input/return types of
any method used within a UDF such as convertToMm at
line 27 of Figure 1b. At runtime, FLOWDEBUG uses tainted
primitive types to attach a taint object to the primitive type for
provenance tracking purposes. By doing so, FLOWDEBUG
can track the provenance inside the UDF and improves
precision. For example, the UDF at line 24 of Figure 1b
performs selection with min and max on the input list. Since
the data type of input list (s) is List[TaintedFloat],
FLOWDEBUG propagates the provenance of only the
minimum and maximum elements in the list. The final
outcome contains the list of references of the following
records that are responsible for a high delta snowfall.

77202,7/12/1933,90in

77202,7/12/1932,21mm

When FLOWDEBUG pinpoints these two input records, the
programmer can now see that the incorrect output records are
caused by an error in the unit conversion code, because the
developer did not anticipate that the snowfall measurement
could be reported in the unit of inches and the default case
converts the unit in feet to millimeters (line 10 in Figure 1a).
Therefore, the snowfall record 77202, 7/12/1933, 90in

is interpreted in the unit of feet, leading to an extremely high
level of snowfall, say 21366 mm after the conversion.
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2.2 Running Example 2
Consider another Apache Spark program shown in Figure 4.
For each state of the US, this program finds the statistical
variance of snowfall readings for each day in a calendar year
and for each year. Similar to Example 1 in Figure 1b lines
4-19, the first transformation flatMap projects each input
record into two records (truncated in Figure 4 line 4-6, corre-
sponding to the same operation in Figure 1b): (state, mm/dd),
and its snowfall measurement (state, yyyy), and its snowfall
measurement. To find the variance of snowfall readings, we
use aggregateyKey and mapValue operators to collec-
tively group the incoming data based on the key (i.e., by state
and day and by state and year) and incrementally compute
the variance as we encounter new data records in each group.
In vanilla Apache Spark, the API of aggregateByKey has
two input parameters i.e., a UDF that combines a single value
with partially aggregated values and another UDF that com-
bines two set of partially aggregated values. Further details
of the API usage of aggregateByKey can be found else-
where [1]. In Example 2, aggregateByKey returns a sum
of squares, a square of sum, and a count for each key group,
which are used by mapValues to compute variance.

After inspecting the results of Example 2 on the entire
data, we find that some output records have significantly high
variance AK, 9/02, 1766085 than the rest of the outputs
such as AK, 17/11, 1676129 , AK, 1918, 1696512 ,
AK, 13/5, 1697703 . As mentioned earlier, common de-

bugging practices such as simple scans on the entire input to
search for extreme snowfall values are insufficient.
Imprecision of Data Provenance. Because Example 2 cal-
culates statistical variance for each group, data provenance
techniques consider all input records within a group are re-
sponsible for generating an output, as they do not distinguish
the degree of influence of each input record on the aggregated
output. Thus all inputs records that map to a faulty key-group
are returned and the size could still be in millions of records
(in this case 6,063,000 records), which is infeasible to inspect
manually. For debugging purposes, a user may want to see
the input, within the isolated group, that has the biggest in-
fluence on the final variance value. For example, in a set of
numbers {1,2,3,3,4,4,4,99}, a number 4 is closer to
the average 15 and has less influence on the variance than the
number 99, which is the farthest away from the average.
Inefficiency of Search-based Debugging. The limitation of
search-based debugging approaches such as BigSift [18]
and DD [41] is that they require a test oracle function that
satisfies the property of unambiguity—i.e., the test failure
should be caused by only one segment, when the input
is split into two segments. For Figure 4, the final statis-
tical variance output of greater than 1,750,000 is marked
as incorrect, as it is slightly higher than the other half.

BigSift applies DD on the backward trace of the faulty out-
put and isolates the following two input records as faulty:

29749,9/2/1976,3352mm

29749,9/2/1933, 394mm

Although the two input records fail the test function, they are
completely valid inputs and should not considered as faulty.
This false positive is due to the violation of the unambiguity
assumption. During the fault isolation process, DD restricts
its search on the first half of the input, assuming that none
of the second half set leads to a test failure. However, in our
case, there are multiple input subsets that could cause a test
failure, and only one of those subsets contains the real faulty
input. Therefore, DD either returns correct records as faulty
or does not return anything at all.
Debugging Example 2 with FLOWDEBUG. Similar to
Example 1, a user can replace SparkContext with
FlowDebugContext. This change automatically re-
places all the succeeding RDDs with ProvenanceRDDs.
As a result, split at line 4 of Figure 4 becomes
ProvenanceRDD which uses the refactored version of
all aggregation operators APIs provided by FLOWDEBUG
(e.g., reduce or aggregateByKey). These APIs include
optional parameters: (1) enableTaintPropagation,
a toggle to enable or disable taint propagation and (2)
influenceTrackerCtr, an influence function to rank
input records based on their impact on the final aggre-
gated value. The user only need to make the edits shown
in the red rectangle to enable influence-based data prove-
nance (Figure 4), and the rest of taint tracking is done
fully automatically by FLOWDEBUG. A user may select one
of many predefined influence functions described in Sec-
tion 3.3 or can provide their own custom influence func-
tion to define selectivity and priority for debugging aggre-
gation logic. Lines 8-22 of Figure 4 show the invocation
of aggregateByKey that takes in an influence function
StreamingOutlierInfluenceTracker to prioritize
records with extreme snowfall readings. The guidelines of
writing an influence function is presented in Section 3.3.
Based on this influence function, FLOWDEBUG keeps the
input records with the highest influence only and propagates
their provenance to the next operation i.e., mapValues. Fi-
nally, it returns a reference pointing to an input record that
has the largest impact on the suspicious variance output.

77202,7/12/1933,90in

3 APPROACH
FLOWDEBUG is implemented as an extension library on top
of Apache Spark’s RDD APIs. After a user has imported
FLOWDEBUG APIs, provenance tracking is automatically
enabled and supported in three steps. First, FLOWDEBUG
assigns a unique provenance ID to each record in any initial
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Figure 5: Abstract representation of provenance tracking
at: operator-level, UDF-level, and aggregation.

source RDDs. Second, it runs the program and propagates
a set of provenance IDs alongside each record in the form
of data-provenance pairs. As the provenance for any given
data record may vary greatly depending on application seman-
tics, it utilizes an efficient RoaringBitmap [29] for storing the
provenance ID sets. Finally, when a user queries for input
records responsible for a given output, it retrieves the prove-
nance IDs for each of the inputs and joins them against the
source RDDs from the first step to produce the final subset
of input records. Figure 5 shows the propagation of prove-
nance at both operator-level and UDF-level and how influence
function refines provenance tracking at aggregation operators.

3.1 Transformation Level Provenance
ProvenanceRDD API mirrors Spark’s RDD API and enables
developers to easily apply FLOWDEBUG to their existing
Spark applications with minimal changes. An example edit to
enable taint tracking is shown in Figure 1b. As provenance
is paired with each intermediate or output data record, prove-
nance propagation can be broken down into the following:

• For one-to-one dependencies, provenance propagation
requires copying the provenance of the input record to
the resulting output record. Such dependencies stem
from RDD operations such as map and filter.

• For many-to-one mappings, the provenance of all input
records is unioned into a single instance. Examples
of many-to-one mappings include combineByKey and
reduceByKey.

• For one-to-many mappings created by flatMap,
FLOWDEBUG considers them as multiple dependen-
cies sharing the same source(s).

FLOWDEBUG enables higher precision provenance tracking
than operator level provenance by propagating taints within
UDFs using tainted data types (Section 3.2), and by leveraging
influence functions (Section 3.3).

Records
Taint 

Provenance
“2.1” 3341
“11.2” 3342
“N/A” 3343
“N/A” 3344
“6.9” 3345
“19.4” 3346

Records
Taint 

Provenance
“2.1” 3341
“11.2” 3342
“6.9” 3345
“19.4” 3346

records =>
 returnList = List() 
 for(a <- records)
  if( isFloat(a) ) 
   returnList.append(a)
 returnList

Records =>
value = 0.0f
for(a <- records)
 if(a.toFloat < 10.0) 
  value +=a.toFloat
value

Records
Taint 

Provenance

9.0 [3341,3345]

Apply UDF Apply UDF

Figure 6: FLOWDEBUG supports control-flow aware
provenance at the UDF level (left UDF) and can merge
provenance on aggregation (right UDF).

3.2 UDF-Aware Tainting
FLOWDEBUG enables UDF-aware taint tracking. This mode
rewrites the given program to automatically convert the sup-
ported data types into corresponding, tainting-enabled data
types that store both the original data type object along with
a set of provenance tags. These tainted data types mirror the
APIs of their original data types, but propagate provenance
information through UDFs to produce new, refined taints.

For example, in Figure 6, the UDF on the left takes a
collection of records and their corresponding taints as in-
puts and selects only numeric string e.g., "2.1". In such
cases, FLOWDEBUG performs control-flow aware tainting
and removes the taints of filtered-out records i.e., taint
3343 and 3344 for records "N/A". Similarly, the UDF
on the right takes in a collection of records and sums
up values that are less than 10.0. FLOWDEBUG’s data-
flow aware tainting captures such interactions and merges
the provenances of only the records less than ten i.e.,
taint 3341 and 3345 for records "2.1" and "6.9"
respectively. Since traditional provenance techniques do
not understand the UDF semantics, they map the output
record "6.9" to all elements in the input collection with
taint[3341,3342,3343,3344,3345,3346].
Tainted Data Types. FLOWDEBUG individually retains
provenance for each tainted data type. When multiple taints
interact with each other through the use of binary or tertiary
operators (e.g., addition of two numbers), the two sets of
provenance tags are merged to produce the output taint set.
FLOWDEBUG currently supports all common Scala data types
and operations, broken down into numeric and string types.
Numeric Taint Types. FLOWDEBUG provides tainted data
types for Scala’s Int, Long, Double, and Float numeric types.
Standard operations such as arithmetic and conversion to
other tainted data types are extended to produce correspond-
ing tainted data objects. Many common numerical operations
are not explicitly part of Scala’s Numeric APIs. To support op-
erations such as Math.max, FLOWDEBUG provides an equiv-
alent library of predefined numerical operations for its tainted
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1 case class TaintedString(value:String, p:Provenance)
extends TaintedAny(value, p) {

2
3 def length:TaintedInt =
4 TaintedInt(value.length, getProvenance())
5
6 def split(separator:Char):Array[TaintedString] =
7 value.split(separator).map(s =>
8 TaintedString(s, getProvenance()))
9

10 def toInt:TaintedInt =
11 TaintedInt(value.toInt, getProvenance())
12
13 def equals(obj:TaintedString): Boolean =
14 value.equals(obj.value)
15 ...
16 }

Figure 7: TaintedString intercepts String’s method
calls to propagate the provenance by implementing
Scala.String methods.

numeric types. As an example, Math.max returns a single
input taint corresponding to the maximum numerical value.
String Taint Types. FLOWDEBUG provides a tainted String
data type which extends most String APIs (e.g., split
and substring) to return provenance-enabled String wrap-
pers. Figure 7 shows a subset of the implementation of
TaintedString. In the case of split implemented in line
6 of Figure 7, an array of string taints is returned in a
fashion similar to the array of strings typically returned
for String objects. For example, split(",") on a string
"Hello,World" with a taint value 18 returns an array of
tainted strings i.e., {("Hello",18), ("World",18)}
where 18 is the taint.

3.3 Influence Function Based Provenance
The dataflow operator-level provenance described in Sec-
tion 3.1 suffers from the same issue of over-approximation
that other techniques have [15, 23, 30]. This shortcoming
inherently stems from the black box treatment of UDFs
passed an an argument to aggregation operators such as re-
duceByKey. For example, in Figure 9, aggregateByKey’s
UDF computes statistical variance. Although all input records
contribute towards computing variance, input numbers with
anomalous values have greater influence than other. Tradi-
tional data provenance techniques cannot detect such interac-
tion and map all input records to the final aggregated value.

FLOWDEBUG provides additional options in the Prove-
nanceRDD API to selectively choose which input records
have greater influence on the outcome of aggregation. This
extension mirrors Spark’s combineByKey API by providing
init, mergeValue, and mergeFunction methods which allow
customization for how provenance is filtered and prioritized
for aggregation functions:

• init(value, provenance): Initialize an influence function
object with the provided data value and provenance.

1 class FilterInfluenceFunction[T](filterFn: T =>
Boolean) extends InfluenceFunction[T] {

2 private val values = ArrayBuffer[Provenance]()
3
4 def addIfFiltered(value: T, prov: Provenance){
5 if(filterFn(value)) values += prov
6 this
7 }
8
9 override def init(value: T, prov: Provenance) =

addIfFiltered(value, prov)
10
11 override def mergeValue(value: T, prov: Provenance)

= addIfFiltered(value, prov)
12
13 override def mergeFunction(other:

InfluenceFunction[T]){
14 other match {
15 case o: FilterInfluenceFunction[T] =>
16 this.values ++= o.values
17 this
18 }
19 }
20
21 override def finalize(): Provenance = {
22 values.reduce({case (a,b) => a.union(b)})
23 }
24 }

Figure 8: The implementation of the predefined Custom
Filter influence function, which uses a provided boolean
function to evaluate which values’ provenance to retain.

• mergeValue(value, provenance): Add another value and
its provenance to an already initialized influence func-
tion, updating the provenance if necessary.

• mergeFunction(influenceFunction): Merge an existing
influence function (which may already be initialized
and updated with values) into the current instance.

• finalize(): Compute any final postprocessing step and
return a single provenance object for all values observed
by the influence function.

Developers can define their own custom influence functions
or use predefined, parameterized influence function imple-
mentations provided by FLOWDEBUG as a library, described
in Table 1. The influence function API is intended for flexi-
bility and its efficacy ultimately depends on the users’ choice.
Figure 8 presents an example implementation of the influ-
ence function API and the predefined Custom Filter influence
function. StreamingOutlier provides a general implementa-
tion as an effective starting point. Although how automatic
construct influence functions for arbitrary aggregation UDFs
remains an open challenge, FLOWDEBUG’s predefined influ-
ence functions should address the majority of use cases. As
an example, suppose a developer is trying to debug a program
which computes a per-key average that yields an abnormally
high value. She may choose to use a TopN influence function
and retain only the top ten values’ provenance within each
key. Using this influence function, FLOWDEBUG can then
reduce the number of inputs traced to a more manageable
subset for developer inspection.
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InfluenceFunction Parameters Description

All None
Retain all provenance IDs. This is the default behavior used in transformation level provenance, when no
additional UDF information is available .

TopN/BottomN N (integer) Retain provenance of the N largest/smallest values.

Custom Filter FilterFn (boolean function)
Use a provided Scala boolean filter function (FilterFn) to evaluate whether or not to retain provenance for
consumed values.

StreamingOutlier Z (integer), BufferSize (integer)
Retain values that are considered outliers as defined by Z standard deviations from the (streaming) mean,
evaluated after BufferSize values are consumed. The default values are Z=3, BufferSize=1000.

Union
InfluenceFunctions
(1+ Influence Functions) Apply each provided influence function and calculate the union of provenance across all functions.

Table 1: Influence function implementations provided by FLOWDEBUG.

21303

661

902

18922

872

122

337

8851

aggregateByKey:

Sum_of_square, next => sum_of_square + next*next
sum, next => sum + next
count => count + 1

mapValues:

sum_of_square, sum, count =>
((count*sum_of_square) - (sum*sum) / 

(count*(count-1)))

Influence Function
21303

18922

FlowDebug’s Influence 
Based Provenance

Traditional Operator Based 
Data Provenance

Figure 9: Comparison of operator-based provenance
(blue) vs. influence-function based provenance (red). The
aggregation logic computes the variance of a collection of
input numbers.

Figure 9 highlights the benefits of influence-based data
provenance for aggregation. Every incoming record into the
aggregation operator passes through a user-defined influence
function that filters the extreme values, for instance, 21303
and 18922 which are two standard deviations away from the
mean and marked in red. In comparison, operator-based data
provenance returns the entire set of inputs marked in blue.

3.4 Generalizability
FLOWDEBUG is implemented currently for the batch pro-
cessing model of Apache Spark’s dataflow operators (RDDs)
but its technique can generalize to other DISC frameworks.
Due to the stateless nature of batch processing in Apache
Spark, FLOWDEBUG’s results may not generalize to stateful
computation such as streaming. Within the stateless process-
ing domain, FLOWDEBUG’s taint analysis relies on opera-
tor overloading and type inference, and is therefore directly
applicable to DISC frameworks written in other languages
so long as the taint analysis API is ported accordingly. For
example, Python relies on dynamic type inference and will
automatically use FLOWDEBUG’s taint-enabled APIs once
the user enables UDF-aware tainting. Consequently, PySpark
and its libraries could use FLOWDEBUG with possible extra
user effort. FLOWDEBUG’s influence function approach is
language-agnostic and can be adapted to other frameworks

such as Hadoop, Flink, and Tez by reimplementing influence
functions in the corresponding languages and libraries.

4 EVALUATION
We investigate six programs and compare FLOWDEBUG to
Titian, BigSift in precision, recall, and the number of inputs
that each tool traces from the same set of faulty output records.
We also compare debugging (tracing) times for all three tools,
as well as application execution times for the same tools plus
Apache Spark. Our programs and datasets are adopted from
prior work [18]. We use the open source versions of Titian and
BigSift with no additional modifications, as well as Apache
Spark 2.2.0. Each program is evaluated on a single machine
running macOS 10.15.3 with 16GB RAM, a 2.6GHz 6-core
Intel Core i7 processor, and 512GB flash storage.

Table 2, Figure 10, and Figure 11 summarize the results.
The running time is broken into two parts: (1) the instru-
mented running time shown in Figure 10, as all three tools
capture and store provenance tags by executing an instru-
mented program, and (2) the debugging time shown in Figure
11, as all three tools perform backward tracing for each faulty
output to identify a set of relevant inputs records. Note that
Titian and BigSift are not required in FLOWDEBUG’s work-
flow, and they are only used as baselines for comparisons.

The results highlight a few major advantages of FLOWDE-
BUG over existing data provenance (Titian) and search-
based debugging (BigSift) approaches. Compared to Titian,
FLOWDEBUG improves debugging precision by 15.0 to 99.9
percentage points by using influence functions and taint anal-
ysis in tandem to discard irrelevant inputs. Despite this im-
provement in precision and trace size reduction, FLOWDE-
BUG achieves the same 100% recall as Titian. Compared
to BigSift, FLOWDEBUG’s recall is 96.8 to 99.3 percentage
points higher.

Finally, FLOWDEBUG’s combined instrumentation and
tracing time is 12X - 51X faster than Titian and 500X - 1000X
faster than BigSift because FLOWDEBUG actively propagates
finer-grained provenance information, thus reducing its back-
wards tracing time. Additionally, FLOWDEBUG’s debugging
time is faster than BigSift because it does not require multi-
ple re-executions to improve its tracing precision. Compared

https://github.com/maligulzar/bigdebug/

https://github.com/maligulzar/bigdebug/
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Subject Input Faulty FlowDebug Trace Size Precision % Recall %
Program Records Outputs Strategy Titian BigSift FlowDebug Titian BigSift FlowDebug Titian BigSift FlowDebug
Weather 42.1M 40 UDF-Aware Tainting 6,063,000 2 112 0.0 50.0 35.7 100.0 2.5 100.0
Airport 36.0M 34 StreamingOutlier(z=3) 773,760 1 34 0.0 100.0 100.0 100.0 2.9 100.0

Department GPA 25.0M 50,370 StreamingOutlier(z=3) - - 50,370 - - 100.0 - - 100.0
Course Avg 50.0M 24 UDF-Aware Tainting, Top2+Bottom2 - - 20 - - 20.0 - - 16.7
Student Info 25.0M 31 StreamingOutlier(z=3) 6,247,562 1 31 0.0 100.0 100.0 100.0 3.2 100.0

Commute Type 25.0M 150 TopN(N=1000) 9,545,636 1 1000 0.0 100.0 15.0 100.0 0.7 100.0

Table 2: Debugging accuracy results for Titian, BigSift, and FLOWDEBUG. For Department GPA and Course Avg, Titian
and BigSift returned zero records for backward tracing of Department GPA and failed to run Course Avg.

Weather Airport Dept GPA Course AvgStudent Info Commute
0

50

100

150

100

58

146

64 57

18

87

27 33

8 9

100

58

146

64 57

1012 5 11 6 4

𝐽𝑜
𝑏
𝑇
𝑖𝑚

𝑒
(𝑠
)

TITIAN

FLOWDEBUG

BIGSIFT

SPARK

Figure 10: The instrumented running time of FLOWDE-
BUG, Titian, BigSift, and Spark.

to vanilla Spark, FLOWDEBUG’s instrumented run adds an
overhead of 0.4X - 6.1X.

Because FLOWDEBUG uses influence functions to actively
filter out less relevant provenance tags during an instrumented
run, it stores significantly fewer provenance tags. As a result,
the performance overhead is much smaller for FLOWDE-
BUG than the other two tools (i.e., in fact FLOWDEBUG is
more than five times faster). When using UDF-aware tainting,
FLOWDEBUG adds about 50% overhead to enable dynamic
taint propagation within individual UDFs; however, this ad-
ditional overhead is worthwhile, as this results in significant
time reductions in the typically more expensive tracing phase.

4.1 Weather Analysis
The Weather Analysis program runs on a dataset of 42 million
rows consisting of comma-separated strings of the form "zip
code, day/month/year, snowfall amount (mm or ft)". It parses
each string and calculates the largest delta, in millimeters,
between the minimum and maximum snowfall readings for
each year as well as each day and month. After running this
program, we find 76 output records that are abnormally high
and each contains a delta of over 6000 millimeters.

We first attempt to debug this issue using Titian by initiat-
ing a backward trace on these 76 faulty outputs. Titian returns
6,063,000 records, which correspond to over 14% of the entire
input. Such a large number of records is infeasible for a devel-
oper to inspect. Because the UDF passed to the aggregation
operator uses only min and max, the delta being computed
for each key group should correspond to only two records
per group. However, Titian is unable to analyze such UDF
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Figure 11: The debugging time to trace each set of faulty
output records in FLOWDEBUG, BigSift, and Titian.

semantics and instead over-approximates the provenance of
each output record to all inputs with the same key.

FLOWDEBUG precisely accounts for these UDF semantics
by leveraging UDF-aware tainting which rewrites the applica-
tion to use tainted data types. As a result, it returns a much
more manageable set of 112 input records. A quick visual
inspection reveals that 40 of these inputs have their snowfall
measurements listed in inches, which are not considered by
the UDF. The program thus converts these records to millime-
ters as if they were in feet, which is the root cause for the
unusually high deltas in the faulty outputs.

In terms of instrumentation overhead, FLOWDEBUG takes
86 seconds while Titian takes 57 seconds, as shown in Fig-
ure 10. FLOWDEBUG’s tracing time is significantly faster at
just under 3 seconds, compared to the 67 seconds taken by
Titian, as shown in Figure 11.

Another alternative debugging approach may have been to
use BigSift to isolate a minimal fault-inducing subset. BigSift
yields exactly two inputs, one of which is a true fault con-
taining an inch measurement. However, the small size of this
result set makes it difficult for developers to diagnose the un-
derlying root cause as it may be difficult to generalize results
from a single fault. The debugging time for BigSift is unrea-
sonably expensive on the dataset of 42 million records, as it
requires 41 reruns of the program with different inputs and
takes over 400 times longer than FLOWDEBUG (Figure 11).

4.2 Airport Transit Analysis
The Airport Transit Analysis program runs on a dataset
of 36 million rows of the form "date, passengerID,
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arrival, departure, airport". It parses each string and
calculates the sum of layover times for each pair of
an airport location and a departure hour as follows:

1 // number of minutes elapsed between two times
2 def getDiff(arr: String, dep: String): Int = {
3 val arr_min = arr.split(":")(0).toInt * 60 +

arr.split(":")(1).toInt
4 val dep_min = dep.split(":")(0).toInt * 60 +

dep.split(":")(1).toInt
5 if(dep_min - arr_min < 0){
6 return dep_min - arr_min + 24*60
7 }
8 return dep_min - arr_min
9 }

10
11 val pairs = input.map { s =>
12 val tokens = s.split(",")
13 val dept_hr = tokens(3).split(":")(0)
14 val diff = getDiff(tokens(2), tokens(3))
15 val airport = tokens(4)
16 ((airport, dept_hr), diff)
17 }
18 val result = input.reduceByKey(_+_).collect()

Unfortunately, after running this program, 33 of 384 produced
outputs have a negative value that should not be possible.

To understand why, we use Titian to trace these faulty
outputs. Titian returns 773,760 input records, the vast major-
ity of which do not have any noticeable issues.Without any
specific insight as to why the faulty sums are negative, we
enable FLOWDEBUG with the StreamingOutlier influence
function using the default parameter of z=3 standard devia-
tions. FLOWDEBUG reports a significantly smaller set of 34
input records, all of which have departure hours greater than
the expected [0,24] range. As a result, the program’s calcula-
tion of layover duration ends up producing a large negative
value for these trips, which is the root cause of faulty outputs.

FLOWDEBUG precisely identifies all 34 faulty input
records with over 99.9 percentage points more precision than
Titian and a smaller result size that developers can more
easily inspect. Additionally, FLOWDEBUG produces these
results significantly faster; Figure 10 shows that Titian’s in-
strumented run takes 100 seconds, which is 5 times more than
FLOWDEBUG’s. Furthermore, FLOWDEBUG’s backward trac-
ing takes 2 seconds compared to 42 seconds by Titian, as
shown in Figure 11.

For additional comparison, BigSift takes 550 times as long
as FLOWDEBUG (Figure 11) to trace a single faulty record
that represents in a decrease of 97.1 percentage points in
recall. The root cause of the error (out-of-range departure
hours) is also not immediately clear from this single record
without careful code inspection or additional data points to
generalize from.

4.3 Departmental GPA Statistics Analysis
The Departmental GPA Statistics program operates on 25
million rows consisting of "studentID, courseNumber, grade".

It parses each string entry and computes the GPA bucket
for each grade on a 4.0 scale. Next, the program computes
the average GPA per course number. Finally, it computes
the mean and variance of course GPAs in each department.
When we run the program, we observe the following output:

CS,(2.728,0.017)
Physics,(2.713,3.339E-4)
MATH,(2.715,3.594E-4)
EE,(2.715,3.338E-4)

STATS,(2.712,3.711E-4)
Strangely, the CS department appears to have an unusually

higher mean and variance than the other departments. There
are approximately 5 million rows belonging to the CS depart-
ment across about a thousand different course offerings, and a
quick visual sample of these rows does not immediately high-
light any potential fault cause due to the variety of records
and complex aggregation logic in the program.

Instead, we opt to use FLOWDEBUG’s influence function
mode and its StreamingOutlier influence function with the
default parameter of z=3 standard deviations. We rerun our
application with this influence function and trace the CS de-
partment record, which yields 50,370 records. While still a
large number, a brief visual inspection quickly reveals an
abnormal trend where all the records originate from only two
courses: CS9 and CS11. Upon computing the course GPA for
these two courses, we find that it is significantly greater than
most other courses—whereas most courses hover around a
GPA average of 2.7, these two courses have an unusually high
GPA average of 4.0. As a result, these two courses skew the
CS department mean and variance to be higher than those
of other departments. For the Departmental GPA Statistics
program, neither Titian nor BigSift produce any input traces.
BigSift is not applicable to this program due to its unambigu-
ity requirement for a test oracle function.

4.4 Course Grade Averages Analysis
The Course Grade Averages program operates on a modified
version of the Departmental GPA Statistics dataset, consist-
ing of approximately 50 million rows in the form "studentID,
courseNumber, grade". First, the program parses each string
record and additionally extracts a department based on the
course number. Next, it computes the average grade for each
course, as shown in ➊ of Figure 12. Using these course aver-
ages, the program then computes averages for the top-5 and
bottom-5 course averages within each department (see ➋ in
Figure 12). After execution, we observe the following output:

(CS,(81.67,82.31))
(STATS,(81.69,82.31))
(MATH,(81.66,82.37))

(Physics,(78.00,82.35))
(EE,(81.60,82.33))
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Figure 12: The Course Grade Average program com-
putes ➊ the average grade per course followed by ➋
the department-wide average of the top-5 and bottom-5
courses’ averages.

Note that the Physics department appears to have an abnormal
bottom-5 average, 78, compared to the other departments.
However, there are approximately 10 million rows belonging
to the Physics department so manual inspection is infeasible.

Because the program uses two aggregation steps, we enable
both influence function and UDF-aware tainting options in
FLOWDEBUG. For the initial aggregation of course averages
(➊ in Figure 12), we use a Top-2 and Bottom-2 influence
function that identifies the two highest and the two lowest
performing students in each course. We address the second
aggregation (➋ in Figure 12) by enabling UDF-aware tainting
to track the concise set of courses whose grade averages are
either in the top 5 or bottom 5 within their department.

For the abnormal bottom-5 average of 78 in the Physics
department, FLOWDEBUG uses UDF-aware tainting to trace
the exact 5 Physics courses with the lowest course averages.
Each course is then traced back to 4 input records (i.e., the
two highest and the two lowest performing students) via the
influence function. In other words, FLOWDEBUG returns the
top 2 and bottom 2 student grades for each of the 5 Physics
courses with the lowest course averages.

In practice, 2 of the 5 traced Physics courses have abnor-
mally low averages of 72.36 and 72.65, owing to 24 students
with "0" grades. FLOWDEBUG’s influence function identifies
4 of those 24 students, i.e., the two lowest-performing stu-
dents in each course. The rest of the traced input includes,
from each course, the two best performing students and the
two lowest-performing students with non-zero grades. There-
fore, FLOWDEBUG achieves a precision of 20% and a recall
of approximately 16.67%. Note that these measurements are
innately tied to the influence function and the program se-
mantics. For example, UDF-aware tainting alone can achieve
at best 40% precision in this scenario since it must trace 5
courses while only 2 contain faults.

The Course Grade Averages program also demonstrates the
combined benefits of taint analysis and influence functions, as
opposed to using each in isolation. If only UDF-aware tainting
is enabled for this program, FLOWDEBUG cannot reduce the
lineage size across the first aggregation (➊ in Figure 12).
Thus, it returns all the entries that belong to the bottom 5
Physics courses. With 153,320 such entries, this approach
results in a recall of 100% but a precision of 0.016%. When

enabling influence function only, FLOWDEBUG identifies the
4 (Top-2 and Bottom-2) most influential input records for
every Physics course, instead of finding the bottom 5 courses
in Physics. With 200 courses in the department, 800 records
are traced and the approach results in a precision and recall
of 0.5% and 16.67%, respectively.

The public release of Titian was unable to support the
Course Grade Averages program due to its incompatibility
with multiple aggregation stages. It runs out of memory on
the specified dataset and returns an empty backwards trace
for a smaller dataset, similar to the behavior observed in the
Departmental GPA Statistics program. As BigSift directly
depends on Titian, it also does not support this program.

4.5 Student Info Analysis
The Student Info Analysis program parses 25 million rows
of data consisting of "studentId, major, gender, year, age" to
compute an average age for each of the four typical college
years. However, there appears to be a bug as the average age
for the "Junior" group is 265 years old, much higher than the
typical human lifespan.

To debug why, we use Titian to trace the faulty "Junior"
output record only to find that it returns a subset of over 6.2
million input records. A quick visual sample does not reveal
any glaring bug or commonalities among the records other
than that they all belong to "Junior" students. Instead, we use
FLOWDEBUG to identify a more precise input trace.

When using FLOWDEBUG’s StreamingOutlier influence
function with the default parameter of z=3 standard devia-
tions, FLOWDEBUG identifies a much smaller set of 31 input
records. Inspection of these reveals that the student ID and
age values are swapped, resulting in impossible ages such as
"92611257" which drastically increase the overall average for
the "Junior" key group.

FLOWDEBUG produces an input set that is both smaller
and over 99.9 percentage points more precise than Titian. Ad-
ditionally, FLOWDEBUG’s instrumented run takes 8 seconds,
8 times less than Titian’s, while its input trace takes 2 seconds
compared to Titian’s 23 seconds. Overall, FLOWDEBUG finds
fault-inducing inputs in approximately 8% of the original job
processing time. Compared to BigSift, which reports a single
faulty record after 31 program re-executions, FLOWDEBUG
is over 500 times faster while providing higher recall and
equivalent precision.

4.6 Commute Type Analysis
The Commute Type Analysis program begins with parsing
25 million rows of comma-separated values with the schema
"zipCodeStart, zipCodeEnd, distanceTraveled, timeElapsed".
Each record is grouped into one of three commute types—car,
public transportation, and bicycle—according to its speed
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as calculated by distance over time in miles per hour. After
computing the commute type and speed of each record, the
average speed within each commute type is calculated by
computing the sum and count within each group 1.

1 val trips = inputs.map { s: String =>
2 val cols = s.split(",")
3 val distance = cols(3).toInt
4 val time = cols(4).toInt
5 val speed = distance / time
6 if (speed > 40) {
7 ("car", speed)
8 } else if (speed > 15) {
9 ("public transportation", speed)

10 } else {
11 ("bicycle", speed)
12 }
13 }
14 val result = trips.aggregateByKey((0L, 0))(
15 {case ((sum, count), next) => (sum + next,

count+1)},
16 {case ((sum1, count1), (sum2, count2)) =>

(sum1+sum2,count1+count2)},
17 ).mapValues({case (sum, count) =>
18 sum.toDouble/count}
19 ).collect()

When we run the Commute Type Analysis program, we
observe the following output:

car,50.88
public transportation,27.99

bicycle,11.88
The large gap between public transportation speeds and car

speeds is immediately concerning, as 50+ miles per hour is
typically in the domain of highway speeds rather than daily
commutes which typically include surface streets and traffic
lights. To investigate why the average car speed is so high,
we use Titian to conduct a backwards trace, Titian identifies
approximately 9.5 million input records, which amounts to
over one third of the entire input dataset. Due to the sheer
size of the trace, it is difficult to comprehensively analyze the
input records for any patterns that may cause the abnormally
high average speed.

Instead, we choose to use FLOWDEBUG to reduce the size
of the input trace. Since we know that the average speed is
unexpectedly high, we configure FLOWDEBUG to use the
TopN influence function with an initial parameter of n=1000
to trace the "car" output record. FLOWDEBUG returns 1000
input records, of which 150 records have impossibly high
speeds of 500+ miles per hour. In fact, these records are
airplane trips not accounted for.

FLOWDEBUG’s results are 15.0 percentage points more
precise than Titian’s. Additionally, FLOWDEBUG’s instru-
mentation time (9 seconds) is much faster than Titian’s (57
seconds). A similar trend is shown for tracing fault-inducing
inputs, where FLOWDEBUG takes under 2 seconds to isolate
the faulty inputs while Titian takes 73 seconds. Note that

1 This program was modified from the original in [19] by adding an additional
aggregation for higher program complexity.

our initial parameter choice of 1000 for our TopN influence
function is an overestimate—larger values would increase
the size of the input trace and processing time, while smaller
values would have the opposite effect and might not capture
all the faults present in the input. On the dataset of 25 mil-
lion trips, BigSift pinpoints a single faulty record after 27
re-runs. However, this process takes over 1,100 times longer
than FLOWDEBUG (Figure 11) and yields only a single input
out of the 150 faulty inputs.

5 RELATED WORK
Data Provenance. Data provenance has been an active area
of research in databases that can help explain how a certain
query output is related to input data [15]. Data provenance
has been successfully applied both in scientific workflows and
databases [5, 6, 15, 21]. RAMP [23] and Newt [30] added
data provenance support to DISC systems; both are capable
of performing backward tracing of faults to failure-inducing
inputs. Wu et al. design a new database engine, Smoke, that
incorporates lineage logic within the dataflow operators and
constructs a lineage query as the database query is being de-
veloped [36]. Ikeda et al. present provenance properties such
as minimality and precision for individual transformation op-
erators to support data provenance [22, 24]. Most of these data
provenance approaches capture lineages at a coarse-grained,
transformation operator level and do not analyze the seman-
tics of the UDFs. On the other hand, FLOWDEBUG refines
a set of inputs mapping to an output under investigation by
incorporating dynamic tainting for UDFs. While we do not
present a direct evaluation against RAMP and Newt, we do
compare against Titian [25] which does including compar-
isons against RAMP and NEWT.
Taint Analysis. In software engineering, taint analysis is nor-
mally leveraged to perform security analysis [31, 34] and
also used for debugging and testing [11, 28]. An example
of such work is Penumbra [12] that automatically identifies
the inputs related to a program failure by attaching fine-
grained tags with program variables to track information
flows. Program slicing is another technique that isolates state-
ments or variables involved in generating a certain faulty
output [4, 20, 39] using static and dynamic analysis. Chan
et al. identify failure-inducing data by leveraging dynamic
slicing and origin tracking [8]. DataTracker is another data
provenance tool that slides in between the Linux Kernel and
a Unix application binary to capture system-level provenance
via dynamic tainting [38]. It intercepts systems calls such as
open(), read(), and mmap2() to attach and analyze taint
marks. Doing so on a large-scale distributed framework on
top of JVM can be remarkably expensive as it would tag every
system call, including those irrelevant to the DISC application.
In general, applying these techniques to DISC applications
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can be costly, as they cannot distinguish the DISC framework
code from UDF code. FLOWDEBUG applies three techniques
in tandem —tainting within UDFs, coarse-grained data prove-
nance, and influence-function based refinement—all of which
are performed at the application level to overcome the limita-
tion of over-approximating failure-relevant inputs.
Search Based Debugging. Delta debugging [43] has been
used for a variety of applications to isolate a cause-effect
chain or fault-inducing thread schedules [9, 13, 42]. As stated
earlier, DD requires multiple re-executions of the program,
which is expensive for DISC applications. One way to reduce
the number of re-execution is to generate only valid config-
urations of inputs as implemented in HDD [33]. However,
HDD assumes the input to be in a well defined hierarchical
structure (e.g., XML, JSON), which only allows a very small
number of valid input sub-configurations. This assumption
does not hold true for DISC applications, as the input is usu-
ally unstructured or semi-structured. BigSift [18] combines
data provenance [25] and DD with several systems optimiza-
tions. As shown in Section 4, BigSift still suffers from a large
number of repetitive re-runs, which significantly increases the
debugging time. Additionally, it is not easy for a user to write
an appropriate test oracle function required by DD.
Influence Function Based Debugging. Prior work on the
explainability of a database query uses the notion of influence
to reason about an anomalous result. Such approaches elimi-
nate groups of tuples from the input such that the remaining
input, in isolation, does not lead to an anomalous result. The
goal is to find the most influential groups of tuples, usually
referred to as explanations [32, 37, 40]. Meliou et al. study
causality in the database area and identify tuples responsible
of answers (why) and non-answers (why-not) to queries [32]
by introducing the degree of responsibility.

Scorpion [40] uses aggregation-specific partitioning strate-
gies to construct a predicate that separates the most influential
partition (subset of input). Here the notion of influence is
that of a sensitivity analysis, where the generated predicate
removes the input records which, if changed slightly, would
lead to the biggest change in the outlier output. In other words,
it finds the inputs records that are most sensitive to the out-
lier output instead of finding the most contributing inputs.
Scorpion supports relational algebra in which the keys of
group-by operator are explicitly mentioned in a structured
data. However, in DISC applications, keys are extracted from
unstructured data through arbitrarily complex UDFs. Scor-
pion also uses predefined partition strategies to decrease the
search scope (similar to HDD [33]) and still requires repetitive
executions of the SQL query.

With the goal of minimal provenance and output repro-
ducibility in the context of differential dataflow, Chothia et
al. [10] design custom rules for dataflow operators, i.e., map,

reduce, join to record record-level data delta at each op-
erator for each iteration and for each increment of dataflow
execution. Their approach in part resembles FLOWDEBUG’s
StreamingOutlier influence function that captures influence
over incremental computation. Applying their approach to a
batch processing model requires partitioning the input and
then capturing delta corresponding to every partition dur-
ing incremental computation, making it drastically expensive
both in terms of storage and runtime overhead.

Carbin et al. solve a similar problem of finding the influ-
ential (critical) regions in the input that have a higher impact
on the output using fuzzed input, execution traces, and clas-
sification [7]. Compared to FLOWDEBUG, these approaches
target structured data with relational or logical queries (e.g.,
datalog) to generate another counter-query to answer Why
and Why not questions, but are not designed to handle the use
of arbitrary, complex UDFs common in DISC applications.
Debugging Big Data Analytics. Gulzar et al. design a set of
interactive debugging primitives such as simulated breakpoint
and watchpoint features to perform breakpoint debugging of
a DISC application running on cloud [19]. TagSniff intro-
duces new debugging probes to monitor program states at
runtime [14]. Upon inspection, a user can skip, resume, or
perform a backward trace on a suspicious state. Other tools
such as Arthur [16], Daphne [26], and Inspector Gadget [35]
are also coarse grained and thus cannot isolate fault-inducing
inputs precisely.

6 CONCLUSION
The data ingested by DISC applications is continuously evolv-
ing, often incomplete, and contains erroneous or invalid data
that could cause failures or wrong outputs. Due to the ter-
abyte scale of input data, developers find it challenging to
distinguish faulty input records from billions of other records.
Given a suspicious output, FLOWDEBUG identifies the pre-
cise record(s) that contribute the most towards generating the
suspicious output. It introduces the notion of influence func-
tions in data provenance to keep track of the most influential
inputs and uses UDF-aware taint tracing to capture control
flow and dataflow dependency. FLOWDEBUG improves preci-
sion by up to 99.9 percentage points and increases recall by up
to 99.3 percentage points, compared to prior data provenance
approaches. As a result, FLOWDEBUG can eliminate manual
debugging effort from the user by producing a precise and
accurate explanation for a failure or a wrong output.
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