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SUMMARY

Refactoring edits are error-prone, requiring cost-effective testing. Regression test suites are often used
as a safety net for decreasing the chances of behavioural changes. Because of the high costs related to
handling massive test suites, prioritization techniques can be applied to reorder test case execution, fos-
tering early fault detection. However, traditional prioritization techniques are not specifically designed for
detecting refactoring-related faults. This article proposes refactoring-based approach (RBA), a refactoring-
aware strategy for prioritizing regression test cases. RBA reorders an existing test sequence, using a set of
proposed refactoring fault models that define the refactoring’s impact on program methods.

Refactoring-based approach’s evaluation shows that it promotes early detection of refactoring faults and
outperforms well-known prioritization techniques in 71% of the cases.

Moreover, it prioritizes fault-revealing test cases close to one another in 73% of the cases, which can be
useful for fault localization. Those findings show that RBA can considerably improve prioritization of test
cases during perfective evolution, both by increasing fault-detection rates as well as by helping to pinpoint
defects introduced by an incorrect refactoring. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Refactorings aim to improve the internal aspects of a program while preserving its external
behaviour [1, 2]. Refactoring edits are very common in software development; Xing and Stroulia
[3] report almost 70% of all structural changes in Eclipse’s history are refactoring related. Recent
studies find software quality gains due to refactoring. Kim et al. analysis on Windows 7 versions [4]
shows a significant reduction of inter-module dependencies and post-release defects in refactored
modules. Moreover, Investigation of MacCormack et al. with the evolution of Mozilla’s architecture
[5] detects a significant improvement after continuous refactoring.

Although popular IDEs include built-in refactoring tools, developers still perform most refac-
torings manually. Murphy et al. [6] find that about 90% of refactoring edits are manually applied.
Negara et al. [7] show that expert developers prefer manual refactoring over automated. The under-
use of refactoring tools is mostly due to usability issues, to the lack of trust, and to developer’s
unawareness [8, 9]. Moreover, recent studies have shown that even well-known refactoring tools are
not free of problematic refactorings [10, 11].

As subtle faults may pass unnoticed, either manual or automatic refactorings require validation.
By subtle faults, we mean edits that alter a program’s behaviour without generating compilation
errors. Dig et al. [12] state that nearly 80% of the changes that break client applications are API-level
refactoring edits. Studies using version histories find that there is a relationship between the number
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of refactorings and software bugs [13, 14]. In addition, 77% of the participants from the survey of
Kim et al. with Microsoft developers [4] confirm that refactoring may induce the introduction of
subtle bugs and functionality regression.

A number of strategies are designed to prevent behavioural changes when refactoring: (i) refac-
toring mechanics, proposed by Fowler [1], guide the application of refactoring with the combination
of micro changes and compilation/test checks; (ii) the formal specification of refactoring edits,
founded by theories of object-oriented programming [15–17]; (iii) refactoring engines, automate
the application of refactoring edits by checking pre-conditions (e.g. Eclipse‡, NetBeans§, JRRT¶);
and (iv) regression testing, test suites are used to increase confidence on behaviour preservation after
refactoring [18].

From those options, regression testing is probably the most popular alternative. However, as a
system evolves, its regression test suite tends to increase, because new test cases can be added to
check new functionalities [19, 20]. Thus, it may be impractical to rerun regression suites after each
refactoring when working with a large test suite—it can take a long time for the first test case to
fail as well as it may be difficult and costly to gather enough information on test cases that fail so
that fault localization can begin. In such context, there is a need for techniques that preserve test
effectiveness, with as few test cases as possible. Test case prioritization [21] rearranges a test suite
aiming to improve achievement of certain testing goals (e.g. the rate of fault detection). Several
prioritization techniques have been proposed [22–28]; most consider code coverage as prioritization
criteria [21]—some are detailed in Section 3, and thoroughly in Section 7.

Although general-purpose (or traditional) solutions might produce acceptable results, specific
problems may require particular and/or adaptive solutions [29–33]. In previous empirical studies
[34–36], we investigate how traditional general-purpose techniques behave when dealing with
seeded refactoring faults in the context of real-open source projects. This investigation shows that
those techniques perform poorly when aiming to anticipate the detection of refactoring faults—
fault-revealing test cases were placed in the top of the prioritized suite only in 35% of the cases
(Section 2 exemplifies such scenarios). Traditional prioritization approaches lack useful information
for better scheduling test cases that detect refactoring faults. To the best of our knowledge, there
is no prioritization technique specialized in refactoring fault detection. This article proposes the
refactoring-based approach (RBA), a technique for prioritizing test cases guided by refactoring
edits. This technique’s prioritization heuristic assumes that a test case is more likely to detect a refac-
toring problem if it covers the locality of the edits, and/or commonly impacted methods. In order
to relate possibly impacted methods to test cases, refactoring fault models (RFMs) for five common
refactoring types were defined (rename method, move method, pull up field, pull up method and add
parameter) [6, 7]. Those models identify the commonly impacted methods after a specific refactor-
ing. The preliminary ideas behind RBA are introduced in a previous workshop paper [34], while
this article extends the solution with a complete definition of RFMs and a broader evaluation.

Refactoring-based approach is evaluated by means of two empirical studies: a case study using
three real-open source projects (EasyAccept, JMock and XML-Security) with seeded refactoring
faults and a controlled experiment using subtle refactoring faults collected from related studies and
extensive test suites. In comparison with six well-known prioritization techniques [37, 38], RBA
successfully detects refactoring faults earlier than all traditional prioritization techniques in most
cases (71%).

Studies in the literature show that prioritization techniques can impact fault localization effective-
ness, particularly if a selection of ranked test cases does not provide enough information to pinpoint
faults [39–42]. The reason is that fault localization techniques may not produce good results if the
suite has mostly passing tests [42].

Thus, RBA is also investigated regarding how spread the fault-revealing test cases are. By spread,
we mean how distant from one another, in the prioritized sequence, the test cases that reveal faults
are. The evaluation shows that RBA provides orders with more narrowly spread test cases in 73%

‡http://eclipse.org/
§http://netbeans.org/
¶https://code.google.com/p/jrrt/
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of the cases. This new arrangement may provide developers and/or testers earlier and more precise
information to understand and locate the fault.

In summary, the main contributions of this article are as follows:

� A test case prioritization technique centred on refactoring edits (RBA—Section 4), based on a
number of RFMs—Section 5) for some of the most common refactoring edits in Java programs.
RBA is integrated to an open source test case prioritization tool, PriorJ||;
� An evaluation of the technique by means of two empirical studies (Section 6), a case study with

three open source projects and seeded subtle refactoring faults and a controlled experiment with
subtle refactoring problems and extensive test suites. The studies provide statistical evidence
that RBA fosters early detection of refactoring-related behavioural changes.
� A new metric for evaluating how spread is the fault-revealing test cases throughout a prioritized

test sequence. Besides speeding up the rate of fault detection, a good prioritization technique
would also place all fault revealing test cases in early and close positions. This new metric
(F-spreading) measures this important aspect about prioritization.

Despite the fact that RBA is highly motivated by the scope of manual refactoring, it can also
be applicable with automated refactoring. For instance, refactoring tools are not bug free [10, 11],
and developers often wish to double check behaviour preservation after automated refactoring.
Furthermore, RBA can add value to the validation process by prioritizing and discarding obsolete
test cases. These tasks are very hard to do manually, as developers often give up refactoring if they
cannot manage their test suite. Moreover, several approaches use extensive test suites for automat-
ically validating refactorings [18, 43]. RBA could be used for reorganizing and/or guiding such
automatically generated test suites.

2. MOTIVATIONAL STUDIES

This section presents two motivational studies that illustrate the limitations of state-of-art prioritiza-
tion techniques in promoting early detection of behavioural changes after refactoring edits. Consider
the JMock open source project**, a library that supports test-driven development of Java code with
mock objects. The source is about 5 KLOC, with a test suite of 504 JUnit test cases that cover 92.1%
of the statements. Suppose John participates in JMock and decides to perform a pull up field refac-
toring edit. In a disciplined manner, John decides to follow the pull up field mechanics, as defined
by Fowler [1]:

1. Inspect all uses of the candidate fields to ensure they are used in the same way.
2. If these fields have different names, rename them for establishing a uniform name for the

superclass field.
3. Compile and test.
4. Create a new field in the superclass.
5. Delete the subclass fields.
6. Compile and test.

In a busy day, John, by mistake, neglects the first step of Fowler’s mechanics and ends up intro-
ducing a behavioural change. Instead of moving fields used in the same manner, he moves fields with
the same name but with different purposes (Figure 1—code insertion is marked with ‘C’). Although
the two moved fields are named equally—myActualItems, in classes ExpectationSet and
ExpectationList (Figure 1(a)) —they are associated with different types, HashSet and
ArrayList. Thus, after pulling up myActualItems, despite the absence of compilation errors,
a subtle behavioural change is introduced. This change leads four test cases from JMock test suite
to fail.

By rerunning JMock’s original test suite, John sees a failure after 400 test cases are run, which can
be overwhelming depending on the availability of resources (e.g. test cases with massive database

||https://sites.google.com/a/computacao.ufcg.edu.br/priorj/
**http://jmock.org/
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access tend to be time-consuming and costly). Moreover, considering the suite will be rerun a few
times over before the fault gets fixed, significant time will be spent examining failing test cases to
find the fault, which imposes a challenge for validating the edit.

In this scenario, consider the following small study. Aiming at anticipating fault detection, JMock
test suite is prioritized according to five traditional prioritization techniques: four coverage-based
[21] —total statement coverage, total method coverage, additional statement coverage and addi-
tional method coverage—and random choice. Table I shows the position of the first test case that
reveals John’s fault (F-measure), and the average percentage faults detected (APFD) results after
prioritization. A higher APFD indicates that a suite is able to detect the faults earlier (more details
on these metrics are discussed in Section 6). Although all dispositions improve the rate of fault
defection, the best result was produced by random choice.

This result indicates that the heuristics applied by traditional strategies might not be effective to
place test cases that reveal refactoring problems in the top positions. By observing failing test cases
(one of them is exemplified in Figure 2), one can see they do not access the modified field directly,
but the failure takes place due to method calls that are indirectly impacted by the edit. Hence, it is
ineffective to use test coverage for detecting this fault, also it can be hard to infer it manually.

Now, suppose that Ann works in the same project as John and, during code maintenance, she
decides to decompose a conditional statement [1] within method org.jmock.Mock.lookupID.
The boolean expression is not readable enough, and she wants to clean it up without changing its
meaning. Fowler’s steps for this edit are quite simple:

Figure 1. An example of a problematic refactoring edit using JMock’s code.

Table I. APFD results for Pull Up Field faulty edit.

Figure 2. Failing test case due to the pull up field edit.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2016; 26:402–426
DOI: 10.1002/stvr



406 E. L. G. EVERTON ET AL.

1. Extract the condition into its own method.
2. Extract the then part and the else part into their own methods.

Suppose that during this change, when extracting the conditional to the new method, Ann, by
mistake, ends up changing its meaning—instead of verifying the existence of id, the condition now
only checks whether it is null (Figure 3). As no compilation error occurs, Ann does not notice that
a behavioural change has been introduced.

By running JMock’s original test suite, the single test case revealing this problem is in position
335. Even after prioritization, the results from the traditional coverage-based techniques do not
improve this scenario significantly (Table II).

Looking closely at the failing test case (Figure 4), one can observe it does not directly call
(lookupID). Hence, fault localization is indeed harder. Prioritization by traditional coverage-based
techniques can be ineffective, as they do not consider anything but coverage data, yielding sequential
arrangements in which adjacent test cases have little semantic relationship.

These motivational studies indicate that traditional prioritization techniques often fail to anticipate
the detection of refactoring-related faults. A few technical reports [34–36] are provided with a more
detailed discussion on those studies.

Figure 3. An example of a problematic decompose conditional refactoring edit using JMock’s code.

Table II. APFD results Decompose Conditional
faulty edit.

Figure 4. Failed test case due to the problematic decompose conditional edit.
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3. TEST CASE PRIORITIZATION

Rothermel et al. [21] formally define the prioritization problem as follows:
Given: T , a test suite; PT , the set of permutations of T , and f , a function from PT to real numbers.
Problem: Find T 0 2 PT such as8T 00 2 PT �T 00 ¤ T 0 ! .f .T 0/ > f .T 00//, wherePT represents
the set of possible orderings of T , and f is a function that calculates the best results when applied
to any ordering.

Test case prioritization aims at proposing a specific execution order for achieving some testing
goal. This goal—formalized by function f in the definition earlier—varies according to each
domain (e.g. increasing the rate of fault detection or accelerating achievement of a coverage ratio).
In practice, however, depending on the testing goal, the test case prioritization problem may be
intractable [37]. Hence, prioritization solutions are usually based on heuristics.

Because of their simplicity, and their satisfactory results in general, coverage-based prioritization
techniques, and their variations, are the most used in practice [44]. Coverage-based techniques are
based on the idea that, the higher is a test’s coverage, the more likely it is to reveal faults. Some of
the most used techniques are briefly described as follows— they are used as baseline in the empirical
studies presented in this paper (Section 6).

� Total statement coverage (TSC): schedules test cases according to their statement coverage;
� Total method coverage (TMC): similar to TSC, but considering method coverage;
� Additional statement coverage (ASC): first selects the test case with the highest statement

coverage; second, the test case with the highest coverage of statements not covered by the
previously selected test cases is chosen next. This process is repeated until the test suite is
completely reordered;
� Additional method coverage (AMC): similar to ASC, but considering method coverage;
� Random (RD): produces a randomly-ordered suite;
� Change blocks (CB) [38]: identifies changed statements between two versions of a program

and schedules test cases according to their coverage of those statements.

4. THE REFACTORING-BASED APPROACH

The RBA is a prioritization technique for early uncovering of refactoring-related behavioural
changes by a regression test suite.

Figure 5 provides an overview of RBA, in which round-edged rectangles represent activities,
dotted rectangles are input or output artefacts, and arrows indicate a flow between activities or a
relationship between activities and artefacts.

Inputs and outputs RBA requires inputs usually available when a refactoring task is performed:

� Original and refactored versions of a program. The base version—a stable version of the
program for which all tests from the regression suite have passed—and the delta version—the
version after refactoring edit(s).
� A test suite. A set of test cases that reflects the behaviour of the base version.

As output, RBA generates a prioritized test suite: the same test cases from the original suite but in
a new execution order.

Guiding example In the following sections, RBA is presented along with a guiding
example. Suppose a developer performs the pull up method edit shown in Figure 6. Method k(int
i) is moved from class B to its superclass A. Yet, simple, this change introduces a behavioural
change; method B.m produces a different output (10 in Figure 6(a) and 20 in Figure 6(b)).

Approach Each refactoring imposes a different set of changes, and several types of behavioural
changes may be introduced. Thus, RBA must work in a different manner depending on the
refactoring applied.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2016; 26:402–426
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Figure 5. Refactoring-based approach overview.

Figure 6. An example of a problematic refactoring edit.
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Table III. Ref-strings for five refactoring types.

In activity discover refactoring edits (Figure 5), the applied refactoring is discovered by distin-
guishing versions base and delta. A number of techniques can be applied for identifying refactorings
(e.g. from a refactoring plan, manually, or with a pair review comparison [45]); RBA reuses a
state-of-art refactoring detection tool, Ref-Finder [46].

Ref-Finder identifies, from two consecutive versions of a Java program, which refactoring edits
were applied, by means of a technique called template-based refactoring reconstruction. Ref-
Finder’s output is parsed into ref-strings—simplified string patterns that describe type and location
of refactoring edits. Their representation resembles a procedure signature; the procedure name
represents the refactoring, and parameters are the classes, methods and fields directly involved.
Ref-strings for the five refactoring types currently supported in RBA are described in Table III—for
instance, PullUpMethod(B, A, k(int i)) in the guiding example.

With a set of ref-strings, RBA, in activity discover impacted elements, identifies the methods that
might have been affected by incorrect refactoring. Because the quality of prioritization is highly
related to the accuracy of this identification, RFMs—one for each refactoring—were designed and
implemented. They establish the set of methods, collected by static analysis, whose calls are likely
to expose undesired behavioural changes, if they exist. The RFM concept is detailed in Section 5.

For each collected ref-string, the correspondent RFM algorithm is run, and a set of methods—the
affected set (AS)—is built. In the end, AS contains the list of methods from the base version whose
behaviour is potentially modified. Back to Figure 6, the application of the pull up method RFM
results in AS = {A.k(long i), A.sum, B.k(int i), B.m}.

In activity generate test case call graphs, a dynamic call graph [47] is generated for each test case
in the suite, recovering its hierarchy of method calls.

Each node in the graph represents a method, and each edge (f,g) indicates a call from method
f to method g.

Figure 7 shows the call graphs for the test cases in Figure 6(c).
Next, in activity select refactoring-impacted test cases, the graphs are processed for sorting out

the most relevant test cases, using as criterion the AS set. The selected test cases are those whose
call graphs contain at least one node matching elements from AS. For example, methods A.k(int
i), B.m and B.sum are in both AS and the call graphs of test1 and test3; thus, these test cases
get selected.

It is not RBA’s original goal, but if, due to project constraints, running a complete test suite
is impracticable, test cases absent from this resulting set could be removed (a case of test
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Figure 7. Call graphs of the test cases (Figure 6(c)) for the code under refactoring.

case selection). Yet, depending on how many refactorings are applied, this set may be vast anyway.
In this case, prioritization would be relevant as well.

Refactoring-based approach ’s prioritization is based on the impact value (IVAL) assigned to each
test case during activity calculate impact values. The IVAL for each test case is calculated from its
call graph; it is the number of methods in AS covered by the test case. For instance, both test1
and test3 include two nodes related to elements from the affected set, so they present equivalent
impact values (IVALtest1 D 2, and IVALtest3 D 2). On the other hand, as no node in test2 is in
AS, this test case has zero impact (IVALtest2 D 0).

Activity prioritize test cases reorders the suite based on IVALs. RBA assumes that test cases
covering more elements from AS are more likely to reveal behavioural changes. The test case with
the highest IVAL is placed on the top of the prioritized test suite then removed from the comparison.
Then, the test case with the second highest IVAL goes to the second position in the suite, and so on.
Ties are dealt with by random choice. Two possible prioritized suites from the example would be as
follows: {test1, test3, test2} or {test3, test1, test2}. For either choice, the behavioural change would
be detected by the first test case.

5. REFACTORING FAULT MODEL

An RFM establishes which methods from a program are potentially affected by a specific refactoring
edit.

Then, if a refactoring fault is introduced, causing behavioural change, calls to those methods have
a significant chance of exposing the fault, given the failure of regression test cases. For each RFM,
there is an algorithm to collect those methods. The novelty of RFMs is that individual consequences
of applied refactorings are used to improve test case prioritization.

Refactoring fault model definitions catch common faults, such as behavioural changes that
usually pass unnoticed even by well-trained developers (e.g. unnoticed overwritten and/or over-
loaded methods). An initial set of RFMs is defined by combining guidelines for applying refactor-
ings edits in practice (e.g. Fowler’s mechanics [1]) with initiatives for defining formal preconditions
for sound refactorings (e.g. [15–17]).

Currently, there are RFMs for five of the most common refactoring edits in Java programs [6]—
rename method, move method, pull up field, pull up method and add parameter. For brevity, the
following sections present the RFM for two representative refactorings types—rename method and
pull up method—along with their algorithms that build the set of affected methods (AS). The RFMs
are illustrated with examples of subtle refactoring problems reported by Soares et al. [48]. The
remaining three RFMs, and the formalization of all five RFMs by using metamodeling and OCL-
based rules, are available at RBA’s website [49]. The following auxiliary functions are used to aid
the specification of the algorithms.
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� searchMethodByName(C,n): the method named n from class C.
� getCallers(C,m): all callers of m in class C.
� getSubClasses(C): all subclasses of class C.
� getSuperClasses(C): all superclasses of class C.
� isStatic(m): true if method m is static, false otherwise.

5.1. Rename method

The RFM for rename method is identified by signature RenameMethod(C, oldName,
newName), where C is the class whose method is to be renamed, oldName is the signature of the
method to be renamed, and newName is the renamed signature.

This RFM specifies the AS as including

� oldName from 01;
� all methods in C [ subtypes(C) [ supertypes(C) whose bodies contain at least

one call to oldName or newName. Expression subtypes(C) (and supertypes(C),
analogously) yields all subclasses that inherit from C directly or indirectly;
� if the method oldName in C is static, all methods, in any class, whose bodies contain a call to
oldName.

Algorithm 1 describes how to build the AS set according to the RFM. In the top Line (1), AS is
initialized. Lines (2) to (4) add the method under refactoring and its callers to the AS set. Line (5)
adds to AS any method that calls a method with the same signature as the method after refactoring.
Lines from (6) to (10) find all subclasses of the refactored class, adding to AS all methods from
those classes that call methods with the same signature as oldName or newName. Lines (11) to
(15) do the same for all superclasses of the refactored class. Finally, in Lines (16) to (19), if the
original method is static, all classes are examined, adding to AS all methods with direct calls to the
static method.

Consider the refactoring depicted in Figure 8—method B.n is renamed to B.k, generating the
target version depicted in Figure 8(b). In this scenario, a behavioural change occurs; method B.m
from B returns 0, instead of 1 as in the previous version. This change is due to a subtle method
overriding that could easily pass unnoticed in a large, complex program. To detect such fault, a
test case must contain calls to B.m, which may invoke B.k indirectly, then exercising the distinct
behaviour. Line (5) of the RFM’s algorithm selects this method as possibly impacted. Also, Lines
(4), (8), (13) and (18) identify possibly obsolete test cases calling B.n, which is absent in the
target version.

Figure 8. Example of a problematic rename method.
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Algorithm 1 Rename Method RFM
Require: C class under refactoring;

oldName method to be refactored;
newName refactored method;

1: AS  ;
2: m searchMethodByName.C; oldName/

3: AS  AS [ ¹mº
4: AS  AS [ getCal lers.C; oldName/
5: AS  AS [ getCal lers.C; newName/
6: Sub  getSubC lasses.C /

7: for each class S 2 Sub do
8: AS  AS [ getCal lers.S; oldName/
9: AS  AS [ getCal lers.S; newName/

10: end for
11: Sup  getSuperC lasses.C /

12: for each class Sp 2 Sup do
13: AS  AS [ getCal lers.Sp; oldName/
14: AS  AS [ getCal lers.Sp; newName/
15: end for
16: if isStatic.m/ then
17: for each class Cl 2 Program do
18: AS  AS [ getCal lers.C l; oldName/
19: end for
20: end if
21: return AS

5.2. Pull up method

As an RFM, the pull up method refactoring is represented by PullUpMethod(Cs, C,-
mName), where Cs is the class to which mName is being moved, and C is the original class. The
RFM determines the AS set as the following items:

� any method with the same signature as mName in Cs [ subtypes(Cs) (where C 2
subtypes(Cs));
� all methods in Cs [ subtypes(Cs) whose bodies contain at least one call to mName;
� if mName is static, all methods whose bodies contain a call to mName.

Algorithm 2, after initializing the AS set at Line (1), adds to AS the method to be pulled up plus
any other method with the same signature, along with their callers—Lines (2) to (7). Lines from (8)
to (12) find the subclasses of the refactored class and add to AS all methods from those classes that
call the original method or methods with the same signature. Finally, in Lines (13) to (17), if the
original method is static, the algorithm goes through all classes adding to AS every method with
direct calls to the moved method.

In Figure 9(b), method B.test has its invocation resolved to B.k, differently from the source
version, in which the call to k is resolved to A.k The RFM selects, among others, the B.test
method as possibly affected.

5.3. Limitations of refactoring fault models

The aim of RBA is to anticipate detection of faults when using regression testing; we assume
that such approach emphasizes practical constraints over completeness of refactoring fault detec-
tion. Therefore, the RFM rules and correspondent algorithms do not intend to perform a complete
change impact analysis. More elaborate static analysis, or even fusing some dynamic analysis, could
improve analysis (making AS maximal, for instance), but the cost-benefit ratio is yet to be assessed.
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Algorithm 2 Pull Up Method RFM
Require: C class where the method is originally placed;

Cs class where the method will be moved to;
mName refactored method;

1: AS  ;
2: m searchMethodByName.C;mName/

3: AS  AS [ ¹mº
4: m2 searchMethodByName.Cs;mName/

5: AS  AS [ ¹m2º
6: AS  AS [ getCal lers.C;mName/
7: AS  AS [ getCal lers.C s;mName/
8: Sub  getSubC lasses.C /

9: for each class S 2 Sub do
10: AS  AS [ getCal lers.S;mName/
11: AS  AS [ searchMethodByName.S;mName/
12: end for
13: if isStatic.m/ then
14: for each class Cl 2 Program do
15: AS  AS [ getCal lers.C l;mName/
16: end for
17: end if
18: return AS

Figure 9. Example of a problematic method being pulled up.

Refactoring fault models do not directly model faults but enumerate methods related to a par-
ticular refactoring edit. When these methods are exercise by a test case, they might expose a fault.
Likewise, RFMs cannot guarantee detection of all types of behavioural changes for a refactoring; we
do not expect RFMs to cover every potential defect in such context. RFMs are proposed as heuristics,
based on established—theory and practice—literature on refactoring. As such, the approach covers
a considerable ground for common (and subtle) refactoring faults. What contributes to this decision
is the complexity of anticipating any possible refactoring-related behavioural change within a
general-purpose object-oriented language like Java. In fact, theoretical research on defining such
completeness property always consider a confined core language [15, 16, 50]. A more compre-
hensive RFM might lead to excessively large sets of affected methods, possibly, in consequence,
decreasing the quality of test case prioritization.

6. EVALUATION

In order to investigate the effectiveness of RBA in the early detection of behavioural changes, two
empirical studies were performed: an exploratory case study, in which subtle refactoring faults were

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2016; 26:402–426
DOI: 10.1002/stvr



414 E. L. G. EVERTON ET AL.

seeded into real Java open source projects; and a controlled experiment in which subtle behavioural
changes, collected from related research studies, was combined with automatically generated test
suites. In both studies, metrics related to how the approach places fault-revealing test cases on
suite’s top positions were used. Additionally, the second study focused on investigating whether
RBA prioritization is capable of placing failing test cases in closer positions.

6.1. Exploratory case study

This case study compared RBA with other prioritization techniques in the context of real Java
projects. The goal of this study was to observe RBA’s effectiveness when dealing with behavioural
changes for a given refactoring edit, from the point of view of a tester.

First, three open source Java projects were selected as experimental objects: XML-Security††

(� 17 KLOC), a library that provides security APIs for manipulating XML documents, such as
authorization and encryption; JMock (� 5 KLOC), described and used in Section 2; and EasyAc-
cept‡‡ (� 2 KLOC), a tool that helps create and run acceptance tests. These three projects present
a common property: they include an active, up-to-date test suite, which is key to this investigation.
While JMock’s suite comprises 504 JUnit test cases with 92% of code coverage, the two suites used
from EasyAccept have 65 and 74 test cases (88% and 87% of coverage, respectively), and XML-
Security includes 89 test cases, with 34% code coverage. To provide an overview of the test suites
quality, a mutation analysis was performed. For that, the PIT tool [51] was used in its default con-
figuration. This analysis reported the following mutant rates: XML-Security—24%, JMock—82%
and EasyAccept—70%. For each experimental object, five faulty versions were created, each ver-
sion with a single and a distinct seeded subtle refactoring-related behavioural change. For seeding
faults, a process, similar to the one described in Section 2, was followed, in which a single step from
Fowler’s mechanics [1] was neglected. None of the edits introduced compilation errors. Finally,
prioritized versions of the suites were created according to seven prioritization techniques from dif-
ferent categories: (i) RBA; (ii) four coverage-based approaches [21] (TSC, TMC, ASC and AMC);
(iii) the random approach (RD); and (iv) a modification-based approach [38] (change blocks—CB).

To guide this investigation, the following research question was established: Can RBA promote
early detection of refactoring-related faults? To address this question, two well-known metrics were
used for evaluating prioritized suites: F-measure [52, 53], indicating the number of distinct test cases
needed to be run for causing the first failure§§; and APFD [21], measuring the effectiveness of a
suite’s ordering (Equation 1, where n is the number of test cases, m is the number of exposed faults.
TFi is the position of the first test case which reveals fault i in the ordered test cases sequence).
Higher APFD values imply faster fault detection rates.

APFD D 1 �
TF1 C TF2 C : : :C TFm

nm
C

1

2n
(1)

Tables IV and V summarize the results. In 53% of the cases, RBA enabled fault detection after
running a single test case (F �measure D 1), which is the best scenario for a prioritized suite. This
rate was at least 2.6 times higher than all the other techniques (CBD20%; RDD0%; TSC D13%;
TMC D13%; ASC D13%; AMC D 13%). Moreover, RBA placed at least one fault-revealing test
case among the six first test cases in 93% of the cases, a satisfactory position, given the size of the
suites—ranging from 65 to 504 tests. Another result was the high stability of RBA. With excep-
tion of one case, APFD for RBA varied over a very tight range [0.925; 0.999], that is, RBA’s
orderings detected all behavioural changes early, and in similar positions. This conclusion is even
more evident when observing the standard deviation of APFD values, leaving out the worst case of

††http://xml.apache.org/security
‡‡http://easyaccept.sourceforge.net/
§§We are using the F-measure metric as introduced by Chen et al. [52] and commonly applied in the test case prioritization

community, which is different from the F-score metric, also named F-measure, applied in statistical analysis.
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Table IV. F-Measure results from the case study.

Table V. APFD results from the case study.

each technique, (sTSC D 0:338; sTMC D 0:322; sASC D 0:320; sAMC D 0:322; sCB D 0:180;
sRD D 0:117). RBA’s standard deviation (sRBA D 0:022) was an order of magnitude lower. Those
results evidence the effectiveness of RBA for early detection of refactoring faults.

Regarding RBA, there is an outlier case: the pull up field fault in EasyAccept. In this case, RBA
placed the first fault-revealing test cases at position 39, which is far distant from other numbers
obtained by RBA. From a detailed analysis, it can be observed that, in this case, the field under
refactoring was extensively accessed by several test cases, although the single failing test case was
the only one to use test data that revealed the fault. Thus, as the current version of RBA promotes
coverage of affected locations for prioritization, disregarding test data, the prioritization process
ended up prioritizing other tests over the failing test. As future work, we plan to extend RFMs to
include information regarding test data.

There were a few cases in which RBA was outperformed by other techniques; for instance, the
pull up field and rename method faults in JMock. In the first case, the failing test case has a high
coverage, which favours the Total strategies. In the second, the changed blocks prioritization per-
forms better, because, by renaming a particular method, the fault was detected by test cases that
directly call the changed parts of the code, which is the prioritization heuristic applied by CB. Nev-
ertheless, this result substantiates RBA’s stability: even when RBA did not produce the best results,
these were quite comparable with the best.

6.2. Experimental study

In the second investigation, a controlled experimental study was performed to collect statistical
evidence regarding RBA and its prioritization capability.

Questions and metrics This study was conducted based on two research questions:

RQ1: Can RBA detect refactoring-related faults earlier, when compared with other techniques?
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RQ2: Does RBA place failing test cases in less spread positions than other prioritization techniques?

For addressing the first question, the F-measure metric was used. Although APFD is the most
used for evaluating prioritized suites, this metric is not considered here, for the sake of space and
simplicity. As each experiment deals with one refactoring edit and one behavioural change at time,
in the scope of this investigation, the APFD results would only reflect the relative magnitude of the
F-measure values. Still, all APFD values were calculated and made available at our website [49].

Besides help detecting faults as soon as possible, effective prioritization should place fault-
revealing test cases in closer positions. Therefore, to address RQ2, a new metric is proposed,
F-spreading, which is a rate that measures how the failing test cases are spread in a prioritized test
suite. Equation 2 formalizes the metric, where N is the number of test cases of the test suite; m is
the number of failing test cases; TF is a sequence containing the positions of failing test cases; and
TFi is the position of the io failing test case in the prioritized suite.

F -spreading D

 
mX
iD2

TFi � TFi�1

!
�
1

N
(2)

Even when a single behavioural change is introduced, several test cases might fail. However, a
single test case seldom provides sufficient information for helping fault localization [54]. Particu-
larly, Yoo et al. [41] suggest that, for effective fault localization, the next test case to run when a
test case fails, should provide as much additional information as possible on the fault locality. In
this sense, when failing test cases are narrowly spread, it might easy fault localization, even though
we cannot guarantee the ordering always provides maximum information for fault localization. The
higher the F-spreading, the more spread the behavioural revealing test cases are.

In summary, good prioritization should generate prioritized suites with low F-measure and
F-spreading. For instance, consider two prioritization techniques T1 and T2, and a test suite S with
200 test cases, from which five fail. Suppose that, after applying both T1 and T2 to S, the failing test
cases are placed in the following positions: ST1:{1, 30, 40, 75, 100}, and ST2:{1, 10, 11, 15, 30}.
The F-spreading values for ST1 and ST2 are 0.495 and 0.145, respectively. Although both suites are
able to detect the behavioural change early (both F -measureT1 and F -measureT2 are one), T2
yields a less spread sequence. Thus, by using T2, in this context, useful information is confined to a
small set of tests, helping to locate the refactoring problem.

Planning and design Regarding the data set, it is difficult to find available real systems in which
refactoring behavioural changes can be localized through failing test cases—it is a common police
not to commit code with broken tests. Moreover, to the best of our knowledge, there is a lack
of refactoring-oriented mutation operators. Therefore, in the context of this experiment, a data set
with 26 examples of subtle Java code transformations reported in the literature [48, 55–57] was
built. These are the experimental subjects. All those code transformations are free of compilation
errors, containing behavioural changes that even well-known refactoring tools (e.g. Eclipse, Net-
beans, JRRT) were not able to detect. Figure 10 shows an example of a pull up method edit from the
used data set. Method B.k(int i) is pulled up to class A, generating an unexpected behavioural
change. Method B.test returns a different result (10, considering the source version, and 20 for the
target version). This kind of behaviuoral change is usually hard to identify through visual inspection
and was not detected by refactoring tools.

To evaluate consistently the prioritization order produced by each technique, an extensive test
suite was generated for each code transformation. For that, a test case generation tool was chosen
according to the following criteria: (i) the tool should be able to generate a test suite that detects the
faults; (ii) the tool should be able to generate more than one test case that fail to suit the practical
case that, very often, particularly in a manually created suit, more than one test case fails for a given
fault; (iii) the tool should follow a random generation approach to avoid any bias in resemblance of
the generation technique and the prioritization heuristics considered by the techniques under evalua-
tion; (iv) the tool should generate white-box test cases to more thoroughly investigate code structural
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Figure 10. One pull up method transformation used in the experiment.

Table VI. Hypotheses.

aspects that are commonly related to refactoring; and (v) the tool should not apply selection/
minimization/optimization strategies that could also bias results towards one of the techniques under
evaluation.

Consequently, the Randoop tool¶¶ was selected, because it meets all criteria. Randoop is an
automatic unit test generator for Java that produces unit tests by employing feedback-directed ran-
dom test generation. Moreover, this tool can build regression test suites with no need of user input,
having been used in several research studies (e.g. [18, 43, 58, 59]). For instance, the SafeRefactor
tool [60, 61] uses Randoop test suites for validating refactorings. It is important to remark that, even
though there are other relevant test case generation tools presented in the literature, they may not
suit this study context by failling to meet one or more of the aforementioned criteria. For instance,
Evosuite [62] does not meet criteria (iii) and (v).

As the size of the code transformations from the data set considered is often small (like the
example in Figure 10), and to allow Randoop to generate diversified regression suites, 30 extra
methods were added to each subject from the dataset. Those methods are completely independent,
not interfering with the execution neither of the original methods, nor of any other extra method.
Code for these extra methods is available at [49]; they were not impacted by any of the applied
refactorings. Randoop’s generation technique combines calls to both original and extra methods
into each test case, enriching the test suites. On average, for each of the 26 subjects, Randoop
generated suites with an average of 3568 test cases. The same Randoop configuration was used for
all generations, with 100 s as time limit, and maximum test size of five statements.

For statistical analysis, two pairs of statistical hypotheses were postulated, null and alternative
(Table VI). The null hypotheses (H0 and H0.2) state there is no significant difference between the
prioritization techniques under investigation, regarding F-measure and F-spreading (respectively).
The alternative hypotheses (H1 and H1.2) state there is significant difference. One-factor-and-
several-treatments experimental design was applied [63] to each experiment—an experiment for
each type of refactoring was considered—where the factor is the prioritization technique and the
treatments are seven prioritization techniques (TSC, TMC, ASC, AMC, RD, CB and RBA).

¶¶http://randoop.github.io/randoop/
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Following Jain’s suggestion [63], a pilot study was performed for defining the required number of
replications for each configuration. For each experimental configuration, the number of replications
varied from 500 to 1892, for a precision (r) of 2% of the sample mean and significance (˛) of 5%.
An experimental configuration is a combination of an object, a prioritization technique and one of
the two metrics.

Operation All prioritization executions were performed with the PriorJ tool [64, 65]. PriorJ is an
open-source tool that supports test coverage and prioritization activities execution for Java/JUnit
systems. PriorJ was extended in order to give support to RBA. Additionally, a set of script classes
were written for translating PriorJ’s output artefacts and calculating the needed metrics (F-measure
and F-spreading). During the execution of this study, PriorJ was run in a MacBook Pro Core i5
2.4GHz and 4GB RAM, running Mac OS 10.8.4.

Data analysis and discussion First, a normality test was performed, with confidence level of 95%
(˛ D 0:05), for each of the 364 experimental configurations (26 Java transformations � 7 priori-
tization techniques � 2 metrics D 364 normality tests). All p-values from those tests were smaller
than the significance threshold. Thus, the samples do not follow a normal distribution, and conse-
quently, a non-parametric test should be applied to evaluate the statistical hypothesis. Because each
experimental design had a unique factor with more than two treatments, the Kruskal–Wallis test was
applied [66]. Again, for all cases, the p-values were smaller than the significance level (˛ < 0:05).
Thus, both null hypotheses were rejected, that is, for F-measure and F-spreading, the prioritization
techniques presented differences in results, with 95% confidence level.

In a second moment, the confidence intervals for each group of F-measure and F-spreading
results were plotted. When overlappings were found, the Mann–Whitney test was applied [66], to
pair up and rank the techniques. After analysing confidence intervals and test results, the ranking
was established in Table VII. Each row shows a total order of results, for each of the two met-
rics (columns)—lower to higher metric results, from left to right. For instance, considering the first
seeded change with move method (MM_1), RBA was the technique that, on average, had the best
F-measure—the technique that leads to detection of this behavioural change earlier. The second
best technique for this scenario was either RD or CB (their results were statistically similar), then
TMC or AMC. Finally, TSC and ASC produced the highest F-measure, resulting in the worst order
for detecting the seeded fault. More detailed information regarding this analysis (normality and
hypothesis tests) is available in [49].

The results evidence that RBA promotes early detection of refactoring-related behavioural
changes. With respect to F-measure, RBA performed better than, or at least similar to, the other
techniques, for all configurations and refactoring types. Even CB did not behave well in several
cases (e.g. MM_4, MM_5). Regarding RQ1, RBA showed to be the better choice.

In addition, concerning F-spreading, RBA presented the best numbers in placing failing test
cases in close positions. Thus, RQ2 can be answered by suggesting that RBA very often places
behavioural-change-revealing test cases close to one another. This fact may give testers/developers
confined information to support fault localization.

By examining the cases, RBA was outperformed (MM_6, PUF_1, PUF_2, PUF_3), and it can
be observed that not all methods collected by RFMs were impacted by the change. This happened
because the RFMs are name based, which may not be efficient in some situations. In specific, when
the refactoring edit involves variable manipulation (e.g. pull up field), name analysis is compromised
by variable with same name but different scopes, as happened in this experiment. For instance, when
a name-based approach was used for searching for methods that accessed certain refactored field
(rule from the pull up field’s RFM), by coincidence, some of the extra methods had local variables
with same name as refactored fields. Thus, for those cases, this analysis failed on selecting only the
test cases related to the changes.

In order to explore this supposition, a post-study investigation was performed, renaming those
variables before rerunning the experiment. As result, there was a significant improvement of
the F-spreading results. For instance, PUF_1’s F-spreading dropped from 0.95 to just 0.004.
These numbers may be evidence that, by combining the proposed RFM rules with variable scope

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2016; 26:402–426
DOI: 10.1002/stvr



PRIORITIZING TEST CASES FOR EARLY DETECTION OF REFACTORING FAULTS 419

Table VII. Results of prioritization techniques, for each type of refactoring.

differentiation and/or binding checking, the quality of the prioritization results may improve. A new
version of changed RFMs and additional experiments are regarded as future work.

Numerical analysis Beyond the statistical evidence presented earlier, the overall numbers of the
experiment emphasize conclusions presented in this paper. Each prioritization technique was run, on
average, 3545 times, generating one different prioritized suite for each run. By analysing the values
for both metrics (F-measure and F-spreading) are possible to see that in 71% of the cases, RBA
yielded better F-measure results, in comparison with all other techniques. Similarly, considering
the F-spreading results, RBA outperformed the other techniques in 73% of the cases. The data
containing all results from this study are available in [49].

Final remarks The reported experimental study deals with two complex elements: (i)
subtle refactoring faults, which not even the most well-known refactoring tools are able to detect;
and (ii) large regression test suites, encompassing an average of 3568.6 JUnit test cases. Those ele-
ments tend to turn prioritization even harder. Even though dealing with those complicating factors,
RBA produced satisfactory and stable results. With the combination of early fault localization (high
F-measure) and a more narrowly spread of failing test cases (low F-spreading), RBA appears as an
alternative for test case prioritization when doing refactoring.

Complementary study with evosuite Although experimentation presented in this section is based
on test suites generated using the Randoop tool, a pilot study was conducted to investigate weather
RBA’s results would be different when dealing with suites generated using other strategies. For that,
other well-known test generation tool was selected, Evosuite [62]. Evosuite was used in its default
configuration for generating suites for the same data set with 26 subjects. The size of the generated
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test suites were considerably smaller than the ones generated by Randoop (around 27 test cases per
suite), as EvoSuite performs optimizations and minimizations. Very often, only one test case failed
(only in 4 out of the 26 subject, 2–3 test cases failed), and there was a case where the fault was
not detected by the generated suite (RM_2 object). Therefore, with EvoSuite, it was only possible
to partially evaluate the techniques by observing their detection potential (F-measure). It was not
possible to assess spreading of test cases that fail (F-spreading).

Even so, RBA had a similar and excellent performance, as in the study with Randoop, regarding
F-measure, placing the unique test case that fail in the first position in the majority of the cases (80%)
and, in the worst case, in the 3rd position. On the other hand, the second best prioritization technique
(CB) placed the failed test cases among the three first position in only 34% of the cases. All results of
this complementary study are available in our website [49]. It is important to remark that coverage-
based techniques could not be considered in this study as, differently from Randoop, Evosuite does
not mix the target methods with the additional methods in test cases. As a consequence, the size of
the methods can bias the results obtained for these techniques.

Threats to validity Regarding the possible threats to the validity of the results previously discussed:

� Conclusion: In order to achieve statistical significance, the number of replications for each
experiment was decided according to statistical principles. Moreover, the analysis applied con-
sidered a high confidence level (95%). Finally, the statistical tests were selected after testing
the data set against normality;
� Internal: The existence of potential faults in PriorJ could have undermined results analysis.

However, PriorJ contains a set of extensive unit tests that validate how it implements the pri-
oritization techniques. Additionally, for controlling this threat, this tool was validated through
testing on several examples of test suites and programs.
� Construction: Alternatives to the metrics considered—F-measure and F-spreading—could

have been considered for evaluating prioritization. However, according to the purpose of this
investigation, and the experimental setup, those measures can be regarded as appropriate.
Future additional studies might consider different metrics.
� External: Some circumstances of the study certainly hinder the generalization of its results.

First, because the number of subjects were small in some cases (e.g. two code examples for the
rename method edit), it is impossible to say that the used data set represents the whole universe
of Java programs and refactoring faults. However, as those subjects were identified by other
research results, and reflect subtle faults that not even the most used refactoring tools were
able to identify, they can be regarded as suitable for the purpose of this investigation, based on
the assumption that if a prioritization technique is able to detect those hard to find faults, it is
likely to detect easier ones. Second, concerning test suite representativeness, only automatically
generated random regression suites were used. Although this practice is not always used in real
projects, random testing has been used extensively, and random unit tests have been a great
alternative due to the available tool support (e.g. Randoop). In addition, random suites have
been used by other works for validating refactorings [61]. Moreover, manually created test
suites were used in the case study with open source projects (Section 6.1).

7. RELATED WORK

Refactoring and testing Validation of refactoring edits with testing is common practice in real
projects. Although other refactoring validation strategies are attainable (e.g. [18, 67]), regression
test suites are still the main (mostly the only) strategy for assuring correctness of manual refactor-
ings in daily development. A study with Microsoft developers [4] shows the lack of effective tests
often refrains developers from starting to refactor. Moreover, even well-known engines for automatic
Java refactoring, such as Eclipse, NetBeans and JRRT, are not exempt from faults, which empha-
sizes the need for testing validation. Test-based strategies have revealed important bugs in those
tools [10, 55].
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However, as software evolves, its regression suite tends to increase, becoming hard to manage.
Nevertheless, as shown by Rachatasumrit and Kim [14], often only part of a suite is useful for reveal-
ing refactoring faults. One way of dealing with this limitation is to generate tests automatically, as
employed by other tools for validating refactorings, such as SafeRefactor [18] and SafeRefactorIm-
pact [43]. However, it may be impractical to regenerate, or only execute, an extensive test suite
after each refactoring. In this sense, by providing a strategy for rescheduling test cases, applicable
to any Java test suite—whether it was manually or automatically created—RBA might harmonize
with these test-based refactoring validation strategies. Once a suite is generated, its test cases can be
rescheduled by RBA and, because the top test cases are more likely to review the faults, a developer
can decide how much of the suite should be executed, according to her resource constraints.

Test case prioritization To the best of our knowledge, RBA is the first prioritization approach
specialized in early detection of refactoring faults. Still, considerable research has been produced in
the past decades on test case prioritization.

Singh et al. [68] perform an elaborate literature review that maps the state-of-art of test case
prioritization. From an initial set of 12 977 studies, they discuss 106 prioritization techniques split
into eight categories: coverage based, modification based, fault based, requirement based, history
based, genetic based, composite approaches and other approaches. Even though there is a
modification-based category, none of the techniques identified by their study emphasize the impact
of refactoring changes. A similar conclusion can be extracted from the systematic mapping study
performed by Catal and Mishra [69] and from Yoo and Harman’s survey [70]. This fact under-
pins RBA’s novelty in underlining refactoring faults. Moreover, the modification-based techniques
discussed in those studies require an abstract representation of the program (e.g. finite state
machines) before performing their prioritization. Those models are not always available in real
projects. RBA, on the other hand, requires only two consecutive versions of a program to be able to
perform its prioritization, which tends to be more practical and less costly.

Coverage-based prioritization techniques are simple and frequently used in practice. They base
prioritization on the assumption that test cases with high coverage of program statements or meth-
ods are more likely to reveal faults. Those techniques have been successfully used to early detect
general faults. For instance, Rothermel et al. [37] present a set of coverage-based prioritization
techniques, which are evaluated over their fault detection rates. The authors show that even the
least costly technique significantly improves detection. They also suggest there might be room for
improvement in coverage-based prioritization. These conclusions are reassured by previous empir-
ical studies [34–36] in which general-purpose techniques proved inadequate for early detection
of refactoring faults; the combination of test coverage and the impact analysis applied by RBA
presented significantly better results.

Srivastava and Thiagarajan [38] propose a modification-based prioritization technique that
focuses on rescheduling regression tests according to their coverage on code statements modified
between two consecutive versions of a program (changed blocks). This technique was used in the
empirical studies presented in this paper, labelled as CB. By focusing only on the modified state-
ments, this technique often misses behavioural changes that are not directly associated with these
statements; for instance, renaming a method may affect several methods down its class hierarchy.
Moreover, they do not target specific types of changes, making it less effective for dealing with
refactoring problems.

Regarding prioritization techniques that do not involve refactoring, Zhang et al. [71] propose
models for unifying the total and additional strategies, while Jeffrey and Gupta [72] present an
algorithm that prioritizes test cases based on their coverage of relevant slices of test outputs, compar-
ing their technique with traditional coverage-based techniques. Similarly, Korel et al. [23] propose
prioritization techniques based on system models that are associated with code information.

In addition, Srikanth et al. [26] propose a prioritization approach based on requirements volatility,
customer priority, implementation complexity and fault proneness of requirements, whereas Walcott
et al. [25] present a prioritization technique that uses genetic algorithms to reorder test suites based
on testing time constraints. Park et al. [73], in turn, use historical information to estimate the current
cost and fault severity for cost-cognizant test case prioritization, and Mei et al. [74] propose a static
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approach for prioritizating JUnit test cases in the absence of coverage information. Finally, Sanchez
et al. [75] explore the applicability of test case prioritization to software product lines, by proposing
five different prioritization criteria based on common metrics from feature models.

Change impact analysis Different from other approaches, RBA performs lightweight, test-focused
change impact analysis, emphasizing commonly impacted code declarations, using RFMs. Tradi-
tional change impact approaches often use either static or dynamic analysis; in RBA, these two types
of analysis are combined.

Bohner and Arnold [76] measure impact through reachability on call graphs. Although intuitive,
their strategy may be imprecise, only tracking methods downstream from the changed method. On
the other hand, Law and Rothermel [77] propose PathImpact, a dynamic impact analysis strategy
based on whole-path profiling. From the changed method, PathImpact goes back and forth over the
execution trace in order to determine the impact after the change. One important issue related to
impact analysis is that, in general, when dealing with a major edit (e.g. a structural refactoring), they
tend to gather a large number of methods. When relating those impacted methods to regression tests,
too many test cases are likely to be selected. RBA reduces this risk by focusing only on methods
that a refactoring edit is most likely to affect.

Regarding change-based approaches, Ren et al. [78, 79] first decomposes the differences between
two versions of a program into atomic changes (e.g. add a field and delete a field). Then, call
graphs from test cases are analysed, based on rules that identify, from the suite, the subset poten-
tially affected by the changes. RBA employs a similar approach for detecting the possibly affected
test cases by also using call graphs. RFMs, however, are the basis of RBA’s impact analysis. In
contrast, Ren et al. approach does not distinguish changes by the type of edit. Furthermore, by work-
ing at a different granularity level—refactoring edits, rather than atomic changes—RBA tends to
select a smaller group of test cases. Although this set might be not complete, RBA experimentally
outperforms other prioritization techniques.

Zhang et al. [80, 81] extend the work of Ren et al. by improving its impact analysis, plus a
spectrum analysis that helps change inspection. For that, they rank test cases according to their
likelihood of localizing faults. Their results evidence the importance of helping fault localization,
which can also be a benefit of RBA. RBA avoids spectrum analysis as the test cases directly related
to the common refactoring faults are selected. Therefore, the test cases more likely to reveal those
problems are placed on top positions of the prioritized suite, and also close to one another.

Wloka et al. [82] propose an approach that employs change impact analysis to guide develop-
ers in creating new unit tests. This analysis identifies code changes not covered in the current test
suite, and indicating whether tests miss those changes. Results are then presented, and the devel-
oper has the option to extend the suite to cover the problematic locations. Differently, from RBA,
this approach is fine grained—an edit is decomposed into atomic changes—which might gener-
ate a bigger affected set than the one collected by RFMs. Moreover, their approach goes towards
test augmentation, which is not the focus of the work presented in this paper. Rather the focus
is on projects with massive test suites, in need to early fault detection. Mongiovi et al. [43] pro-
pose SafeRefactorImpact, a tool that adds impact analysis to the SafeRefactor validation tool [18].
SafeRefactorImpact detects behaviour-changing transformations in both object and aspect-oriented
programs. For that, it decomposes an edit into fine-grained changes then finds a set of affected meth-
ods for each atomic change. Next, it applies Randoop to generate suites that are run against the two
versions of the program. SafeRefactorImpact and RFMs are similar in the sense that both focus on
methods that are commonly impacted by a refactoring edit. In contrast, RBA differs in granularity;
by focusing on the refactoring edit as a single object, RFMs select less test cases. Moreover, RBA is
designed to promote early detection of refactoring faults in a sound test suite, while SafeRefactorIm-
pact generates new tests for that focus on detecting those faults. In this context, both approaches can
definitely be used in combination.

Call graph generation Call graphs can be either dynamically or statically generated, although
the latter may miss accurate information related to subtyping and dynamic dispatch. There
are several tools that automatically generate call graphs for several programming languages
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(e.g. PriorJ [64], KCachegrind [83] and PhpcallgraphSite [84]). The implementation of RBA, in the
context of PriorJ, uses dynamic call graphs.

8. CONCLUSION

This article presents the RBA a test case prioritization approach that aims to promote early detec-
tion of behavioural changes introduced after refactorings. RBA first identifies the edits performed
between two versions of a program, collects methods that might have been affected by the change—
by applying a lightweight impact analysis based on a set of RFMs—and reorders the regression
test cases according to their coverage of those methods. The RFMs summarize common methods
that may be impacted by a specific refactoring type. RBA was evaluated regarding effectiveness
through a case study and experimental studies. The case study shows the applicability of RBA in
real projects when dealing with real test suites. The results of experimental studies show statistical
evidence that, in fact, RBA promotes early detection of refactoring problems, when compared with
other prioritization techniques. Moreover, RBA tends to place fault-revealing test cases in closer
positions, which can be very helpful for pinpointing the fault.

Refactoring-based approach , as it uses coverage data, demands at least one complete execution
of the test suite to generate call-graphs. One may argue this limitation weakens the cost-benefit ratio
of using the approach. In fact, running the entire suite may be costly; still, refactoring validation
demands this action anyway, probably more than once. In addition, the ordering provided by RBA
with a more narrowly spread of failing test cases may save time during fault localization. Finally, test
cases that become obsolete can also be identified and possibly discarded. RBA advances the state-of-
the-art of test prioritization focusing on refactoring faults. Particularly, RBA leverages developer’s
reliance on test suites for detecting refactoring problems, by proposing distinct execution orders that
speed up this process. Unlike other prioritization techniques, RBA’s prioritization strategy is spe-
cialized for each type of refactoring, according to its mechanics and commonly impacted methods.
RBA’s solution does not affect the suite’s fault detection potential, as no test case is discarded, and
the number of test cases to execute can be tuned based on available resources.

As future work, RFMs will be extended. New rules regarding variable reference checking and/or
test data variability will be included. This extension will reduce the rate of false positives in the
affected method set. Additionally, RFMs for other well-known refactorings will be developed, such
as extract method and decompose conditional. Moreover, there is a lack of refactoring-oriented
mutation operators. In order to help the evaluation of refactoring validation strategies and to mini-
mize human bias, refactoring-based mutation operators for Java systems will be developed. Finally,
RBA’s evaluation will be extended by better investigating the use of RBA under the context of
automatically generated test suites. Therefore, a number of different test generation tools will
be considered.
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