
Analyzing and Inferring the Structure of Code Changes

Miryung Kim

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2008

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Miryung Kim

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

David Notkin

Reading Committee:

David Notkin

Daniel Grossman

Robert DeLine

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral
degree at the University of Washington, I agree that the Library shall make its copies
freely available for inspection. I further agree that extensive copying of this dissertation is
allowable only for scholarly purposes, consistent with ?fair use? as prescribed in the U.S.
Copyright Law. Requests for copying or reproduction of this dissertation may be referred
to Proquest Information and Learning, 300 North Rebe Road, Ann Arbor, MI 48106-1346,
1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies
of the manuscript in microform and/or (b) printed copies of the manuscript made from
microform.”

Signature

Date

University of Washington

Abstract

Analyzing and Inferring the Structure of Code Changes

Miryung Kim

Chair of the Supervisory Committee:
Professor David Notkin

Computer Science & Engineering

Programmers often need to reason about how a program evolved between two or more

program versions. Reasoning about program changes is challenging as there is a significant

gap between how programmers think about changes and how existing program differencing

tools represent such changes. For example, even though modification of a locking protocol

is conceptually simple and systematic at a code level, diff extracts scattered text additions

and deletions per file.

To enable programmers to reason about program differences at a high-level, this disser-

tation proposes an approach that automatically discovers and represents systematic changes

as first order logic rules. This rule inference approach is based on the insight that high-level

changes are often systematic at a code level and that first order logic rules can represent such

systematic changes concisely. There are two similar but separate rule-inference techniques,

each with its own kind of rules. The first kind captures systematic changes to application

programming interface (API) names and signatures. The second kind captures systematic

differences at the level of code elements (e.g., types, methods, and fields) and structural

dependencies (e.g., method-calls and subtyping relationships).

Both kinds of rules concisely represent systematic changes and explicitly note exceptions

to systematic changes. Thus, software engineers can quickly get an overview of program

differences and identify potential bugs caused by inconsistent updates. The viability of this

approach is demonstrated through its application to several open source projects as well as

a focus group study with professional software engineers from a large e-commerce company.

This dissertation also presents empirical studies that motivated the rule-based change

inference approach. It has been long believed that code clones—syntactically similar code

fragments—indicate poor software design and that refactoring code clones improves software

quality. By focusing on the evolutionary aspects of clones, this dissertation discovered that,

in contrast to conventional wisdom, programmers often create and maintain code duplicates

with clear intent and that immediate and aggressive refactoring may not be the best solution

for managing code clones. The studies also contributed to developing the insight that a

high-level change operation comprises systematic transformations at a code level and that

identification of such systematicness can help programmers better understand code changes

and avoid inconsistent updates.

TABLE OF CONTENTS

Page

List of Figures . iv

List of Tables . vi

Chapter 1: Introduction . 1
1.1 Empirical Analyses of Code Clone Evolution 4
1.2 Systematicness of Code-Level Change . 7
1.3 Automatic Inference of High-Level Change Descriptions 8
1.4 Uses of Inferred Change-Rules . 12
1.5 Thesis and Contributions . 15
1.6 Outline . 15

Chapter 2: Related Work . 17
2.1 Systematic Code Change . 17
2.2 Inferring Change . 19
2.3 Recording Change . 38
2.4 Code Clones . 42
2.5 Software Evolution Analysis . 48
2.6 Other Related Work . 50

Chapter 3: An Ethnographic Study of Copy and Paste Programming Practices . . 53
3.1 Study Method . 53
3.2 Intention View . 56
3.3 Design View . 60
3.4 Maintenance View . 66
3.5 Statistics . 67
3.6 Threats to Validity . 67
3.7 Key Insights . 70
3.8 Conclusions from the Copy and Paste Study 71

i

Chapter 4: An Empirical Study of Code Clone Genealogies 72
4.1 Model of Clone Genealogy . 73
4.2 Clone Genealogy Extractor . 76
4.3 Study Procedure . 79
4.4 Study Results . 81
4.5 Discussion . 90
4.6 Comparison with Clone Evolution Analyses 94
4.7 Proposed Tools . 96
4.8 Conclusions from the Clone Genealogy Study 98

Chapter 5: Inferring Changes to API Name and Signature 100
5.1 Definition of API Change-Rule . 100
5.2 Inference Algorithm . 105
5.3 Evaluation . 116
5.4 Summary of API Change-Rule Inference . 130

Chapter 6: Inferring Changes to Program Structure 131
6.1 Definition of Logical Structural Delta . 134
6.2 Inference Algorithm . 138
6.3 Focus Group Study . 143
6.4 Assessments . 154
6.5 Discussion . 162
6.6 Application of Change-Rules . 164
6.7 Summary of Logical Structural Diff . 167

Chapter 7: Conclusions and Future Work . 168
7.1 Summary of Contributions . 168
7.2 Future Work . 169

Bibliography . 172

Appendix A: Copy and Paste Study: Edit Log Format 203

Appendix B: Copy and Paste Study: Coding Session Analysis Note 205

Appendix C: Copy and Paste Study: Affinity Diagrams 209

Appendix D: Clone Genealogy Study: Model in Alloy Code 217

ii

Appendix E: Clone Genealogy Study: Genealogy Data Format 222

Appendix F: LSDiff Predicates in Tyruba Language 224

Appendix G: JQuery Logic Queries for Generating Factbases 227

Appendix H: Default Winnowing Rules . 228

Appendix I: Focus Group Screener Questionnaire 230

Appendix J: Focus Group Discussion Guide . 232

Appendix K: Focus Group Transcript . 235

iii

LIST OF FIGURES

Figure Number Page

2.1 Example TXL rule . 41
2.2 Example iXj transformation . 42

3.1 Affinity diagram representing copy and paste patterns. Detail diagrams ap-
pear in Appendix C. 57

3.2 An example syntactic template . 58
3.3 Code fragment: traversing over element nodes in a DOM document in C++ . 59
3.4 Copying a loop construct and modifying the inner logic 60
3.5 Code fragment: logging concern . 61
3.6 Code fragments: updateFrom(Class c)and updateFrom (ClassReader cr) 63
3.7 Code fragments: write/read logic . 65
3.8 Distribution of C&P instances by different syntactic units 68
3.9 C&P frequency per subject . 68
3.10 Distribution of C&P instances by the number of source lines 69

4.1 The relationship among evolution patterns . 75
4.2 An example clone lineage . 76
4.3 An example clone genealogy . 77
4.4 The average lifetime of k-volatile clone genealogies 84
4.5 CDFdead(k) and Rvolatile(k) of carol and dnsjava 85
4.6 Cumulative fraction of consistently changed genealogies, locally unfactorable

genealogies, and consistently changed and locally unfactorable genealogies . . 91
4.7 Cumulative distribution function of dead genealogies with varying simth . . . 92
4.8 Mozilla bug id: 217604 . 97

5.1 A viewer that presents each rule with corresponding method-header matches 118
5.2 Recall and precision vs. percentage of found matches 124
5.3 Impact of seed threshold γ . 128

6.1 Overview based on LSDiff rules . 148
6.2 Sample HTML diff output augmented with LSDiff rules 150

iv

C.1 Affinity diagram part 1: programmers’ intentions associated with C&P 210
C.2 Affinity diagram part 2: using copied code as a syntactic template 211
C.3 Affinity diagram part 3: using copied code as a semantic template 212
C.4 Affinity diagram part 4: why is text copied and pasted repeatedly in multiple

places? . 213
C.5 Affinity diagram part 5: why are blocks of text copied together? 214
C.6 Affinity diagram part 6: what is the relationship between copied and pasted

text? . 215
C.7 Affinity diagram part 7: maintenance tasks for copied code 216

v

LIST OF TABLES

Table Number Page

2.1 Example code change . 21
2.2 Comparison of code matching techniques . 30
2.3 Evaluation of the surveyed code matching techniques 32
2.4 Comparison of refactoring reconstruction techniques (1) 36
2.5 Comparison of refactoring reconstruction techniques (2) 37

3.1 Copy and paste observation study setting . 54

4.1 Line number mappings generated using diff 78
4.2 Description of two Java subject programs for clone genealogy study 81
4.3 Example of false positive clones. Clones are marked in blue. 82
4.4 Clone genealogies in carol and dnsjava

(mintoken =30, simth = 0.3) . 83
4.5 How do lineages disappear? . 87
4.6 Example of locally unfactorable clones . 88
4.7 Average size and length of genealogies with varying simth 92

5.1 Comparison between programmer’s intent and existing tools’ results 102
5.2 Rule-based matching example . 106
5.3 Rule-based matching results (1) . 119
5.4 Rule-based matching results (2) . 120
5.5 Comparison: number of matches and size of result 122
5.6 Comparison: precision . 123
5.7 Impact of exception threshold . 129

6.1 A fact-base representation of two program versions and their differences . . . 135
6.2 LSDiff rule inference example . 136
6.3 LSDiff rule styles and example rules . 139
6.4 Focus group participant profile . 146
6.5 Comparison with ∆FB . 155
6.6 Comparison with textual delta (1) . 156

vi

6.7 Comparison with textual delta (2) . 157
6.8 Extracted rules and associated change descriptions (1) 158
6.9 Extracted rules and associated change descriptions (2) 159
6.10 Impact of varying input parameters . 163

B.1 Copy and paste statistics . 208

vii

ACKNOWLEDGMENTS

My graduate career would have not been possible without support from my family,

mentors, colleagues, and friends.

First of all, I am grateful to my parents for their love and support. They taught me the

importance of passion and persistence in everything I do. I thank my sisters for their love

and encouragement.

I thank my adviser, David Notkin, for giving me a chance to select research problems and

pursue them. David believed in my potential and saw creativity in me. Through the process

of discussing many research proposals with David, I learned how to assess the research value

of each proposal and how to be selective. He is a patient and thoughtful mentor; he listens

to his students, not only what they are saying but also what they are not saying. I am

proud to be one of his students and I am grateful to know that I can continue to rely on

him.

I thank Dan Grossman for his support and advocacy. His advice as a programming

language researcher was very valuable to this dissertation and he challenged me to hold

high standards in conveying algorithms and formal definitions.

I thank Gail Murphy for her advice and encouragement. She always made time to listen

to my research ideas. I learned so much from her insights into software engineering practices.

I admire her diligence and organizational skills.

I thank Rob DeLine for his valuable comments on my research ideas from industry

research perspectives.

I thank Andreas Zeller for his advice and advocacy. I would like to emulate his passion

for software engineering research.

I thank the members of my committee: David Notkin, Dan Grossman, Rob DeLine and

Ken Bube.

viii

Vibha Sazawal has been a wonderful mentor and friend for me. I was lucky to have the

opportunity to learn from her as a junior graduate student. More importantly, I am always

inspired by her passion for computer science education and gender equality. Vibha taught

me that diversity is a vital ingredient for creativity and thus a catalyst for moving our field

forward.

I thank Tessa Lau and Larry Bergman for giving me a chance to do such a cool research

internship with them at IBM. I learned a great deal about how to push a research agenda

from Tessa. I thank them for being my mentors and friends.

I thank Tao Xie, Jonathan Aldrich, Mike Ernst, Kevin Sullivan, and Bill Griswold for

discussing research with me and advising me throughout my career. I am proud to belong

to Notkin’s academic family.

I thank Jonathan Beall for implementing LSDiff tool, Marius Nita for helping me with the

focus group study and many fun discussions, and Stanley Kok for helping me use Alchemy.

I thank Annie Ying, Sunghun Kim, Thomas Zimmermann, Reid Holmes, Beat Fluri,

Martin Robillard, Tao Xie, and Jim Whitehead, and Andreas Zeller. I always enjoy dis-

cussing and brainstorming research ideas with you.

I thank Jennifer Bevan, Sunghun Kim, Peter Weißgerber, Zhenchang Xing, and Kris De

Volder for their tools and data sets.

Thanks to all my office mates and UW CSE friends throughout my graduate career,

including Yongchul Kwon, Stephen Friedman, Pradeep Shenoy, Zizhen Yao, Jiwon Kim,

Jayant Madhavan, Tammy VanDeGrift, Vibha Sazawal, Tao Xie, Andrew Petersen, Marius

Nita, Kate Moore, Ben Lerner, Laura Effinger-Dean, and countless others for their friend-

ship, encouragement, and help. I learned a great deal from your comments during all my

practice talks.

I thank everyone who helped me during my job interviews in Spring 2008: David Notkin,

Dan Grossman, Gail Murphy, Andreas Zeller, Rob DeLine, Vibha Sazawal, Hank Levy,

James Landay, Craig Chambers, Jaeyeon Jung, James Fogarty, and many others.

I thank Doo-Hwan Bae for his advice throughout my undergraduate days.

ix

I thank Cathy Dong, Jackie Yang, Sammy Lee and many NCBC friends who prayed for

me. I thank Rob Lendvai and SSHS friends for all the fun we had together.

I thank my husband, Alan Ho. He is the source of my happiness, love, strength and

courage. My life is so much richer because of his love and support. (Thanks go to Alan for

also proofreading this dissertation.) Finally, I thank God for His love.

x

1

Chapter 1

INTRODUCTION

Software evolution plays an ever-increasing role in software development. Programmers

constantly update existing software to provide new features to customers or to fix defects.

As software evolves, programmers often need to inspect program differences between two

versions or its generational changes over multiple versions. For example, for a team lead

to check whether the intended change is implemented correctly, she needs to review the

modifications done by her team members. As another example, when a program behaves

differently from expected behavior after several modifications, programmers inspect past

code changes. In addition to these scenarios from a programmer’s perspective, software

engineering researchers also need to reason about program differences for software version

merging, profile propagation, regression testing, change impact analysis, and software evo-

lution analysis.

When inspecting program differences, programmers or researchers may ask the following

kinds of high-level questions about code changes: “What changed?” “Is anything missing

in that change?” and “Why did this set of code fragments change together?”

To enable programmers to reason about software changes at a high-level, this dissertation

proposes a novel approach that extracts program differences in the form of concise, rule-

oriented descriptions. The novelty of the approach is best seen in the context of four existing

approaches that can be used to reason about software changes.

The first approach records program edit operations in an editor or an integrated devel-

opment environment (Section 2.3.1). A key shortcoming of this approach is that it locks

programmers into a specific editor or an environment, which is rarely an acceptable trade-off.

The second approach is a programming language-based approach, exemplified by source

code transformation languages and tools (Section 2.3.2). These tools let programmers spec-

2

ify a high-level change using the syntax of transformation languages and automatically

update a program using the specified change script. Though software change can be de-

scribed explicitly at a high-level, this language-based approach has a high adoption cost

and is not compatible with exploratory programming practices. Programmers need to plan

software changes in advance and write a change script accordingly using the syntax of a

source transformation language.

The third approach is to use a check-in comment or a change log that programmers

manually write in a natural language. Though it is easy to understand the high-level

change intent associated with a program change, these natural language descriptions tend

to be incomplete and may not reflect actual code changes faithfully.

The fourth approach is an automatic program differencing approach that takes two

program versions as input and computes differences between them (Section 2.2). This

approach is practical as it can be applied to any software projects with a version control

system or a release archive. Unfortunately, most existing differencing approaches produce

low-level differences individually without any structure even when this collection of low-level

differences has a latent structure because the programmer applied a high-level operation

such as a refactoring or a crosscutting modification; existing approaches do not identify

nor leverage systematic relationships created by the programmer’s implementation of the

high-level change.

These limitations of existing program differencing approaches make it difficult for pro-

grammers to reason about software changes at a high-level. For example, the ubiquitous

program differencing tool diff computes differences per file, obliging the programmer to

read changed-lines file by file, even when those cross-file changes were done systematically.

Similarly other differencing tools that work at different levels of abstraction (e.g., abstract

syntax trees [304] and control flow graphs [7]) report individual differences without struc-

ture. Some approaches attempt to mitigate this problem by grouping the differences by

physical locations (directories and files) [138], by logical locations (packages, classes, and

methods) [302], by structural dependencies (define-use and overriding) [50], or by similarity

of names. However, they generally do not capture systematic changes along other dimen-

sions. For example, Eclipse diff and UMLDiff [302] organize differences by logical locations

3

but do not group changes that are orthogonal to a program’s containment hierarchy. In con-

trast, crosscutting change identification techniques (Section 2.1.2) do not find regularities

within a program’s containment hierarchy such as adding similar fields to the same class.

As existing approaches do not recognize regularities in code changes, subsequently they

are unable to detect inconsistency in code changes, leaving it to a programmer to discover

potential bugs.

This dissertation presents an automatic program differencing approach that infers con-

cise high-level change descriptions. In contrast to existing program differencing techniques,

this approach focuses on helping programmers reason about software changes as opposed

to reconstructing a new program version given the old version and a delta. Our approach

discovers and represents high-level change operations explicitly using rule-based representa-

tions (first order logic rules). This rule inference approach is based on the observation that

high-level changes are often systematic. For example, moving a set of related classes from

one package to another package consists of a set of similar move class refactorings. Updating

an application programming interface (API) often requires updating all calls to the API.

Adding secondary design decisions such as logging or synchronization consists of making

similar updates throughout a program. Our approach concisely describes such systematic

changes by using universally quantified logic variables in first order logic rules.

There are two similar but separate change-rule inference techniques, each of which cap-

tures a different kind of change. The first kind of change-rules capture changes to API names

and signatures (Chapter 5). The second kind of change-rules capture changes to code el-

ements and structural dependencies (Chapter 6). Both kinds of rules concisely represent

systematic changes and explicitly note exceptions to systematic change patterns. Thus,

software engineers can quickly get an overview of program differences and use the noted

exceptions to avoid inconsistent code changes.

We demonstrate the viability of this approach by applying our techniques to several open

source projects and by conducting a focus group study with professional software engineers

at a large e-commerce company.

This rule-based program differencing approach is partially motivated by studies of code

clones—syntactically similar code fragments. By studying the evolutionary aspects of clones,

4

we discovered the needs for a program differencing tool that extracts high-level change

descriptions. We also developed the insight that identification of systematicness in code

changes can help programmers better reason about software changes.

This chapter describes empirical studies of code clones (Section 1.1); describes the in-

sights into systematic program changes (Section 1.2); introduces a rule-based change infer-

ence approach (Section 1.3); lists some uses of inferred change-rules (Section 1.4); lists the

contributions of the dissertation (Section 1.5); and gives a road map to the remainder of

the document (Section 1.6).

1.1 Empirical Analyses of Code Clone Evolution

Code clones are syntactically identical or similar code snippets that are often created by

copying and pasting code. There is no consistent or precise definition of code clones, and

they are often operationally defined by individual clone detectors.

It has been long believed that code clones are inherently bad and they indicate poor

software quality. The rationale behind this conventional wisdom is that programmers often

need to update code clones similarly. If programmers neglect to update related code clones

consistently, this missed update could lead to a potential bug during software evolution.

In addition, a latent bug can be propagated to multiple places in a code base through

unknowingly copying and pasting the buggy code.

This view has directed previous research efforts about code clones. Many efforts have

focused on automatically identifying code clones and using clone detection results for refac-

toring. Software engineering researchers and practitioners have advised programmers not

to create code clones and to remove existing clones in software by factoring out the com-

monality as a separate procedure and invoking the procedure instead. For example, Fowler

[92] argues that code duplicates are bad smells of poor design and programmers should

aggressively use refactoring techniques. The Extreme Programming (XP) [27] community

has integrated frequent refactoring as a part of the development process.

We investigated how code clones are actually created and maintained using two analysis

approaches. Our studies suggest that programmers often create and maintain code clones

with clear intent and that refactoring may not always improve software with respect to

5

clones. The following two subsections briefly summarize the studies.

1.1.1 An Ethnographic Study of Copy and Paste Programming Practices

Programmers often copy and paste (C&P) code from various locations: documentation,

someone else’s code, or their own code. However, the use of copy and paste as a programming

practice has bad connotations, because this practice has the potential to create unnecessary

duplicates in a code base. Earlier studies have formed a few informal hypotheses about

how programmers reuse code using C&P [181, 261]; however, these studies did not focus on

identifying and solving potential problems caused by C&P during software evolution.

To understand common C&P usage patterns and associated implications, we conducted

an ethnographic study at IBM T.J. Watson Research Center [161]. We developed a logger

that records key strokes and editing operations such as copy, cut, paste, redo, undo, and

delete. We built a replayer that plays back the edit logs. In addition to replaying the edit

logs, we carried out manual analysis and semi-structured interviews to discover high-level

change patterns and associated intentions of a programmer. Using an affinity process [34], we

created a taxonomy of common C&P patterns. This study found that skilled programmers

often create and manage code clones with clear intent:

• Limitations of programming languages designs may result in unavoidable duplicates

in a code base. Though we observed C&P practices in only object-oriented program

languages, we suspect that the cloning issue is independent of a choice of programming

language as no language can support all kinds of abstraction.

• Programmers often discover a shared abstraction of similar code through the process

of copying, pasting, and modifying code. They keep and maintain clones for some

period of time before they decide how to abstract the common part of the clones.

• Copied text is often customized in the pasted context and reused as a structural tem-

plate. Current software engineering tools have poor support for identifying structural

templates or maintaining them during software evolution.

6

• Programmers often apply a similar change to clones from the same origin. In other

words, after they create clones, they tend to modify the structural template embedded

in the clones consistently.

Based on these insights into C&P patterns, we proposed tools that could reduce C&P

related problems.

1.1.2 An Empirical Study of Code Clone Genealogies

In the copy and paste study, we explored an approach of capturing and replaying edits in

an IDE. This approach is limited in a number of ways. First, most projects do not retain

archives of editing logs, but rather have version control systems or software release archives.

Second, while most projects are developed by more than one developer in a collaborative

work environment, capturing edits in an IDE is limited to a single programmer workspace.

Third, a longitudinal analysis is not feasible due to the high cost of analyzing edits.

To extend this type of change-centric analysis to software projects without edit logs, we

developed a tool that automatically reconstructs the history of similar code fragments from

a source code repository [165]. The core of this tool is a representation that captures clone

change patterns over a sequence of program versions. We named this representation a clone

genealogy because, like a human genealogy, it shows when new clones were introduced, how

long the clones stayed in the system, and whether the clones were updated consistently or

not. In a clone genealogy, a group to which the clone belongs is traced to its origin clone

group in previous versions. In addition, clone groups that have originated from the same

ancestor clone group are connected by a clone evolution pattern.

Using this tool, we studied how long clones stay in a system and how often and in which

way clones change in two Java open source projects, carol and dnsjava. Our study indicates

that refactoring (merging code clones) is not always beneficial or even applicable to many

clones for two reasons:

• Many clones are short-lived, diverging clones: 48% and 72% of clones disappear in a

very short amount of a time (within an average of eight check-ins out of over at least

160 check-ins). 26% and 34% of these clones are no longer considered as clones because

7

they changed differently from other clones in the same group. Refactoring such short-

lived clones may not be necessary and can be counterproductive if a programmer has

to undo the refactoring.

• Refactoring cannot remove many long-lived clones: 49% and 64% of clones cannot be

easily removed using standard refactoring techniques [92]. The longer clones survive

in the system, the higher percentage of them consist of unfactorable, consistently

changing clones.

Instead of measuring the extent of clones over time quantitatively, we focused on how

individual clones change over the life time of software. By focusing on the evolutionary

aspects, we advanced the understanding of code clones and contributed to shifting research

focus from automatic clone detection to clone management support.

1.2 Systematicness of Code-Level Change

Based on the two empirical studies of code clones, we developed the insight that high-level

changes are often systematic—consisting of similar transformations at a code level. The

same insight arises from numerous other research efforts, primarily within the domain of

refactorings and crosscutting concerns.

Refactoring is the process of changing a software system that does not alter the external

behavior of the code, yet improves the internal structure and the quality of software (e.g.,

extensibility, modularity, reusability, complexity, maintainability, efficiency) [92, 112, 211,

234]. Meaningful refactorings often consist of one or more elementary behavior preserving

transformations, which comprise a group of similar transformations such as “moving the

print method in each Document subclass” or “introduce three abstract visit* methods.”

Crosscutting concerns represent secondary design decisions—e.g., performance, error

handling, and synchronization—that are generally scattered throughout a program [158,

279]. Modifications to these design decisions involve similar changes to every occurrence of

the design decision. To cope with evolution of crosscutting concerns, aspect-oriented pro-

gramming languages provide language constructs that allow these concerns to be updated

in a modular fashion [157]. Information transparency based techniques [111] use naming

8

conventions, formatting styles, and ordering of code in a file to locate and document cross-

cutting concerns.

Consistent maintenance of code clones is another kind of systematic change. Our C&P

study explains why programmers create and maintain clones. (1) The limitation of program-

ming languages do not allow all levels of design decisions to be isolated in a single module.

(2) As programmers deal with volatile design decisions, they often create code clones tem-

porarily until they discover a right level of abstraction for similar programming logic. To

support consistent update of code clones, simultaneous editing [215] and linked editing [281]

allow programmers to edit related clones with a single stream of editing commands.

1.3 Automatic Inference of High-Level Change Descriptions

To discover and represent systematic changes, we developed rule-based change representa-

tions and corresponding algorithms. There are two kinds of change-rules that we devel-

oped. The first kind of change-rules capture changes to API names and signatures to match

method-headers between two program versions. The second kind of change-rules capture

changes to code elements and structural dependencies to discover a logical structure in

program differences.

1.3.1 Changes to API Name and Signature

Code matching is the underlying basis for various software engineering tools. Version merg-

ing tools identify possible conflicts among parallel updates by analyzing matched code el-

ements [208]. Regression testing tools prioritize or select test cases that need to be re-run

by analyzing matched code elements [117, 262, 275]. Profile propagation tools use match-

ing to transfer execution information between versions [294]. Emerging interest in mining

software repositories—studying program evolution by analyzing existing software project

artifacts—demands more effective matching techniques.

Existing matching techniques individually compare code elements at particular granu-

larities such as functions and files using certain similarity measures (Section 2.2). Though

this approach is intuitive, it has three limitations: First, these techniques produce a long

9

list of matches or refactorings without any structure and do not recognize a general pat-

tern of changes witnessed by the low-level code matches. Second, as these techniques do

not recognize systematic change patterns, it is generally difficult for programmers to spot

inconsistent or incomplete changes to a general pattern. For example, only after looking

at three matches [(Foo.mA() !→ Foo.mA(float)), (Foo.mB() !→ Foo.mB(float)), and (Foo.mC() !→

Foo.mC())], one can understand that mC() method did not change its input signature unlike

other methods in the Foo class. Third, because existing techniques do not consider the global

context of changes, in part due to the lack of explicit high-level change representations, these

techniques cannot easily disambiguate which match is more accurate than other potential

matches; this limitation results in either low precision or low recall of matches.

As a first step, we addressed the problem of matching Java method-headers. Our change-

rule representation concisely describes systematic changes to API names and signatures

and explicitly notes anomalies to a systematic change pattern. Our rule inference algorithm

takes two program versions as input; extracts a set of method-headers from each version; and

finds seed-matches using token-level name similarity between each possible pair of method-

headers. By generalizing the scope and transformation in the seed matches, our algorithm

systematically enumerates candidate change-rules. It then evaluates and selects these rules

using a greedy algorithm. In each iteration, each rule’s accuracy is computed by counting

its matches and its exceptions. When the rule’s accuracy is above the chosen threshold, the

rule is selected and its matches are removed from a set of remaining method-headers to be

matched. This algorithm can be seen as a practical, domain-specific rule inference algorithm

in the sense that it finds a restricted subset of first order logic rules—a horn clause with a

single literal in the antecedent.

Consider an example where a programmer reorganizes a chart drawing program by

moving axis-drawing classes from the package chart to the package chart.axis. To allow

toggling of tool tips by the user, the programmer appends a boolean parameter to a set of

chart-creation interfaces. Even though the goals of these transformations can be stated con-

cisely in natural language, existing code matching techniques (Section 2.2) would enumerate

each moved method and each modified interface. The programmer may have to examine

hundreds or thousands of matches or refactorings before discovering that a few simple high-

10

level changes took place. Moreover, if the programmer neglected to move one axis drawing

class, this missed update would be hard to detect. The following two change-rules concisely

describe these changes. (Chapter 5 discusses the syntax and semantics of API change-rules

in detail.)

• for all x:method-header in chart.*Axis*.*(*)

packageReplace(x, chart, chart.axis)

[Interpretation: All methods with a name “chart.*Axis*.*(*)” moved from the chart package to the chart.axis

package.]

• for all x:method-header in chart.Factory.create*Chart(*Data)

except createGanttChart, createXYChart

argAppend(x, [boolean])

[Interpretation: All methods with a name “chart.Factory.create*Chart(*Data)” changed their input signature

by appending an argument with boolean type.]

We applied our API change-rule inference tool to the change history of five open source

projects (JFreeChart, JHotDraw, JEdit, Tomcat, and ArgoUML) and compared it with

three competing tools (S. Kim et al.’s method-header matching tool [167], Weißgerber and

Diehl’s refactoring reconstruction tool [295], and Xing and Stroulia’s UMLDiff [302]). Our

comparative evaluation shows that our technique makes matching results smaller and more

readable, and finds more matches without loss of precision.

1.3.2 Changes to Program Structure

The success of API change-rule inference led to extending this approach to complement

some existing uses of diff. Programmers often use diff to inspect detailed differences be-

tween program versions. When its output involves hundreds of lines across multiple files,

programmers find it difficult to understand code changes because there is no structure that

groups related line-level differences. We hypothesize that, by identifying shared structural

characteristics of changed code, we can discover a logical structure that groups related

line-level differences.

Logical Structural Diff (LSDiff) abstracts a program as code elements (packages, types,

11

methods, and fields) and their structural dependencies (method-calls, field-accesses, sub-

typing, overriding, and containment). For example, LSDiff extracts facts such as “class C

has a field f of type t” and “class C’s method m overrides class D’s method m.”Once LSDiff

represents each version as a set of logic facts, it uses a set-differencing operator to compute

fact-level differences between two versions. To condense the delta, LSDiff infers Datalog

rules [284] that imply fact-level differences. The rule inference algorithm is a top-down

inductive logic programming algorithm that enumerates domain specific Datalog rules up

to a certain length specified by a user. Remaining non-systematic differences are presented

as logic facts.

This rule-based change inference approach is similar to the previous section’s API

change-rule inference. However, LSDiff differs from it in several ways: First, while API

change-rules focus on changes at the level of method-headers, LSDiff accounts for changes

within method-bodies as well as at a field level. Second, from a change representation

perspective, while API change-rules rely on a regular expression to group related code el-

ements, LSDiff uses conjunctive logic literals to allow programmers to understand shared

structural characteristics of systematically changed code, not only a shared naming conven-

tion, e.g. “all setHost methods in Service’s subclasses” instead of “all methods with name

Service.setHost().” Finally, from a rule-inference technique perspective, while our API

change-rule inference algorithm finds rules in an open system, LSDiff’s algorithm learns

rules in a closed system by first computing structural differences and then enumerating all

rules within the rule search space set by the input parameters.1

Suppose that a programmer deleted method-calls to the SQL.exec method from all setHost

methods in Service’s subclasses. The following rule concisely captures regularities among

five method-call deletions and also reports an exception, indicating a potential missing

change. The detailed syntax and semantics of LSDiff rules is described in Chapter 6.

• past subtype(“Service”, t) ∧ past method(m, “setHost”, t) ⇒ deleted calls(m, “SQL.exec”) except t=“NameSvc”

[Interpretation: All setHost methods in Service’s subclasses deleted calls to the SQL.exec method except the

NameSvc class.]

1Learning rules in a closed system means that the facts in the fact-bases cannot be altered during the
rule-inference process.

12

In a study of three software projects’ histories, LSDiff outputs are on average 9.3 times

more concise than structural differences without rules. What this means in practice is that,

when diff output consists of 997 lines of change scattered across 16 files on average, LSDiff

summarizes structural differences using only 7 rules and 27 facts.

To gain insights into when and how LSDiff can complement existing program differ-

encing tools, we conducted a focus group study with professional developers from a large

e-commerce company. Overall, our focus group participants were very positive about LSD-

iff and asked us when they can use it for their work. They believed that LSDiff can help

programmers reason about related changes effectively by allowing top-down reasoning of

code changes, as opposed to reading diff outputs without having a high-level context. Some

quotations from the focus-group study were:

“This is cool. I’d use it if we had one.”

“This is a definitely winner tool.”

“You can’t infer the intent of a programmer, but this is pretty close.”

1.4 Uses of Inferred Change-Rules

This section lists several scenarios in which change-rules can help programmers in reasoning

about software changes. These scenarios are based on real examples found in the carol open

source project as well as the observation carried out by Ko et al. [170].

Understanding the rationale of others’ change. Alice and Bill work in the same

team. When Alice tried to commit her bug fix, she got an error message that her change

conflicted with Bill’s last change. To understand what he changed and why, she started

reading Bill’s last check-in comment, “Common methods go in an abstract class. Easier

to extend/maintain/fix,” and the associated diff output. However, she could not easily

understand whether his change was indeed an extract superclass refactoring, which classes

were involved, and whether the refactoring was completed. Browsing the diff output, she

was overwhelmed by the many files to examine.

The following LSDiff output helps Alice understand the rationale of Bill’s change: Bill

created AbsRegistry by pulling up host fields and setHost methods from the classes imple-

menting the NameSvc interface; however, he did not complete the refactoring on LmiRegistry,

13

that also implements the NameSvc interface. After reading them, Alice decided to double

check with Bill why LmiRegistry was left out.2

• Fact 1. added type(“AbsRegistry”)

[Interpretation: AbsRegistry is a new class.]

• Rule 1. current inheritedmethod(m, “AbsRegistry”, t)⇒added inheritedmethod(m, “AbsRegistry”, t)

[Interpretation: Many classes inherit method implementations from the AbsRegistry class.]

• Rule 2. past subtype(“NameSvc”, t) ∧ past field(f, “host”, t) ⇒ deleted field(f, “host”, t) (except t =

“LmiRegistry”)

[Interpretation: All NameSvc’s subtypes’ host fields were removed except LmiRegistry’s host field.]

• Rule 3. past subtype(“NameSvc”, t) ∧ past method(m, “setHost”, t) ⇒ deleted method(m, “setHost”, t)

(except t = “LmiRegistry”)...

[Interpretation: All NameSvc’s subtypes’ setHost methods were removed except the LmiRegistry’s setHost

method.]

Reviewing a patch before its submission. To simplify the usage of constants in her

program, Alice decided to put all constants in the Context class. While implementing this

change, she ported the constant accesses to use Context’s constants instead. After finishing

edits, she reviewed the diff output but could not easily verify the correctness of constant

porting because some constants were accessed from many methods.

The following LSDiff output helps her confirm that DefaultValues’ constants were deleted

and that all methods that once used DefaultValues’ constants use the Context class instead.3

• Fact 1. deleted field(“DefaultValues.FACTORY”)

[Interpretation: The DefaultValues.FACTORY field was deleted.]

• Fact 2. deleted field(“DefaultValues.URL”)

[Interpretation: The DefaultValues.URL field was deleted.]

• Rule 1. past accesses(“DefaultValues.URL”, m)⇒ added accesses(“Context.URL”, m)

[Interpretation: All methods that accessed the DefaultValues.URL field in the old version added accesses to

the Context.URL field.]

2Source: carol revision 430

3Source: carol revision 389

14

• Rule 2. past accesses(“DefaultValues.FACTORY”, m) ⇒ added accesses(“Context.FACT”, t)...

[Interpretation: All methods that accessed the DefaultValues.FACTORY field in the old version added

accesses to the Context.FACT field.]

Writing change documentation. To write a check-in comment, Alice ran the diff

tool to examine her modification. By looking at the list of changed files, she suspected that

two different logical changes got mixed up: a design change request and a configuration bug

fix. However, she could not remember which changed code fragments correspond to which

logical change.

By examining the following LSDiff output, she recalled that she added the lmi package

and the LmiDelegate class for the design change request and added the loadCfg method in

several classes to fix the bug.4

• Fact 1. added package(“jndi.lmi”)

[Interpretation: The jndi.lmi package is a new package.]

• Fact 2. added type(“LmiDelegate”, “rmi.multi”)

[Interpretation: The LmiDelegate class was added to the rmi.multi package.]

• Rule 1. current method(“loadCfg”, t) ⇒ added method(“loadCfg”, t)

[Interpretation: All loadCfg methods are newly added methods.]

Mining software repositories research. In the last several years, researchers in

software engineering have begun to analyze programs together with their change history.

For example, Nagappan and Ball’s algorithm [229] finds line-level changes between two con-

secutive versions, counts the total number of changes per binary module, and infers the

characteristics of frequently changed modules. As another example, a signature change pat-

tern analysis [167, 168] traces how the name and the signature of functions change. Finally,

visualization techniques were applied to change history data to identify evolution trends,

unstable components, coherent entities, design and architectural evolution, and fluctuations

in team productivity [19, 20, 53, 78, 100, 183, 245, 265]. As these mining software repos-

itories research techniques require matching code elements across versions, we conjecture

that our change-rules can benefit these research efforts in two ways: (1) By automatically

4Source: carol revision 63

15

identifying code renaming and moving, software evolution history can be modeled without

discontinuation. (2) By grouping related atomic transformations, researchers can reason

about software changes at a high-level.

1.5 Thesis and Contributions

• We demonstrated the benefits of change-centric analysis approaches in the context

of studying clone evolution. By focusing on the evolutionary aspects of clones, our

studies found that immediate and aggressive refactoring of code clones are often not

necessary nor beneficial.

• Based on the studies of code clones, we developed an insight that high-level software

changes are often systematic at a code level, consisting of similar transformations.

• Based on this insight, we invented an approach that automatically infers high-level

change descriptions as logic rules by discovering and representing systematicness in

code changes.

• Our assessments and focus-group study show that our approach finds concise change

descriptions, identifies inconsistent changes, and complements existing program dif-

ferencing tools.

1.6 Outline

Chapter 2 surveys related work. This can be divided into three main categories: (1) a survey

of systematic software changes, (2) techniques that take two program versions as input and

infer changes between them automatically, (3) techniques that can record program changes,

and (4) background on code clones and clone evolution studies. Chapter 3 and Chapter 4

describe empirical analyses of clone evolution: an ethnographic study of copy and paste pro-

gramming practices and an empirical study of code clone evolution in open source projects.

Chapter 5 and Chapter 6 describe our rule-based change inference approach at the level of

method-headers and at the level of code elements and structural dependencies respectively.

16

The assessment of inferred change-rules is discussed respectively in each chapter. Chapter

7 presents future work and conclusions.

17

Chapter 2

RELATED WORK

Section 2.1 reviews several kinds of systematic program changes because systematicness

of high-level changes is a basis for our rule-based change inference approach. Section 2.2

and Section 2.3 describe approaches that can help programmers reason about software

change. Out of the four approaches discussed in Chapter 1, three approaches are described

in detail: A program differencing approach automatically infers change operations from

two program versions (Section 2.2). An edit capture and replay approach explicitly records

change operations. Change operations can be also captured in source transformation tools

(Section 2.3). Using check-in comments or change logs is excluded because natural language

descriptions tend to be incomplete and may not reflect code changes faithfully. Section

2.4 discusses the background related to our empirical studies of code clones. Section 2.5

summarizes related work in the area of software evolution analyses, because these analyses

can benefit from explicit, semantic change descriptions provided by our change-rule inference

techniques.

2.1 Systematic Code Change

This section discusses several kinds of systematic program changes, namely refactorings and

crosscutting concerns. By inspecting these changes’ characteristics, we show that high-level

software changes are often systematic, consisting of similar transformations at a code-level.

Consistent maintenance of code clones is another kind of systematic change and related

work on code clones is described in Section 2.4.

2.1.1 Refactoring

As a software system is enhanced, modified, and adapted to new requirements, the code

becomes more complex and drifts away from its original design, thereby lowering the qual-

18

ity of the software. Refactoring (Restructuring) [92, 112, 234, 211] copes with increasing

software complexity by transforming a program from one representation to another while

preserving the program’s external behavior (functionality and semantics).

Griswold’s dissertation [112] discusses one of the first refactoring tools that automate

repetitive, error-prone, non-local transformations. Griswold’s tool supports a number of

restructuring operations: replacing an expression with a variable that has its value, swapping

the formal parameters in a procedure’s interface and the respective arguments in its calls,

etc. It is important to note that many of these restructurings are systematic in the sense

that they involve repetitive non-local transformations.

Opdyke’s dissertation [234] distinguishes the notion of low-level refactorings from high-

level refactorings. High-level refactorings (i.e., composite refactorings) reflect more complex

behavior-preserving transformations while low-level refactorings are primitive operations

such as creating, deleting, or changing a program entity or moving a member variable.

Opdyke describes three kinds of complex refactorings in detail: (1) creating an abstract

superclass, (2) subclassing and simplifying conditionals, and (3) capturing aggregations and

components. All three refactorings are systematic in the sense that they contain multiple

similar transformations at a code level. For example, creating an abstract superclass in-

volves moving multiple variables and functions common to more than one sibling classes

to their common superclass. Subclassing and simplifying conditionals consists of creating

several classes, each of which is in charge of evaluating a different conditional. Capturing

aggregations and components usually involves moving multiple members from a component

to an aggregate object.

Fowler’s refactoring book [92] describes 72 types of common refactorings. Most refac-

torings are systematic in the sense that (1) multiple objects participate in the refactoring;

(2) these objects often share similar structural characteristics such as inheriting the same

superclass or using the same object; and (3) they often undergo similar primitive refactor-

ings.

19

2.1.2 Crosscutting Concerns

As programs evolve over time, they may suffer from the the tyranny of dominant decom-

position [279]. They can be modularized in only one way at a time. Concerns that are

added later may end up being scattered across many modules and tangled with one an-

other. Logging, performance, error handling, and synchronization are canonical examples

of such secondary design decisions. These can be seen as another kind of systematic change

that involves inserting similar code throughout a program. Aspect-oriented programming

languages provide language constructs to allow concerns to be updated in a modular fashion

[157]. A number of other approaches instead leave the crosscutting concerns in a program

while providing mechanisms to manage related but dispersed code fragments. Griswold’s in-

formation transparency technique uses naming conventions, formatting styles, and ordering

of code in a file to provide indications about code that should change together [111].

There are several tools that allow programmers to automatically or semi-automatically

locate crosscutting concerns. Robillard et al. [260] allow programmers to manually docu-

ment crosscutting concerns using structural dependencies in code. Similarly, the Concern

Manipulation Environment [116] allows programmers to locate and document different types

of concerns. Van Engelen et al. [285] use clone detectors to locate crosscutting concerns.

Shepherd et al. [271] locate concerns using natural language program analysis. Breu et

al. [41] mine aspects from version history by grouping method-calls that are added to-

gether. Dagenais et al. [61] automatically infer and represent structural patterns among

the participants of the same concern as rules in order to trace the concerns over program

versions. In general, our change-rule inference techniques differ from these tools by inferring

general kinds of systematic changes, which may or may not be crosscutting concerns, and

by detecting anomalies from systematic changes.

2.2 Inferring Change

Inferring changes between two program versions is the same problem as matching corre-

sponding unchanged code elements between two versions. Section 2.2.1 describes existing

code matching (program differencing) techniques that are built for software version merging,

20

program differencing, profile propagation, and regression testing. Most matching techniques

are different from our change-rule inference techniques (Chapter 5 and Chapter 6) in that

they compute low-level program differences without structure and cannot help programmers

reason about software changes at a high-level. Section 2.2.2 describes techniques that infer

refactorings from two program versions. These techniques are closely related to our change-

rule inference techniques in that both use code matching information to infer refactorings.

Section 2.2.3 describes techniques that group related code changes. These techniques are

similar to our change-rule inference techniques in that they cluster related changes and can

identify potential missed updates.

2.2.1 Code Matching

Suppose that a program P ′ is created by modifying P . Determine the difference ∆ between

P and P ′. For a code fragment c′ ∈ P ′, determine whether c′ ∈ ∆. If not, find c′’s

corresponding origin c in P.

A code fragment in the new version either contributes to the difference or comes from

the old version. If the code fragment has a corresponding origin in the old version, it

means that it does not contribute to the difference. Thus, finding the delta between two

versions is the same problem as finding corresponding code fragments between two versions.

Suppose that a programmer inserts if-else statements in the beginning of the method m A

and reorders several statements in the method m B without changing semantics (see Table

2.1). An intuitively correct matching technique should produce [(s1-s1’), (s2-s2’), (s3-s4’),

(s4-s3’), and (s5-s5’)] and identify that s0’ is added.

Matching code across program versions poses several challenges. First, previous stud-

ies [167] indicate that programmers often disagree about the origin of code elements; low

inter-rater agreement suggests that there may be no ground truth in code matching. Sec-

ond, renaming, merging, and splitting of code elements make the matching problem non-

trivial. Suppose that a file PElmtMatch changed its name to PMatching; a procedure matchBlck

is split into two procedures matchDBlck and matchCBlck; and a procedure matchAST changed its

name to matchAbstractSyntaxTree. The intuitively correct matching technique should produce

21

Table 2.1: Example code change

before after

mA (){

if (pred_a) { //s1

foo(); //s2

}

}

mB (b){

a= 1; //s3

b= b+1; //s4

fun(a,b); //s5

}

mA (){

if (pred_a0) { //s0’

if (pred_a) { //s1’

foo(); //s2’

}

}

}

mB (b){

b= b+1; \\s3’

a= 1; \\s4’

fun(a,b); \\s5’

}

[(PElmtMatch, PMatching), (matchBlck, matchDBlck), (matchBlck, matchCBlck),

and (matchAST, matchAbstractSyntaxTree)], while simple name-based matching will consider

PMatching, matchDBlck, matchCBlck, and matchAbstractSyntaxTree added and consider PElmtMatch,

matchBlck, and matchAST deleted.

Existing code matching techniques usually employ syntactic and textual similarity mea-

sures to match code. They can be characterized by the choices of (1) an underlying program

representation, (2) matching granularity, (3) matching multiplicity, and (4) matching heuris-

tics. This section explains how the choices impact applicability, effectiveness, and accuracy

of each matching method by creating an evaluation framework.

Entity Name Matching The simplest matching method treats code elements as im-

mutable entities with a fixed name and matches the elements by name. For example,

Zimmermann et al. model a function as a tuple, (file name, FUNCTION, function name),

and a field as a tuple, (function name, FIELD, field name) [312]. Similarly, Ying et al.

[308] model a file with its full path name.

22

String Matching When a program is represented as a string, the best match between two

strings is computed by finding the longest common subsequence (LCS) [9]. The LCS problem

is built on the assumption that (1) available operations are addition and deletion, and (2)

matched pairs cannot cross one another. Thus, the longest common subsequence does not

necessarily include all possible matches when available edit operations include copy, paste,

and move. Tichy’s bdiff [280] extended the LCS problem by relaxing the two assumptions

above: permitting crossing block moves and not requiring one-to-one correspondence.

The line-level LCS implementation, diff [139] is fast, reliable, and readily available.

Thus, it has served as a basis for popular version control systems such as CVS.1 or Sub-

version2 Many evolution analyses are based on diff because they use version control system

data as input. Our clone genealogy extractor tracks code snippets by their file name and

line number (Chapter 4). Identification of fix-inducing code snippets [273] is also based on

tracking (file name:: function name:: line number) backward from the moment that a bug

is fixed.

Reiss [253] evaluated practical LCS-based source line tracking techniques. His investiga-

tion shows that the W BEST LINE method—a variation of LCS algorithm that considers

k number of contextual lines—is about as effective as any other method but is faster and

requires only a small amount of storage. This method compares each line to derive a nor-

malized match value between zero (no match) and one (exact match); looks at a context

consisting of k/2 lines before and after the line; and counts the number of these lines that

match the corresponding line in the new version.

Recently, Canfora et al. [46] developed a source line technique that takes differencing

results from diff-based version control systems as input and identifies changed-lines in ad-

dition to added- and deleted-lines. This technique first computes hunk similarity between

every possible hunk pair using a vector space model and then computes the Levenstein

distance [186] to map source lines within the mapped hunk pairs. In contrast to diff, this

approach detects changed-lines in addition to deleted- and added-lines.

1http://www.cvshome.org

2http://subversion.tigris.org

23

Syntax Tree Matching For software version merging, Yang [304] developed an AST

differencing algorithm. Given a pair of functions (fT , fR), the algorithm creates two abstract

syntax trees T and R and attempts to match the two tree roots. Once the two roots match,

the algorithm aligns T ’s subtrees t1, t2, ..., ti and R’s subtrees r1, r2, ...rj using the LCS

algorithm and maps subtrees recursively. This type of tree matching respects the parent-

child relationship as well as the order between sibling nodes, but is very sensitive to changes

in nested blocks and control structures because tree roots must be matched for every level.

For dynamic software updating, Neamtiu et al. [230] built an AST-based algorithm that

tracks simple changes to variables, types, and functions. Neamtiu’s algorithm assumes that

function names are relatively stable over time. It traverses two ASTs in parallel; matches

the ASTs of functions with the same name; and incrementally adds one-to-one mappings as

long as the ASTs have the same shape. In contrast to Yang’s algorithm, it cannot compare

structurally different ASTs.

Fluri et al.’s Change Distiller [90] uses an improved version of Chawathe et al.’s hier-

archically structured data comparison algorithm [48]. Change Distiller takes two abstract

syntax trees as input and computes basic tree edit operations such as insert, delete, move or

update of tree nodes. It uses bi-gram string similarity to match source code statements such

as method invocations and uses subtree similarity to match source code structures such as

if-statements. After identifying tree edit operations, Change Distiller maps each tree-edit

to an atomic AST-level change type.

Cottrell et al.’s Breakaway [58] automatically identifies detailed structural correspon-

dences between two abstract syntax trees to help programmers generalize two pieces of

similar code. Its two-pass greedy algorithm is applied to ordered child list properties (state-

ments in a block) then to unordered nodes (method declarations).

Finally, the following two techniques do not directly compare ASTs but use syntactic

information to guide string level differencing. Hunt and Tichy’s 3-way merging tool [136]

parses a program into a language neutral form; compares token strings using the LCS algo-

rithm; and finds syntactic changes using structural information from the parse. Raghavan

et al.’s Dex [249] locates the changed parts in C source code files using patch file information

and feeds the changed parts into a tree differencing algorithm to output the edit operations.

24

Control Flow Graph Matching Laski and Szermer [184] first developed an algorithm

that computes one-to-one correspondences between CFG nodes in two programs. This

algorithm reduces a CFG to a series of single-entry, single-exit subgraphs called hammocks

and matches a sequence of hammock nodes using a depth first search (DFS). Once a pair

of corresponding hammock nodes is found, the hammock nodes are recursively expanded in

order to find correspondences within the matched hammocks.

Jdiff [7] extends Laski and Szermer’s (LS) algorithm to compare Java programs based on

an enhanced control flow graph (ECFG). Jdiff is similar to the LS algorithm in the sense

that hammocks are recursively expanded and compared, but is different in three ways:

First, while the LS algorithm compares hammock nodes by the name of a start node in the

hammock, Jdiff checks whether the ratio of unchanged-matched pairs in the hammock is

greater than a chosen threshold in order to allow for flexible matches. Second, while the LS

algorithm uses DFS to match hammock nodes, Jdiff only uses DFS up to a certain look-

ahead depth to improve its performance. Third, while the LS algorithm requires hammock

node matches at the same nested level, Jdiff can match hammock nodes at a different

nested level; thus, Jdiff is more robust to addition of while loops or if-statements at the

beginning of a code segment. Jdiff has been used for regression test selection [236] and

dynamic change impact analysis [8].

CFG-like representations are commonly used in regression test selection research. Rother-

mel and Harrold’s algorithm [262] traverses two CFGs in parallel and identifies a node with

unmatched edges, which indicates changes in code. In other words, the algorithm stops

parallel traversal as soon as it detects changes in a graph structure; thus, this algorithm

does not produce deep structural matches between CFGs. However, traversing graphs in

parallel is still sufficient for the regression testing problem because it conservatively iden-

tifies affected test cases. In practice, regression test selection algorithms [117, 236] require

that syntactically changed classes and interfaces are given as input to the CFG matching

algorithm.

Program Dependence Graph Matching There are several program differencing algo-

rithms based on a program dependence graph [133, 37, 143].

25

Horwitz [133] presents a semantic differencing algorithm that operates on a program

representation graph (PRG) which combines features of program dependence graphs and

static single assignment forms. In her definition, semantic equivalence between two programs

P1 and P2 means that, for all states σ such that P1 and P2 halt, the sequence of values

produced at c1 is identical to the sequence of values produced at c2 where c1 and c2 are

corresponding locations. Horwitz uses Yang’s algorithm [305] to partition the vertices into

a group of semantically equivalent vertices based on three properties, (1) the equivalence

of their operators, (2) the equivalence of their inputs, (3) the equivalence of the predicates

controlling their evaluation. The partitioning algorithm starts with an initial partition based

on the operators used in the vertices. Then by following flow dependence edges, it refines

the initial partition if the successors of the same group are not in the same group. Similarly,

it further refines the partition by following control dependence edges. If two vertices in the

same partition are textually different, they are considered to have only a textual change. If

two vertices are in different partitions, they have a semantic change. After the partitioning

phase, the algorithm finds correspondences between P1’s vertices and P2’s vertices that

minimize the number of semantically or textually changed components of P2.

Binkley et al. [37] presents a 3-way merging algorithm that is based on semantic dif-

ferences. This algorithm does not find corresponding elements between two versions of a

program, but rather makes an assumption that a special editor is used to tag each PDG

node to identify added nodes, deleted nodes and changed nodes. Given PDG node level

correspondence among three input programs A, B, and Base, the integration algorithm pro-

duces a program M that integrates the difference A from Base, the difference B from Base,

and the preserved behavior among A, B, and Base. The behavior differences between A and

B are approximated by the slice of APA,Base in GA where APA,Base is a set of vertices of

GA whose program slice is different from GBase’s slice. Although the problem of determin-

ing whether GM corresponds to some program is NP-complete, Binkley et al. presented a

backtracking algorithm that behaves satisfactorily on actual programs.

In general, PDG-based algorithms are not applicable to popular modern program lan-

guages because they can run only on a limited subset of C-like languages without global

variables, pointers, arrays, or procedures.

26

Binary Code Matching BMAT [294] matches two versions of a binary program without

knowledge of source code changes. BMAT was used for profile propagation and regression

test prioritization [275]. BMAT’s algorithm matches blocks in three steps: (1) matching

procedures by their names and code contents, (2) matching data blocks using hash functions,

and (3) matching code blocks using hash functions and control flow equivalence.

BMAT has been improved [293] because its hashing based algorithm was too sensitive

to instruction reordering due to compiler optimization. Its new algorithm uses control

tree representations and matches code blocks (leaf-nodes) in two phases: In the bottom-up

phase, code blocks are matched first and matching criteria is relaxed to accommodate minor

changes in the tree structure or node contents while still using the hierarchical tree structure

to identify correct matches. In the top-down phase, the tree is traversed in depth-first order

and block matches are finalized recursively, using higher level matches to guide lower-level

matches.

Text Document Several tools find a similar document (or a group of similar documents)

in a directory of files using chunking and approximate fingerprints [91, 148, 198]. Siff [198]

is characteristic of these tools. First, siff breaks each file into a sequence of chunks using

sliding windows and computes fingerprints for each chunk incrementally. After this step,

each file is represented as a list of fingerprints. Second, for a given file, siff finds a similar

document using the agrep algorithm. For each fingerprint, siff lists all files that include the

fingerprint. Then it sorts the list and computes the shared number of fingerprints for each

distinctive set of files. Third, it uses a threshold to discard matches with a small number

of shared fingerprints.

Clone Detection A clone detector is simply an implementation of an arbitrary equiv-

alence function. The equivalence function defined by each clone detector depends on a

program representation and a comparison algorithm. Most clone detectors are heavily de-

pendent on (1) hash functions to improve performance, (2) parametrization to allow flexible

matches, and (3) thresholds to remove spurious matches. A clone detector can be consid-

ered as a many-to-many matcher based solely on content similarity heuristics. Section 2.4

27

discusses clone detection techniques in detail.

Others The matching problem is one of the most fundamental and general problems

in computer science. For example, schema matching [250] is a very well studied area in

database research. This problem is similar to code matching in that (1) the problem can

be solved at a different granularity (attributes or tables); (2) typed structures are often

compared to find a matching; and (3) splitting, merging, and renaming of attributes often

make the problem more challenging. However, it is difficult to adapt schema matching tech-

niques to the code matching problem, because many techniques—instance based matching,

linguistics based matching, key characteristics based matching, and uses of join queries—are

only pertinent to schema matching.

Selective recompilation (incremental compilation [47]) assumes an initial set of changes

and focuses only on how to efficiently identify compilation units to be recompiled using

structural dependencies (e.g., def-use).

Translation validation (or checking comparison) [231, 311] checks whether an optimized

version of a program still preserves the same semantics of an unoptimized version of a

program. Solving this problem requires matching equivalent program elements. Necula

[231] uses simple heuristics to match control flow graphs and uses symbolic evaluation to

check equivalence of simulation relations (predicates which are provided by the compiler for

particular points of the programs). Necula’s algorithm [231] compares control predicates

and function call sequences to match CFG nodes. Zhang and Gupta [311] address the same

problem at a binary level by matching instructions based on program execution histories

given the same input. Based on WET representation [310], a static representation of the

program labeled with dynamic profile information, the algorithm matches instructions that

dynamically behave the same even though statically they appear to be different.

Comparison Table 2.2 compares these surveyed matching techniques. The first column

shows which underlying program representation each technique is based on. The second

columns includes references to each surveyed technique. The third column shows at what

granularity each technique matches code. The fourth column shows at what granularity

28

each technique assumes correspondences. Many techniques assume correspondences at a

certain granularity no matter whether this assumption is explicitly stated or not; diff and

bdiff match source lines assuming that input files are already matched; cdiff matches AST

nodes assuming that enclosing functions are matched by the same name; and Tichy et al.

[197, 136] assume that corresponding files are mapped. The fifth column shows matching

multiplicity. Only bdiff allows one to many mappings at a line level and BMAT allows many

to one mappings at a block level. Other techniques all assume one to one mappings. The

column six, seven, and eight describe matching heuristics employed by each technique. All

matching techniques heavily rely on heuristics to reduce the scope of potential matches, and

the heuristics are categorized into three categories that are not comprehensive or mutually

exclusive.

1. Name-based heuristics match entities with similar names.

2. Position-based heuristics match entities with similar positions. If entities are placed

in the same syntactic position or surrounded by already matched pairs, they become

a matched pair.

3. Similarity-based heuristics match entities that are nearly identical; they often rely on

parametrization and a hash function to find near identical entities. All clone detectors

can be viewed as similarity-based matchers.

The three different heuristics complement one another. For example, when hash values

collide or parametrization results in spurious matches, position-based heuristics will select

a matched pair that preserves linear ordering or structural ordering by checking neighbor-

ing matches. Diff and bdiff use similarity-based heuristics to map source lines. cdiff uses

name-based heuristics to map AST nodes by their labels. Neamtiu’s algorithm uses both

name-based and position-based heuristics: It traverses two ASTs in parallel, matches AST

nodes by the same label, and matches variable nodes placed in the same syntactic position

regardless of their labels. Jdiffmatches CFG nodes by the same label and matches hammock

nodes by the hammock’s content (the ratio of unchanged-matched pairs in the hammock

29

nodes). BMAT uses a name-based heuristic to match procedures in multiple phases: by the

same globally qualified name (e.g., System.out.println), by the same hierarchical name, by

the same signature, and by the same procedure name. BMAT also uses a position-based

heuristic to remove unmatched pairs.

Evaluation Matching techniques are often inadequately evaluated, in part due to a lack

of agreed evaluation criteria or representative benchmarks. To evaluate matching techniques

uniformly, we take a scenario-based evaluation approach; We describe how well matching

techniques will perform for the hypothetical program change scenarios described in the

beginning of this section (page 21).3

The third column of Table 2.3 summarizes how well each technique will work in the

scenario of Table 2.1. Diff can match lines of m A but cannot match reordered lines in

m B because the LCS algorithm does not allow crossing block moves. Bdiff can match

reordered lines in m B because crossing block moves are allowed. Neamtiu’s algorithm will

perform poorly in both m A and m B because it does not perform a deep structural match.

Cdiff cannot match unchanged parts in m A correctly because cdiff stops early if roots do

not match for each level. Jdiff will be able to skip the changed control structure, map

unchanged parts in m A, and match reordered statements in m B if the look-ahead threshold

is greater than the depth of nested controls. BMAT cannot track code blocks in m B because

BMAT’s hashing algorithms are instruction order sensitive. In conclusion, Jdiff will work

best for changes within procedures at a statement or predicate level.

The fourth column of Table 2.3 summarizes how each technique will work in case of

renaming and splitting at a file or procedure level. Most name-based matching techniques

will do poorly with renaming events. Diff and bdiff will be able to track each line only

if file names do not change. Both cdiff and Neamtiu’s algorithm will perform poorly if

procedure names change. BMAT will perform well because it relies on multiple passes of

hash functions and multiple phases of name matching. The remaining columns of Table

2.3 describe how well each matching technique will work in case of restructuring tasks at a

3PDG-based matching techniques are excluded as these techniques only work for limited C-like languages
and do not support modern programming languages.

30

Table
2.2:

C
om

parison
of

code
m

atching
techniques

P
rogram

C
itation

G
ran

u
larity

A
ssu

m
ed

M
u
ltip

licity
H

eu
ristics

A
p
p
lication

R
ep

resen
tation

C
orresp

on
d
en

ce
N

P
S

A
set

of
[109,

77,
229]

M
o
d
u
le

1:1
√

F
au

lt
p
ron

en
ess

en
tities

B
evan

et
al.

[31]
F
ile

1:1
√

In
stab

ility

Y
in

g
et

al.
[308]

F
ile

1:1
√

C
o-ch

an
ge

Z
im

m
erm

an
n

et
al.

F
ile

1:1
√

[312]
P

ro
ced

u
re

F
ield

S
trin

g
diff

[139
]

L
in

e
F
ile

1:1
√

M
ergin

g

C
lon

e
gen

ealogy
[165

]

F
ix

in
d
u
cin

g
co

d
e

[273
]

bdiff
[280]

L
in

e
F
ile

1:n
√

M
ergin

g

A
S
T

cdiff
[304]

A
S
T

N
o
d
e

P
ro

ced
u
re

1:1
√

N
eam

tiu
et

al.[230
]

T
y
p
e,

V
ar

1:1
√

√
T

y
p
e

ch
an

ge

H
u
n
t,

T
ich

y
[136

,
197]

T
oken

F
ile

1:1
√

√
M

ergin
g

C
F
G

J
diff

[7]
C

F
G

n
o
d
e

1:1
√

√
R

egression
testin

g

Im
p
act

an
aly

sis

B
in

ary
B

M
A

T
[294

]
C

o
d
e

b
lo

ck
1:1

(p
ro

ced
u
re)

√
√

√
P

rofi
le

p
rop

agation

n
:1

(b
lo

ck
)

R
egression

testin
g

N
:
N

am
e-b

ased
h
eu

ristics,
P

:
P
osition

-b
ased

h
eu

ristics,
S
:
S
im

ilarity
-b

ased
h
eu

ristics

31

procedure level or at a file level. Based on Table 2.2 and 2.3, we conclude the following:

• Most matching techniques produce low-level differences without any structure; thus,

matching results are difficult for programmers to inspect and reason about at a high-

level.

• AST or CFG based techniques produce matches at fine-grained levels but are only

applicable to a complete and parsable program. Researchers must consider the trade-

off between matching granularity, requirements, and cost.

• Many techniques employ the LCS algorithm and thus inherit the assumptions of

LCS: (1) one-to-one correspondences between matched entities and (2) linear ordering

among matched pairs. Implicit assumptions like these must be carefully examined

before implementing a matcher.

• Most techniques support only one-to-one mappings at a fixed granularity. Therefore,

they will perform poorly when merging or splitting occurs.

• The more heuristics are used, the more matches can be found by complementing

one another. For example, name-based matching is easy to implement and can reduce

matching scope quickly, but it is not robust to renaming events. In this case, similarity-

based matching can produce matches between renamed entities, and position-based

matching can leverage already matched pairs to infer more matches.

2.2.2 Refactoring Reconstruction

Refactoring reconstruction (RR) techniques compare two program versions and look for

a predefined set of refactoring patterns: move a method, rename a class, add an input

parameter, etc. While code matching tools stop at mapping corresponding code elements,

RR tools infer refactorings that explain the identified correspondences at the level of a

function, class, or file.

32

Table
2.3:

E
valuation

of
the

surveyed
code

m
atching

techniques

P
rogram

C
itation

S
cen

ario
T
ran

sform
ation

s
S
tren

gth
an

d
W

eak
n
ess

R
ep

resen
tation

S
p
lit/M

erge
R

en
am

e

1
2

P
ro

c
F
ile

P
ro

c
F
ile

S
trin

g
diff

[139
]

M
P

P
P

M
P

−
sen

sitive
to

fi
le

n
am

e
ch

an
ges

bdiff
[280]

G
P

M
P

M
P

+
can

trace
cop

ied
b
lo

ck
s

A
S
T

cdiff
[304

]
P

P
P

P
P

P
−

sen
sitive

to
n
ested

level
ch

an
ge

−
req

u
ire

p
ro

ced
u
re

level
m

ap
p
in

gs

N
eam

tiu
et

al.
[230]

P
P

P
P

P
P

−
p
artial

A
S
T

m
atch

in
g

H
u
n
t,

T
ich

y
[136,

197
]

M
P

P
P

G
P

−
req

u
ire

fi
le

level
m

ap
p
in

gs

+
can

id
en

tify
p
ro

ced
u
re

ren
am

in
g

C
F
G

J
diff

[7]
G

M
P

P
M

M
+

rob
u
st

to
sign

atu
re

ch
an

ges

−
sen

sitive
to

con
trol

stru
ctu

re
ch

an
ges

B
in

ary
B

M
A

T
[294]

P
G

P
P

G
G

+
rob

u
st

to
p
ro

ced
u
re

ren
am

in
g

−
assu

m
e

1:1
p
ro

ced
u
re

corresp
on

d
en

ce

−
on

ly
ap

p
licab

le
to

b
in

ary
p
rogram

s

G
:
go

o
d

M
:
m

ed
io

cre
P

:
p
o
or

33

Demeyer et al. [65] first proposed the idea of inferring refactoring events by comparing

the two programs. Demeyer et al. used a set of ten characteristics metrics such as LOC and

the number of method calls within a method (i.e., fan-out) and inferred refactorings based

on the metric values and a class inheritance hierarchy.

Zou and Godfrey’s origin analysis [316] matches procedures using multiple criteria (e.g.,

names, signatures, metric values, callers, and callees) and infers merging, splitting, and

renaming events. It is semi-automatic in the sense that a programmer must manually tune

matching criteria and select a match among candidate matches.

Kim et al. [167] automated Zou and Godfrey’s procedure renaming analysis. In addition

to matching criteria used by Zou and Godfrey, Kim et al. used clone detectors such as

CCFinder [149] and Moss [2] to calculate content similarity between procedures. An overall

similarity is computed as a weighted sum of each similarity metric, and a match is selected

if the overall similarity is greater than a certain threshold.

A renaming detection tool by Malpohl et al. [197] aligns tokens using diff and infers a

function or variable renaming when distinct tokens are surrounded by mapped token pairs.

Similarly, Neamtiu et al.’s analysis [230] detects a function or variable renaming based on

the syntactic position of tokens.

Rysselberghe and Demeyer [263] use a clone detector, Duploc [75], to detect moved

methods. Another similar approach by Antoniol et al. [5] identifies class-level refactorings

using a vector space information retrieval approach.

Xing and Stroulia’s UMLDiff [302] matches packages, classes, interfaces, fields and blocks

based on their name and structural similarity metrics in a top-down order. After matching

code elements, UMLDiff infers refactorings as well as other structural changes.

Dig et al.’s Refactoring Crawler identifies refactorings in two stages. First it finds a list

of code element pairs using shingles (a metric-based fingerprint) and performs a semantic

analysis based on reference relationships (calls, instantiations, or uses of types, import

statements). The second part of the algorithm is an iterative, fix point algorithm that

considers refactorings in a top-down order.

Weißgerber and Diehl’s technique [295] identifies refactoring candidates using only names

and signatures then uses clone detection results to rank the refactoring candidates.

34

Fluri et. al.’s Change Distiller [90] compares two versions of abstract syntax trees; com-

putes tree-edit operations; and maps each tree-edit to atomic AST-level change types (e.g.,

parameter ordering change) [89]. The identified change types are largely categorized into

two: (1) body-part changes and (2) declaration-part changes that include refactorings such

as access modifier changes, final modifier changes, attribute declaration changes, method

declaration changes, etc. Change Distiller was built for in-depth investigation of why change

coupling occurs in the evolution of open source projects.

Table 2.4 and Table 2.5 compare these RR techniques and our rule-based change infer-

ence techniques (Chapters 5 and 6) in terms of matching granularity, matching multiplicity,

matching heuristics and the type of inferred change operations.

The main difference between our change-rule representations and the representations

used by RR techniques is that none of the RR techniques explicitly represent systematic

changes in a formal syntax nor identify exceptions to systematic change patterns. RR

techniques report a list of refactorings, leaving it to the programmer to identify emerging

change patterns by discovering insights about the relationships among the particular set of

refactorings. In addition to this inherent limitation, many RR techniques have the following

two limitations that result from their implementation and algorithm choices.

First, many RR techniques do not consider the global context of transformation (in part

due to their lack of explicit high-level change representations), and thus they either find

too many refactoring candidates, leading to many false positives or find too few refactoring

candidates, leading to many false negatives. To cope with a large number of false positives,

RR techniques often need to post-process their results. For example, Weißgerber and Diehl’s

technique initially finds a large number of false positive refactorings; Hence it uses clone

detection results to rank the refactoring candidates. S. Kim et al.’s technique requires

users to reduce false positives by optimizing each similarity factor’s weight and tuning the

threshold value. Second, many RR techniques cannot find multiple refactorings that affect

the same code elements as they impose a certain order in mapping code elements or do

not consider the possibility of overlapping transformations. For example, UMLDiff cannot

identify changes that involve both renaming and moving such as “move Foo class from

package A to package B and rename Foo to Bar” as UMLDiff maps code in a top down

35

order.

2.2.3 Identification of Related Change

Several techniques use historical change data or program structure information to identify

code elements that frequently change together. These techniques are similar to our rule-

based change inference techniques in that they group a set of related low-level changes to

discover a high-level logical change.

Gall et al. [93] were the first to use release data to detect logical coupling between

modules. They developed a change sequence analysis and applied this analysis to a 20-

release history of a large telecommunication system. Zimmermann et al. [312] applied

association rule learning to version history data to discover which files, classes, methods,

and fields frequently change together. Similarly, Ying et al. [308] applied a similar tech-

nique to the Eclipse and Mozilla change history. Like our change-rule inference techniques,

these approaches suggest a potential missing change. However, they do not explicitly group

systematic changes nor report their common structural characteristics, leaving it to pro-

grammers to figure out why some code fragments change together. For example, Rose [312]

may report that methods foo and bar are likely to change together but does not report that

both methods are called by the same method fun.

Hassan and Holt [119] proposed several heuristics that predict which code elements

should change together and evaluated these heuristics using open source projects’ evolution

histories. For example, the Historical Co-change heuristic recommends code elements that

changed together in previous change sets, the Code Structure heuristic recommends all

code elements related by static dependencies (calls, uses, and defines), the Developer-Based

heuristic recommends all code elements that were previously modified by the same developer,

and the Code Layout heuristic recommends all entities that are defined in the same file as

the changed entity. Surprisingly, their study found that the history-based or code layout

based heuristic outperform code structure based heuristics.

Crisp [50] groups code changes using four predefined rules. While Crisp’s goal is to

create a compilable intermediate version for fault localization, the goal of this dissertation

36

Table
2.4:

C
om

parison
ofrefactoring

reconstruction
techniques

(1)

A
u
th

o
rs

C
ita

tio
n

G
ra

n
u
la

rity
M

u
ltip

licity
H

e
u
ristics

C
h
a
n
g
e

o
p
e
ra

tio
n
s

D
em

eyer
at

al.
[65]

M
eth

o
d

1:1,
1:n

,
n
:1

M
eth

o
d

size
S
p
lit

in
to

su
p
erclass

(or
su

b
class)

C
lass

C
lass

size
M

erge
w

ith
su

p
erclass

(or
su

b
class)

In
h
eritan

ce
m

etric
M

ove
to

su
p
er,

su
b

or
sib

lin
g

class

S
p
lit

m
eth

o
d

F
actor

ou
t

com
m

on
fu

n
ction

ality

Z
ou

an
d

G
o
d
frey

[316]
F
u
n
ction

1:1,
1:n

,
n
:1

M
etric

valu
es

M
ove,

ren
am

e

F
ile

C
allers

an
d

callees
M

erge,
sp

lit,
rep

lacem
en

t

S
u
b
sy

stem
F
u
n
ction

n
am

e
an

d
sign

atu
re

S
.
K

im
et

al.
[167]

F
u
n
ction

1:1
F
u
n
ction

n
am

e
an

d
sign

atu
re

M
ove

an
d

ren
am

e

C
allers

an
d

callees

C
lon

e
d
etection

resu
lts

(C
C

F
in

d
er,

M
oss)

F
u
n
ction

b
o
d
y

d
iff

C
om

p
lex

ity
m

etrics

A
n
ton

iol
et

al.
[5]

C
lass

1:1,
1:n

,
n
:1

V
ector

sp
ace

m
o
d
el

sim
ilarity

M
erge,

sp
lit,

rep
lacem

en
t

M
alp

oh
l
et

al.
[197]

T
oken

1:1
S
y
n
tactic

p
osition

sim
ilarity

R
en

am
e

N
eam

tiu
et

al.
[230]

T
y
p
e,

V
ar

1:1
N

am
e

sim
ilarity

R
en

am
e

S
y
n
tactic

p
osition

sim
ilarity

37

Ta
bl

e
2.

5:
C

om
pa

ri
so

n
of

re
fa

ct
or

in
g

re
co

ns
tr

uc
ti
on

te
ch

ni
qu

es
(2

)

A
u
th

o
rs

C
it

a
ti

o
n

G
ra

n
u
la

ri
ty

M
u
lt

ip
li
ci

ty
H

e
u
ri

st
ic

s
C

h
a
n
g
e

O
p
e
ra

ti
o
n
s

R
y
ss

el
b
er

gh
e

an
d

D
em

ey
er

[2
63

]
L
in

e
n
:n

C
lo

n
e

d
et

ec
ti
on

re
su

lt
s

(D
u
p
)

M
ov

e
m

et
h
o
d

X
in

g
an

d
S
tr

ou
li
a

(U
M

L
D

iff
)

[3
02

]
P
ac

ka
ge

1:
1

N
am

e
si

m
il
ar

it
y

R
en

am
e

an
d

m
ov

e

C
la

ss
C

on
ta

in
er

s
S
ig

n
at

u
re

ch
an

ge
s

M
et

h
o
d

R
ef

er
en

ce
s

C
h
an

ge
s

to
st

ru
ct

u
ra

l
d
ep

en
d
en

ci
es

F
ie

ld
(I

n
h
er

it
an

ce
,
ca

ll
s,

B
lo

ck
d
at

a
ac

ce
ss

es
,
co

n
ta

in
m

en
t)

D
ig

et
al

.
(R

ef
ac

to
ri

n
g

C
ra

w
le

r)
[7

0]
P
ac

ka
ge

1:
1,

1:
n

C
lo

n
e

d
et

ec
ti
on

re
su

lt
s

(S
h
in

gl
es

)
R

en
am

e
p
ac

ka
ge

(o
r

cl
as

s,
m

et
h
o
d
)

C
la

ss
R

ef
er

en
ce

s
P

u
ll

u
p

m
et

h
o
d

M
et

h
o
d

P
u
sh

d
ow

n
m

et
h
o
d

M
ov

e
m

et
h
o
d

C
h
an

ge
m

et
h
o
d

si
gn

at
u
re

W
ei

ßg
er

b
er

an
d

D
ie

h
l

[2
95

]
C

la
ss

1:
1

C
lo

n
e

d
et

ec
ti
on

re
su

lt
s

(C
C

F
in

d
er

)
M

ov
e

an
d

re
n
am

e

M
et

h
o
d

N
am

e
an

d
si
gn

at
u
re

C
h
an

ge
m

et
h
o
d

si
gn

at
u
re

F
ie

ld
V

is
ib

il
it
y

ch
an

ge

F
lu

ri
et

al
.

(C
h
an

ge
D

is
ti
ll
er

)
[9

0]
A

S
T

n
o
d
e

1:
1

b
i-
gr

am
st

ri
n
g

si
m

il
ar

it
y

16
ch

an
ge

ty
p
es

su
b
tr

ee
si
m

il
ar

it
y

K
im

et
al

.
[1

64
]

M
et

h
o
d

1:
1

or
n
:1

N
am

e
an

d
si
gn

at
u
re

R
en

am
e

an
d

m
ov

e

(C
h
ap

te
r

5)
si
m

il
ar

it
y

S
ig

n
at

u
re

ch
an

ge
s

K
im

et
al

.
P
ac

ka
ge

1:
1

N
am

e
an

d
si
gn

at
u
re

C
h
an

ge
s

to
st

ru
ct

u
ra

l
d
ep

en
d
en

ci
es

(C
h
ap

te
r

6)
C

la
ss

si
m

il
ar

it
y

(i
n
h
er

it
an

ce
,
ca

ll
s,

d
at

a
ac

ce
ss

es

M
et

h
o
d

co
n
ta

in
m

en
t,

ov
er

ri
d
in

g)

F
ie

ld

38

is to help programmers understand code changes by recovering a latent systematic structure

in program differences.

2.3 Recording Change

Recorded change operations can be used to help programmers reason about software changes.

Section 2.3.1 describes techniques that capture change operations in an editor or an inte-

grated development environment. Section 2.3.2 describes source code transformation lan-

guages, which can serve as a basis for capturing high-level semantic transformations.

2.3.1 Edit Capture and Replay

Several editors or integrated development environment (IDE) extensions capture and re-

play keystrokes, editing operations, and high-level update commands to use the recorded

change information for intelligent version merging, studies of programmers’ activities, and

automatic updates of client applications.

For example, Dig et al.’s MolhadoRef [71] automatically resolves merging conflicts that

a regular diff-based merging algorithm cannot resolve by taking into account the semantics

of recorded move and rename refactorings. This algorithm extends Lippe’s operation-based

merging [190] by defining a model of merging conflicts in case of rename and move refac-

torings. While Lippe’s operation-based merging only defined abstract change operations

and did not have a means of recording change operations in IDE, MolhadoRef implements

refactoring-aware version merging by recording refactoring commands in the Eclipse IDE.4

Henkel and Diwan’s CatchUp [123] captures API refactoring actions as a developer

evolves an API and allows the users of the API to replay the refactorings to bring their

client software up to date.

Robbes [257] extended a small talk IDE to capture AST-level change operations (cre-

ation, addition, removal and property change of an AST node) as well as refactorings. He

used the recorded changes to study when and how programmers perform refactorings.

4Refactoring-aware version merging is one instance of version merging algorithms. A survey of version
merging algorithms and tools is described in [208].

39

Evans et al. [83] collected students’ programming data by capturing keystroke, mouse

and window focus events generated from the Windows operating system and used this data

to observe programming practices. Likewise, in our copy and paste study (Chapter 3),

we recorded keystrokes and edit operations in an Eclipse IDE to study copy and paste

programming practices.

When recorded change operations are used for helping programmers reason about soft-

ware changes, this approach’s limitation depends on the granularity of recorded changes. If

an editor records only keystrokes and basic edit operations such as cut and paste, it is a

programmer’s responsibility to raise the abstraction level by grouping keystrokes. If an IDE

records only high-level change commands such as refactorings, programmers cannot retrieve

a complete change history. In general, capturing change operations to help programmers

reason about software change is impractical as this approach constrains programmers to use

a particular IDE.

2.3.2 Source Code Transformation Tools

Source transformation tools allow programmers to author their change intent in a formal

syntax and automatically update a program using the change script. Most source transfor-

mation tools automate repetitive and error-prone program updates. The most ubiquitous

and the least sophisticated approach to program transformation is text substitution. More

sophisticated systems use program structure information. For example, A* [179] and TAWK

[113] expose syntax trees and primitive data structures. Stratego/XT[288] is based on al-

gebraic data types and term pattern matching. These tools are difficult to use as they

require programmers to understand low-level program representations. TXL [56] attempts

to hide these low-level details by using an extended syntax of the underlying programming

language. Boshernitsan et al.’s iXJ [39] enables programmers to perform systematic code

transformations easily by providing a visual language and a tool for describing and proto-

typing source transformations. Their user study shows that iXj’s visual language is aligned

with programmers’ mental model of code changing tasks. Erwig and Ren [82] designed

a rule-based language to express systematic updates in Haskell. Coccinelle [238] allows

40

programmers to safely apply crosscutting updates to Linux device drivers.

While these tools focus on applying systematic changes to a program, our approach fo-

cuses on recovering systematic changes from two versions. Despite the significant difference

in their goals, both approaches’ change-representations capture systematic changes concisely

and explicitly. In theory, one can build a program differencing tool using a source trans-

formation tool’s change-representation by (1) automatically enumerating potential trans-

formations, (2) applying the transformations to the old program version, and (3) checking

whether the updated program is the same as the new program version. However, the change-

representation’s granularity and expressive power will affect its use for high-level reasoning

of program differences. With a specific focus on high-level reasoning of software change, we

compare our rule-based change representations (Chapters 5 and 6) with two representative

source transformation languages and tools, TXL [56] and iXj [39].

Comparison with TXL TXL is a programming language and rapid prototyping system

specifically designed to support structural source transformation. TXL’s source transforma-

tion paradigm consists of parsing the input text into a structure tree, transforming the tree

to create a new structure tree, and unparsing the new tree to a new output text. Source

text structures to be transformed are described using an unrestricted ambiguous context

free grammar in extended Backus-Nauer (BNF) form. Source transformations are described

by example, using a set of context sensitive structural transformation rules from which an

application strategy is automatically inferred.

Each transformation rule specifies a target type to be transformed, a pattern (an example

of the particular instance of the type that we are interested in replacing), and a replacement

(an example of the result we want when we find such an instance). In particular, the

pattern is an actual source text example expressed in terms of tokens (terminal symbols)

and variables (non-terminal types). When the pattern is matched, variable names are bound

to the corresponding instances of their types in the match. Transformation rules can be

composed like function compositions. Figure 2.1 shows an example TXL rule that replaces

(1+1) expressions with 2.

TXL’s transformation rules in general require programmers to obtain the knowledge of

41

rule addOnePlusOne % target structure

replace [expression] % pattern to search for

1+1

by 2

% replacement to make

end rule

Figure 2.1: Example TXL rule

syntax trees. Though it is well suited for systematic changes at an expression level, it is less

suited for expressing systematic changes at a higher abstraction level such as moving a set

of classes from one package to another package. In addition, as our change-rules abstract

a program at the level of code elements and structural dependencies, our approach finds

systematic change patterns even when the constituent transformations are not exactly the

same; For example, adding call dependencies to a particular method is grouped as a single

rule even if the input parameters in the call invocation statements vary.

Comparison with iXj iXj’s pattern language consists of a selection pattern and a trans-

formation action. A selection pattern is similar to our rules’ antecedent, and a transfor-

mation action is similar to our rules’ consequent. Similar to our API change-rules, iXj’s

transformation language allows grouping of code elements using a wild-card symbol *. Fig-

ure 2.2 shows an example selection pattern and a transformation pattern.

To reduce the burden of learning the iXj pattern language syntax, iXj’s visual editor

scaffolds this process through from-example construction and iterative refinement; When a

programmer selects an example code fragment to change, iXj automatically generates an

initial pattern from the code selection and visualizes all code fragments matched by the

initial pattern. The initial pattern is presented in a pattern editor, and a programmer can

modify it interactively and see the corresponding matches in the editor. A programmer may

edit the transformation action and see the preview of program updates interactively.

42

Selection pattern: * expression instance of java.util.Vector (:obj).removeElement(:method)(*

expressions(:args))

[Interpretation: Match calls to the removeElement() method where the obj expression is a subtype of

java.util.Vector.]

Transformation action: obj.remove(obj.indexOf($args$))

[Interpretation: Replace these calls with with calls to the remove() method whose argument is the index of an

element to remove.]

Figure 2.2: Example iXj transformation

Similar to TXL, iXj’s transformation language works at the level of syntax tree nodes,

mostly at an expression level. Thus, it is not effective for expressing higher-level trans-

formation such as moving a set of related classes from one package to another package.

Its transformation actions are more expressive than our change-rules in that they support

free-form text edits.

2.4 Code Clones

This section describes automatic clone detection techniques, studies of clone coverage, clone

re-engineering techniques, empirical studies about code cloning practices, and clone man-

agement techniques.

2.4.1 Automatic Code Clone Detection

Although most consider code clones to be identical or similar fragments of source code

[23, 149], code clones have no consistent or precise definition in the literature. Indeed,

a “clone” has been defined operationally based on the computation of individual clone

detectors.

Clone detectors can be grouped into four basic approaches, each of which uses a different

representation of source code and different algorithms for comparing the representation of

potential clones.

First, some detectors are based on lexical analysis. For instance, Baker’s [12] Dup uses a

43

lexer and a line-based string matching algorithm. Dup removes white spaces and comments;

replaces identifiers of functions, variables, and types with a special parameter; concatenates

all files to be analyzed into a single text file; hashes each line for comparison; and extracts

a set of pairs of longest matches using a suffix tree algorithm. Kamiya et al. improved

Dup’s algorithm and developed CCFinder [149], which transforms tokens of a program

according to a language-specific rule and performs a token-by-token comparison. CCFinder

is recognized as a state of the art clone detector that handles industrial size programs; it

is reported to produce higher recall although its precision is lower than some other tools

[44]. CP-Miner [187] identifies a similar sequence of tokenized statements using a frequent

subsequence mining technique.

Second, Baxter et al. developed CloneDr [26], which parses source code to build an

abstract syntax tree (AST) and compares its subtrees by characterization metrics (hash

functions). Jiang et al. [146] and Koschke et al. [175] also developed AST-based clone

detection algorithms.

Third, some detectors find clones by identifying an isomorphic program dependence

graph (PDG). Komondoor and Horwitz’s clone detector finds isomorphic PDG subgraphs

using program slicing [173]. Krinke uses a k-length patch matching to find similar PDG

subgraphs [176]. PDG-based clone detection is robust to reordered statements, code inser-

tion and deletion, intertwined code, and non-contiguous code, but it is not scalable to large

programs.

Finally, metric-based clone detectors [148, 202, 212] compare various software metrics

called fingerprinting functions. These clone detectors find clones at a particular syntactic

granularity such as a class, a function, or a method, because fingerprinting functions are

often defined for a particular syntactic unit.

Comparative studies of clone detectors have been done by Burd and Bailey [44], Ryssel-

berghe and Demeyer [264], and Walenstein et al. [291].

44

2.4.2 Studies of Clone Coverage

Several studies have investigated the extent of code clones in software. Comparing the result

of these studies is difficult because the definition of a clone depends on the computation

of individual clone detectors and many detection algorithms take adjustable parameters.

Nearly as much as 10% to 30% of the code in many large scale projects was identified as

code clones (e.g., gcc-8.7% [75], JDK -29% [149], Linux -22.7% [187], etc). Antoniol et al. [6]

and Li et al. [187] studied changes in clone coverage (the ratio of cloned code to the total

lines of code) in Linux and found that clone coverage increased early in development but

stabilized over time. They interpreted these data as showing that the design of Linux is not

deteriorating due to copy and paste practices. These quantitative studies of clones cannot

answer questions about why programmers create and maintain code clones and how clones

actually evolve over time—for example, how often do clones actually require consistent

updates during evolution? Our copy and paste programming study and clone genealogy

study answer such questions by focusing on the evolutionary aspects of clones (Chapter 3

and Chapter 4).

2.4.3 Clone Reengineering

Researchers have also used the output of a clone detector as a basis for refactoring. For ex-

ample, Balazinska et al. developed a clone reengineering tool, called CloRT [16, 15]. CloRT

finds clones using software metrics and a dynamic pattern matching algorithm, determines

whether the Strategy or Template design pattern applies to these clones, factors out the com-

mon parts of methods, and parametrizes the differences with respect to the design patterns.

As another example, Komondoor and Horwitz developed a semantics-preserving procedure

extraction algorithm that runs on PDG-based clones [173, 174]. Finally, CCShaper [125]

filters the output of CCFinder to find candidates for the extract method and pull up method

refactoring patterns. CCShaper ’s improved version, Aries [126] suggests which refactoring

method to use to remove code clones based on the positional relationship of code clones in

the class hierarchy and the coupling between code clones and their surrounding code.

Language-based approaches such as multiple inheritance, mixins, use of delegation,

45

traits, and parametrization can remove a certain type of code duplication. For example,

Murphy-Hill et al. [227] removed similar method implementations in the Java.io library

using traits, a modularity mechanism that allows sharing of pure method implementa-

tions across the inheritance hierarchy. Jarzabek et al. [145] and Basit et al. [23] used

a meta language XVCL to reduce code duplication. XVCL allows parametrization via

meta-variables and meta-expressions, insertions of code at designated break points, selec-

tion among given options based on conditions, code generation by iterating over selections

of meta-components, etc. Jarzabek et al. [145] report that XVCL reduced 68% of code

duplication in the Java buffer library. Basit et al. [23] report that C++ standard libraries

(STL) made heavy use of generics but duplication still existed because similar functionality

had to be replicated in a slightly different way.

2.4.4 Studies about Cloning Practice

Several studies share a view to ours (Chapter 3 and Chapter 4) that code cloning is not

necessarily a harmful software engineering practice.

Cordy [55] notes that cloning is a common method of risk minimization used by financial

institutions because modifying an abstraction can introduce risks of breaking existing code.

Fixing a shared abstraction is both costly and time consuming as it requires any dependent

code to be extensively tested. On the other hand, clones increase the degrees of freedom

in implementing and maintaining each new application or module—each is free to refine

its view of the data. Cordy noted that propagating bug fixes to code clones is not always

a desired practice because the risk of changing an already properly working module is too

high.

Godfrey et al. [103] conducted a preliminary investigation of cloning in Linux SCSI

drivers and found that super-linear growth in the Linux system is largely caused by cloning

of Linux drivers. Kapser and Godfrey [152] extended this work and further studied cloning

practices in several open source projects (Linux operating system kernel, Postgresql rela-

tional database management systems, Apache httpd web server, and Gnumeric spreadsheet)

and found that clones are not necessarily harmful. Developers create new features by start-

46

ing from existing similar ones, as this cloning practice permits the use of stable, already

tested code. In fact, they report that about 71% of the clones could be considered to have

a positive impact on the maintainability of the software system. Their study also cata-

loged four major reasons of why programmers clone code: Forking is used to bootstrap

development of similar solutions with the expectation that clones will evolve somewhat in-

dependently at least in the short term to accommodate hardware variations or platform

variations. Templating is used to directly copy the behavior of existing code when appropri-

ate abstraction mechanisms such as inheritance or generics are unavailable. Customization

occurs when currently existing code does not adequately meet a new set of requirements.

Exact match duplication is typically used to replicate simple solutions or repetitive concerns

within the source code.

While interviewing and surveying developers about how they develop software, LaToza et

al. [185] uncovered six patterns of why programmers create clones: repeated work, example,

scattering, fork, branch, and language. For each pattern, less than half of the developers

interviewed thought that the cloning pattern was a problem. LaToza et al.’s study confirms

that most cloning is unlikely to be created with ill intentions. This study also reports that

programmers are concerned with large scale cloning such as copying a module created by

another team (forking), rather than copying example code fragments, subclasses, or code

fragments that are hard to refactor.

In a recent study, Rajapakse et al. [251] experimented with using Server page techniques

to eliminate code clones in a web application. They found that reducing duplication in a

web application had negative effects on the extensibility of an application: After signifi-

cantly reducing the size of the source code, a single change often required testing a vastly

larger portion of the system. Their study also suggests that avoiding cloning during initial

development could contribute to a significant overhead.

2.4.5 Clone Management

Miller and Myers [215] proposed simultaneous text editing to automate repetitive text edit-

ing. After describing a set of regions to edit, a user can edit any one record and see

47

equivalent edits simultaneously applied to all other records. A similar editing technique,

called Linked-Editing [281] applies the same edits to a set of code clones specified by a user.

Though these tools were developed prior to our clone genealogy study in 2005 (Chapter

4), our study results provide the reasons why these tool-based approaches are useful for

evolving code clones and suggest when and how often these tools are complementary to

using refactoring techniques.

Our clone genealogy study (Chapter 4) motivated clone tracking and management tech-

niques. Duala-Ekoko and Robillard [74] developed an Eclipse plug-in that takes the output

of a clone detector as input and automatically produces an abstract syntax-based clone

region descriptor for each clone. Using this descriptor, it automatically tracks clones across

program versions and identifies modifications to the clones. Similar to the Linked-Editing

tool by Toomim et al. [281], it uses the longest common subsequence algorithm to map

corresponding lines and to echo edits in one clone to other counterparts upon a developer’s

request.

2.4.6 Studies of Copy and Paste in Programming

Similar to our copy and paste (C&P) study in Chapter 3, there are several studies that

address how code clones are entered into a system or why programmers duplicate code.

To understand code reuse strategies in object oriented programming, Lange et al. [181]

conducted a week long observation of a single subject programming in Objective-C. The

investigators noted that the subject often copied a super-class or a sibling-class as a template

for a new class then edited the copied class. Rosson et al. [261] observed four subjects

programming in Smalltalk; when the subjects were interested in reusing a particular target

class, they copied the usage protocol of the target class and used it as example code without

deeply comprehending the behavior of the target class. Although they considered C&P as

one strategy of source code reuse, they did not focus on the implication of C&P. In our

study, we not only observed the same code reuse behavior but also analyzed why some code

snippets are chosen as a template.

48

2.5 Software Evolution Analysis

Belady and Lehman [28] are the first to study evolving software systems. They proposed

laws of software evolution after analyzing change data from the evolution of the OS/360

operating system. Since their work, many researchers have developed analysis and visual-

ization techniques to study study evolution. Based on a brief survey of software evolution

analysis and visualization techniques, we conclude that these techniques can benefit from

our rule inference techniques’ ability to extract concise, high-level change descriptions.

2.5.1 Empirical Studies of Software Evolution

Kemerer and Slaughter [154] manually coded over 25000 change logs to classify each change

event to 6 types of corrective, 6 types of adaptive, and 6 types of perfective changes. Their

analysis used phase mapping and gamma sequence analysis methods originally developed

in social psychology to identify and understand the phases of software evolution.

Eick et al. [77] developed a process for analyzing the change history of the code, which

is assumed to reside in a version management system, calculating code-decay indices, and

predicting the fault potential and change effort through regression analysis. The objective

of this research is to support project management so that code decay is delayed.

Hassan and Holt [118] studied the chaos of software systems in terms of information

entropy—the amount of uncertainty related to software products. Intuitively, in the context

of software evolution, if a software system is being modified across all its modules, it has high

entropy, and the software maintainers will have a hard time keeping track of all the changes.

Their work relies on maintenance documentation to keep track of software modifications in

order to compute information entropy of files that evolved over a period of time.

The major drawback of this line of research is that it requires developers’ comments

recorded in the version management system. In most real-world software projects, comments

are inconsistent in their detail and they often do not even exist.

Most refactoring reconstruction techniques are applied to some software evolution history

to study software evolution. This type of study is limited by the accuracy of refactoring

reconstruction and the kinds of refactorings targeted by each technique. Section 5.3 provides

49

more details on the accuracy and the kinds of refactorings.

2.5.2 Visualization of Software Evolution

There are several visualization techniques that focus on software evolution, in particular,

changes in software-process statistics, source code metrics, static dependence graphs, diff-

based deltas and their derivatives, etc.

Ball et al. [19] developed the one of the first systems that [19] explored visualizing

software evolution data, in particular, the age of individual code lines as a color. Their

work also visualizes program differences between two versions, which are calculated using

diff.

Holt and Pak [130] visualized structural changes between two program versions by explic-

itly modeling code elements and their structural dependencies. Their visualization focuses

on which structural dependencies are common, which dependencies are new, and which

dependencies are deleted between two versions at the subsystem level.

Eick et al. [78] developed a number of views (matrix, cityscape, bar and pie charts, data

sheets, and network) that facilitate rapid exploration of high-level structure in software

evolution data and also serve as a powerful visual interface to the data details as needed.

These visualization tools explicitly model logical software changes as their visualization is

built upon proprietary evolution history data, where a set of related program deltas are

grouped to a logical software change called a modification request (MR) and its change

type is manually written by developers as an adaptive, corrective, or perfective change.

Pinzger et al.’s RelVis approach [245] condenses multi-dimensional software evolution

metric data into two graphs. The first graph visualizes modules and their metrics over time.

The second graph visualizes relationships between source code modules. In both graphs,

the evolution of metrics is visualized using a Kiviat diagram where annual rings indicate

metric values for each release.

Lanza and Ducasse’s Polymetric views [183] is a lightweight software visualization tech-

nique enriched with software metrics information. Polymetric views help to understand the

structure and detect problems of a software system in the initial phases of a reverse engi-

50

neering process by combining software visualization and software metrics. Lanza applied

this general visualization technique to metric values over multiple program versions, and

named this view an evolution matrix [182]. This view is instantiated at two granularity lev-

els (a system level or a class level) and can help programmers understand how the system

size grows, when and where classes are added or deleted, etc.

Girba et al. [100] introduced the Yesterday’s Weather metric that can further condense

historical change patterns at a class granularity. This metric is designed to help a pro-

grammer identify a candidate for further reverse engineering based on the observation that

classes that changed most in the recent past are likely to undergo important changes in the

near future.

Rysselberghe et al. [265] proposed a dot plot visualization of change data extracted from

a version control system to identify unstable components, coherent entities, productivity

fluctuations, etc.

These visualization techniques assume a substantial interpretation effort on behalf of

their users and do not scale well. They become unreadable for a long evolution history

of large systems with numerous components. In addition, many of these techniques are

inherently limited by the source of history data—most version control systems consider

a software system as a set of files containing lines of texts and consequently they report

changes at the lexical level and are unaware of the high-level logical structural changes

of the software system. We believe that our change-rule inference techniques (Chapter 5

and Chapter 6) can enable these visualization techniques to model software evolution more

semantically and structurally.

2.6 Other Related Work

Logic-based Program Representation. Our change-rule inference technique in Chap-

ter 6 models a program as a set of logic facts at a program structure level. Representing a

program’s code elements and structural dependencies as a set of logic facts (or a relational

database) has been used for decades [189]. Approaches such as JQuery [144] or CodeQuest

[115] automatically evaluate logic queries specified by programmers to assist program in-

vestigation. Mens et al.’s intentional view [205] allows programmers to specify concerns or

51

design patterns using logic rules. Eichberg et al. [76] use Datalog rules to continuously en-

force constraints on structural dependencies as software evolves. Our change-rule inference

techniques differ from these by (1) focusing on systematic differences between two versions,

as opposed to regularities within a single version and (2) inferring rules without requiring

the programmers to specify them explicitly.

One could apply fact extractors such as grok [131] to each of two program versions

and use a set-difference operator to compute fact-level differences. Section 6.4 shows that

although this approach computes accurate structural differences, those deltas would be

quite large (often hundreds of facts) and thus more demanding on the programmer than

our condensed rule representation.

Framework Evolution. We discuss several approaches that were developed to assist

framework evolution as these approaches are similar to our LSDiff (Chapter 6) in that

they model program changes at a structure level and identify systematic change patterns.

However, these approaches differ from LSDiff by focusing on only API usage replacement

patterns.

Dagenais and Robillard’s SemDiff [62] monitors adaptive changes within a framework

to recommend similar changes to its clients. SemDiff and LSDiff are similar in that both

identify additions and deletions of methods and method-calls. SemDiff carries out a partial

program analysis to find changes in the callers of a particular deleted API, consistent with

its focus on framework evolution. In contrast, LSDiff uses the full logic-based program

representation of two versions to infer change rules. Schäfer et al. proposed an approach that

infers API usage replacement patterns as change-rules to assist framework evolution [270].

Although LSDiff infers a broader class of systematic changes, their underlying technology,

developed independently, is similar to ours. At a more detailed level, LSDiff rules are more

expressive than theirs. First, we infer first order logic rules with variables as opposed to

association rules (propositional rules without variables). Variables in our rule representation

allow explicit references to the same code elements, removing the need for context-based

filtering. Second, their predefined rule patterns limit discovery of systematic changes that

exhibit a combination of different types of structural characteristics such as subtyping and

52

method-calls.

53

Chapter 3

AN ETHNOGRAPHIC STUDY OF COPY AND PASTE
PROGRAMMING PRACTICES

This chapter describes an ethnographic study of copy and paste programming practices.

As a result of this study, we developed a taxonomy of common copy and paste patterns.

This taxonomy has been useful in understanding systematic changes and building change-

rule inference techniques that leverage systematicness at a code level.

The rest of this chapter is organized as follows. Section 3.1 details the observational

study settings and the analysis method used. Sections 3.2, 3.3 and 3.4 describe the resulting

taxonomy, focusing respectively on (1) programmers’ intentions, (2) design decisions that

cause programmers to copy and paste, and (3) the associated maintenance tasks. Section

3.5 presents how often and which granularity of text programmers copy and paste. Section

3.6 discusses possible flaws in the validity of this study and shares our conjectures about

copy and paste patterns in different study settings. Section 3.7 summarizes the insights.

3.1 Study Method

We observed programmers performing coding tasks first by watching them directly and then

by having them use an instrumented editor that logs their editing operations. In the latter

case, we conducted follow-up interviews to understand programmers’ tasks at a high level

and to confirm our interpretation of their actions. We applied the affinity process [34] to

the collected data to develop a taxonomy of copy and paste (C&P) patterns.

3.1.1 Observation

First, we observed participants by watching them program directly. We occasionally in-

terrupted the participants’ programming flow and asked them to explain what they were

copying and pasting and why. Most participants voluntarily explained their intentions of

54

Table 3.1: Copy and paste observation study setting

Direct Observation Observation using

a logger and a replayer

Subjects Researchers at IBM T.J. Watson

No. of Subjects 4 5

Total Coding Hours About 10 hrs About 50 hrs

Interviews Questions asked Twice after analysis

during observation (30 minutes to 1 hour each)

Programming Languages Java, C++, Jython Java

C&P.

In order to enable participants to program in a more natural setting and to log editing

operations with greater precision, we developed a logger and a replayer. Using the logger,

we recorded coding sessions, then observed the participants’ actions off-line by replaying the

captured editing operations. For both types of observation, the participants were researchers

at IBM T.J. Watson Research Center. They were expert programmers and were involved

in small team research projects. In total, nine subjects participated in the study, and we

observed about 60 hours of coding in object-oriented programming languages, mainly in

Java. Observational study settings are summarized in Table 3.1.

3.1.2 Logger and Replayer

The logger efficiently records the minimal information required to reconstruct document

changes performed by a programmer. The logger was developed by extending the text

editor of the Eclipse IDE1 and instrumenting text editing operations.2 It records the initial

contents of all documents opened in the workbench and logs changes in the documents. It

records the type of editing operations, the file names of edited documents, the range of

selected text and the length and offset of text entry, as well as editing operations such as

copy, cut, paste, delete, undo, and redo. It also captures document changes triggered by

1http://www.eclipse.org

2The logger was built for Eclipse version 2.1.

55

automated operations such as refactoring and organizing import statements. Appendix A

shows a sample edit log file in an XML format.

The replayer regenerates the programming context involved in document changes from

the low level editing events captured by the logger. It displays documents and highlights

changes and selected text. It has a few controls such as play, stop, and jump. While a

videotape analysis of coding behavior normally takes ten times as long as the actual coding,

by using the instrumented text editor and the replayer, replaying and reviewing the logs

took only 0.5 to 1 times of the actual coding tasks.

3.1.3 Analysis Method

By replaying the editing logs, we documented individual instances of copy and paste oper-

ations. An instance consists of one copy (or cut) operation followed by one or more paste

operations of the copied (or cut) text. It also includes other modifications performed on the

original text or the cloned text. We categorized each instance with a focus on the procedural

steps and the structural entity of copied (or cut) content. Since we observed multiple C&P

instances that share similar editing steps, we generalized the editing procedures to identify

C&P usage patterns. For example, one frequent C&P pattern was to repeatedly change

the name of a variable. The renaming procedure consists of selecting a variable, copying

the variable, pasting the variable n times, and optionally searching for the variable n times

(where n is the number of appearances of the variable within its scope). For each general-

ized copy and paste ensemble, we inferred the associated programmer’s intention. Inferring

a programmer’s intention was often straightforward. For example, changing the name of

a variable consistently is the intention associated with the renaming procedure described

above. For each C&P instance, we also investigated the relationship between a copied code

fragment and code elsewhere in the code base, and analyzed the evolutionary aspect of the

C&P instances by observing how duplicated code fragments were updated during our study.

After producing detailed notes for each C&P instance, we met with subjects to confirm

our interpretation of their actions. Appendix B shows an example analysis note that we

created by replaying one of the coding session logs and interviewing the participant. In

56

total, we analyzed 460 C&P instances.

To build a taxonomy of C&P patterns, we used the affinity process [34]. The affinity

process is often used to gather insights or discover new patterns from large amounts of

language data (ideas, opinions, and issues) by grouping them based on their natural rela-

tionships. Affinitizing is an interactive process often performed by a group or a team. First,

the ideas or issues are written on post-its and are displayed on a wall. The team members

start by looking for ideas that seem related in some way and place them together. They

create header-cards that capture the essential link among the ideas contained in a group

of cards. The product of the affinity process is a diagram which shows the groupings and

header-cards.

We wrote post-it notes based on the detailed description of each C&P instance. Then

we grouped related C&P instances and created header-cards for the identified groups of

cards. As a result, we created an affinity diagram, which is shown in Figure 3.1. Appendix

C includes each sub-part of the affinity diagram in detail.3

The following three sections present the resulting taxonomy, focusing respectively on

the intention, design, and evolutionary aspects of C&P operations. Section 3.2 (Intention

view) describes the categorization of programmers’ intentions involved in copy and paste

operations. Section 3.3 (Design view) describes the categorization of design decisions that

caused programmers to copy and paste in particular patterns. Section 3.4 (Maintenance

view) discusses maintenance tasks associated with copy and paste operations.

3.2 Intention View

The categorization of programmers’ intentions was constructed by inferring intentions asso-

ciated with common C&P patterns and by directly asking questions of the subjects. During

the interviews, the inferred intentions were confirmed or corrected.

One use of C&P is to relocate, regroup, or reorganize code from one place to another

according to the programmers’ mental model of the program’s structure. Programmers

3In the resulting diagram, there is no one-to-one mapping between C&P instances and post-it notes
because the notes that represent similar intentions, design decisions, or maintenance tasks were merged
during the affinity process.

57

F
ig

ur
e

3.
1:

A
ffi

ni
ty

di
ag

ra
m

re
pr

es
en

ti
ng

co
py

an
d

pa
st

e
pa

tt
er

ns
.

D
et

ai
ld

ia
gr

am
s

ap
pe

ar
in

A
pp

en
di

x
C

.

58

static{

!!
protectedClasses.add("java.lang.Object");

protectedClasses.add("java.lang. ref.Reference$ReferenceHandler");

protectedClasses.add("java.lang. ref.Reference");

protected Methods.add("java.lang. Thread.getThreadGroup");

}

Figure 3.2: An example syntactic template

also use copy and paste to reorder code fragments. For example, a Boolean expression

(A ‖ B ‖ C) could be reordered as the equivalent expression (B ‖ C ‖ A) to improve per-

formance, or several if-blocks could be reordered so that negated if-statements return early.

Programmers also use copy and paste to restructure (or refactor) their code manually. The

most common copy and paste intention in our study was to use a copied code snippet as a

structural template for another code snippet. Programmers often copied the entire code snip-

pet and removed code that was irrelevant to the pasted context. The structural templates

can be either reusable syntactic elements of code snippets (syntactic templates) or reusable

programming logic (semantic templates). The usage of syntactic templates is explained

through the example in Figure 3.2. The statement protectedClasses.add("java.lang.Object")

was copied multiple times. The duplicates were modified after they were pasted. The

programmer intended to reuse protectedXXX.add("java.lang.YYY") as a template for other

statements in the static method initialization. The lack of functionality in today’s IDEs

and/or and limitations in language constructs also increase the need for copying syntactic

templates. For example, the absence of repetitive text editing support in an IDE or the

lack of the enum construct in Java 1.4 causes programmers to copy and paste a particu-

lar phrase frequently. In the following examples, copied text is represented as copied text

(
!!!!!
with

!!!!!!
wavy

!!!!!!!!!!!
underline), pasted text is represented as pasted text (italic), deleted text is

represented as deleted text (with strike-through), and cut text is represented as cut text

(with strike-through and underline). Modifications performed on top of pasted text are

represented as modified text (with solid underline).

The following four subsections categorize the use of semantic templates.

59

!!!!!!!!!!!
DOMNodeList

!!!!!!!!!!!
*children

!!
=

!!!!!!!!!!!!!!!!!!!!!!
doc->getChildNodes();

!!!
int

!!!!!!!!!!!!
numChildren

!!!
=

!!!!!!!!!!!!!!!!!!!!!!!
children->getLength();

!!!
for

!!!!!
(int

!!!!!
i=0;

!!!!!!!!!!!!!!!!
i<numChildren;

!!!!!!
++i){

!!!!!!!
DOMNode

!!!!!!!!
*child

!!
=

!!!!!!!!!!!!!!!!!!!!!
(children->item(i));

!!
if

!!!!!!!!!!!!!!!!!!!!!!!
(child->getNodeType()

!!!
==

!!!!!!!!!!!!!!!!!!!!!!
DOMNode.ELEMENT NODE)

!
{

!!!!!!!!!!!
DOMElement

!!!!!!!!!
*element

!!
=

!!!!!!!!!!!!!!!!!!!!
(DOMElement*)child

Figure 3.3: Code fragment: traversing over element nodes in a DOM document in C++

Design Pattern In our study, we observed a case where a programmer copied the usage

of a Strategy design pattern [94]. The programmer used a concrete instantiation of the

Strategy pattern as a template, because it is easier than writing code from an abstract

description of that design pattern.

Usage of a Module (Class) Programmers often copy a code snippet to reuse the usage

protocol of a target module [261]. We observed many cases where a code snippet was copied

because it contains logic for accessing a frequently used data structure. Programmers are

often required to know the usage protocol for data structures that they intend to use. For

example, in order to traverse keys in a Hashtable, a programmer needs to get a reference for a

key set by invoking the keySet() method on the hashtable object and then obtain an iterator

for the key set. We observed a number of similar cases in our study. For example, the code

snippet in Figure 3.3 was copied because it contains code for traversing over Element nodes

in a DOM Document in C++.

Implementation of a Module Programmers often copy a code snippet that contains

a definition of particular behavior—the signature and some partial implementation. This

duplication can be removed by inheriting abstract classes or interfaces.

60

!!!
for

!!!!!!!!!!
(Iterator

!!
it=messages.iterator();it.hasNext();)

!!
{

!

!!!!!!!
Message

!!!!!!
curr=

!!!!!!!!!!!
(Message)

!!!!!!!!!!!
it.next();

!!!!!
IFile

!!!!!!!!!!!
markFile=

!!!
WorkspaceUtils.getFile(curr.getFirstLocation().getClassName());

...

!
}

for (Iterator it=messages.iterator();it.hasNext();) {

Message curr= (Message) it.next();

MessageLocation loc = curr.getLastLocation();

IFile markFile=

WorkspaceUtils.getFile(loc.getLocation().getClassName());

...

}

Figure 3.4: Copying a loop construct and modifying the inner logic

Control Structure Programmers frequently reuse complicated control structures (e.g.,

a nested if then else or a loop construct). When programmers intend to write code that

has the same control structure but different operations inside the control structure, they

tend to copy the code with the outer control structure and modify its inner logic. Figure

3.4 shows a for-loop that was modified after copy and paste.

3.3 Design View

Unlike the intention view where we analyzed code snippets involved in each C&P instance

in isolation, in the design view, we analyzed the code snippets in relation to other code

snippets in the system. We asked several questions to understand the architectural (or

design) context of copy and paste operations. Each subsection discusses why we chose each

question and describes the categorization of answers to the question.

3.3.1 Why is Text Copied and Pasted Repeatedly in Multiple Places?

The underlying premise of the Aspect Oriented Programming is that primary design deci-

sions that are already in a system sometimes do not allow the secondary design decisions

61

!!
if

!!!!!!!!!!!!!!!!!!!!
(logAllOperations)

!!
{

!

!!!!
try{

!!!!!!!!!!!
PrintWriter

!!
w

!!
=

!!!!!!!!!!!!!
getOutput();

!!!!!!!!
w.write("$$$$$"

!!
);

...

!
}
!!!!!!
catch

!!!!!!!!!!!!!!
(IOException

!!!
e)

!!
{

!

!
}

Figure 3.5: Code fragment: logging concern

to be modularized when they are added to the system [158, 279]. The lack of modularity

leads programmers to insert similar code snippets across a code base—which we observed

in our study. For example, the logging concern in Figure 3.5 was copied four times within

one file, and many more times across the code base. Because it is difficult to generalize

the list of arguments for the factored logging function, refactoring this code snippet is often

less preferable than copying the code snippet. In addition, even if the programmer chooses

to refactor it, the dependencies between the logging module and the other modules would

remain entangled in Java unless an aspect-oriented language such as AspectJ [158] is used.

For the same reason, adding a feature sometimes requires making changes in scattered places

across a code base. In one project that we observed, a programmer added a feature to dis-

play a user-friendly type for internal objects instead of the internally used XML type for

the objects in his software. First, he wrote the body of getFriendlyTypeName() and duplicated

it in four different classes. When he realized that it was better to refactor the code into a

separate method, he copied the body of getFriendlyTypeName() and pasted it into the MiscOps

class. He then copied and pasted the invocation statement of MiscOps.getFriendlyTypeName()

four times to call the refactored method.

3.3.2 Why are Blocks of Text Copied Together?

When a code snippet is copied from A and pasted to B, related code snippets are also often

copied from A and pasted to B. Code snippets that are often copied together belong to the

same functionality or concern:

62

Comments A comment is copied when its related code is copied.

Referenced fields/constants Programmers copy referenced fields and constants when

they copy a method that refers to them.

Caller method and Callee method Programmers copy a referenced method when they

copy a method or a class that invokes the method. Similarly, a caller method is copied when

its called method is copied. In our study, a programmer copied the contents of the sender.cpp

file to heartbeat.cpp in order to create a heartbeat thread that has similar behavior to the

sender thread. After he finished modifying heartbeat.cpp, he copied the invocation statement

of start sender() and pasted it as the invocation statement of start heartbeat() in the test

driver file. He also copied the invocation of shutdown sender() and pasted it as the invocation

of shutdown heartbeat().

Paired operations Programmers copy and paste paired operations together. For ex-

ample, when a programmer copies writeToFile(), he also copies openFile() and closeFile().

Likewise, when enterCriticalSection() is copied, leaveCriticalSection() is copied as well.

3.3.3 What is the Relationship between Copied and Pasted Text?

We raised this question to understand why programmers choose a code fragment as a tem-

plate.

Similar Operations but Different Data Sources This category is a special case of

semantic templates where the duplicated code snippets manipulate different data sources.

In our study, error messages were sent from one stage to the next stage by calling method

A. The same error messages are also sent to a user by invoking method B. A is copied and

used as a template for B, because A and B contain logic for reading the same header, only

differing in the targets to which they direct error messages.

In Figure 3.6, the updateFrom (Class c) method is used as a template for the updateFrom

(ClassReader cr). Both methods contain logic for populating the same data structure. While

63

!!!!!!
public

!!!!!
void

!!!!!!!!!!!!
updateFrom

!!!!!!!!
(Class

!!
c

!!
)

!!!
{

!!!!!!
String

!!!!!!!
cType

!!
=

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Util.makeType(c.getName());

!!
if

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
(seenClasses.contains(cType))

!!
{

!!!!!!!!
return;

!
}

!!!!!!!!!!!!!!!!!!!!!!!!
seenClasses.add(cType);

!!
if

!!!!!!!!!!!!
(hierarchy

!!!
!=

!!!!!!
null)

!!
{

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
addToHierarchyViaReflection(c);

!
}

!!
if

!!!!!!!!!!
(methods

!!!
!=

!!!!!!
null)

!!
{

!!!!!!!!
Method[]

!!!
ms

!!
=

!!!!!!!!!!!!!!!!!!!!!!!!!
c.getDeclaredMethods();

!!!
for

!!!!!
(int

!!
i

!!
=

!!!
0;

!!
i

!!
<
!!!!!!!!!!!
ms.length;

!!!!!!
i++)

!!
{

!!!!!!
Method

!!
m

!!
=

!!!!!!!
ms[i];

!!!!!!!!!!!!!!!!!!!!!!!!!
methods.addMethod(cType,

!!!!!!!!!!!!
m.getName(),

!!!!!!!!!!!!!!!!!!!!!
Util.computeSignature

!!!!!!!!!!!!!!!!!!!!!!!!!
(m.getParameterTypes(),

!!!!!!!!!!!!!!!!!!!
m.getReturnType()),

!!!!!!!!!!!!!!!!!!
m.getModifiers());

...
!
}

public void updateFrom (ClassReader cr){

String cType = CTDecoder.convertClassToType(c.getName());

if (seenClasses.contains(cType)) {

return;

}

seenClasses.add(cType);

if (hierarchy != null) {

CTUtils.addClassToHierarchy(hierarchy, cr);

}

if (methods != null) {

int count = cr.getMethodCount();

for (int i = 0; i < count; i++) {

Method m = ms[i];

methods.addMethod(cType,

cr.getMethodName(i),

cr.getMethodType(i),

cr.getMethodAccessFlags(i));

... }

Figure 3.6: Code fragments: updateFrom(Class c) and updateFrom (ClassReader cr)

64

one method reads from a class object through Java reflection, the other reads from Java

byte code.

Semantically Parallel Concerns We define semantically parallel concerns as design

decisions that crosscut a system in a similar way. While aspects often refer to similar code

appearing in multiple places, semantically parallel concerns refer to a group of concerns that

bears similarity to another group of concerns. Semantically parallel concerns are related to

Griswold’s information transparency principle [111] in the sense that these concerns are often

encoded with the same signature, such as the use of particular variables, data structures,

language features or even similar comments.

We observed one project that involves extending a compiler to support processing XML

DOM objects. At the time of the observation, the compiler already had code related to

the serialize concern and the subject wanted to insert code related to the appendChildren

concern. Although these two concerns are independent, the appendChildren concern should

be inserted into the same places where the serialize concern appears. The programmer

identified all the code related to the serialize concern by searching the code base with the

keyword serialize. The programmer then copied the identified code snippets and modified

them as necessary for the appendChildren concern. When we asked the programmer about

why he programmed in such way, he answered that those concerns crosscut the same places

in the compiler architecture and it helped him to keep track of which part of the system

to extend. Griswold observed a similar case when C-Star was retargeted to Ada [111]; the

pipeline architecture of C-Star guided the programmer to identify all the code related to C

syntax specific support and convert it to Ada syntax specific support.

Paired Operations In Section 3.3.2, we mentioned paired operations that are copied

together frequently. In this section, we discuss paired operations as a special case of sharing

the usage of the same data structure.

For example, in Figure 3.7 the addMethod() method was used as a template for the

getClassMethod() method, because the addMethod() and the getClassMethod() access a hashmap

where each value of (key,value) pairs can be either a single object or an array list of multiple

65

!!!!!!
public

!!!!!
void

!!!!!!!!!!!
addMethod

!!
{

!!
//

!!!!!!!!!!
retrieve

!!
a

!!!!
map

!!
if

!!!!!
(map

!!!!
==

!!!!!!
null)

!!
{

!!
//

!!!!!!!
create

!!
a

!!!!
map

!
}

!!
//

!!!!
get

!!!!
an

!!!!!!
entry

!!
o

!!
if

!!!
(o

!!!!
==

!!!!!!
null)

!!
{

!!
//

!!!!
add

!!!!!
that

!!!!!!!
method

!!!!!
into

!!
a
!!!!
map

!!!!!
and

!!!!!!!
return

!
}

!!
if

!!!
(o

!!!!!!!!!!!!
instanceof

!!!!!!!!!!!
ArrayList)

!!
{

!!
//

!!!!!
cast

!
}
!!!!!
else

!!
{

!!
//

!!!!!!!
create

!!!
an

!!!!!!
array

!!!!!
list

!!!!
and

!!!!
add

!!!!
it

!!!
to

!!
a

!!!!
map

!
}

!!
//

!!!!
add

!!!
a

!!!!!!!
method

!!!
to

!!!!
the

!!!!!!
array

!!!!!
list

public MethodInfo getClassMethod(

// retrieve map

if (map == null) {

// return null

}

// get an entry o

if (o == null) {

// return null

}

if (o instanceof ArrayList) {

// traverse each method "m" in the array list, and if matches, return "m"

} else {

// if signature matches, return that method

}

Figure 3.7: Code fragments: write/read logic

66

objects. getClassMethod() contains read logic that pairs with write logic in addMethod().

Inheritance In several cases, a superclass was used as a template for subclasses and a

sibling class was used as a template for other sibling classes.

Conclusions Based on our analysis of C&P dependencies, we conclude that explicitly

maintaining C&P dependencies is worthwhile, because these dependencies reflect impor-

tant design decisions such as crosscutting concerns, feature extensions, paired operations,

semantically parallel concerns, and type dependencies (inheritance).

3.4 Maintenance View

We investigated maintenance tasks for duplicated code, because failing to perform such tasks

may create defects in software. Although this ethnographic study was not a longitudinal

study, we approached the maintenance problems associated with copy and paste by raising

questions such as (1) what does a programmer do immediately after C&P? and (2) how

does a programmer modify code duplicates created by C&P?

Short term We noticed that cautious programmers modify the portion of pasted code

that is specific to the current intended use immediately after they copy and paste. For

example, they modify the name of a variable to prevent identifier naming conflicts or remove

the portion of the pasted code that is not part of the structural template.

Long term Programmers refactor code after copying and pasting the same code multiple

times. For example, after one code snippet is copied and pasted multiple times, the code

snippet may be refactored as a separate method. Another example is that after frequently

defining an anonymous class and instantiating objects of the class on the fly, a programmer

may define an inner class and create a member variable that holds the object. By observing

how programmers handle code duplicates, we noted that programmers tend to apply con-

sistent changes to code from the same origin. In other words, after they create structural

clones, they modify the structural template embedded in the clones consistently when the

67

template evolves. This observation is symmetric to the information transparency principle

[111] that code elements that change together must look similar.

3.5 Statistics

This section presents statistics about C&P operations in our study. With the instrumented

editor, we observed 460 C&P instances. We measured the number of C&P instances per

hour as a frequency measure because each session lasted about a few hours. The average

number of C&P instances per hour is 16 instances per hour and the median is 12 instances

per hour. Figure 3.9 shows how many C&P instances each subject performed per hour.

In order to understand how often C&P operations of different size occurred, we grouped

C&P instances into four different syntactic units and counted them (Figure 3.8). About

74% of C&P instances fall into the category of copying text less than a single line such as

a variable name, a type name or a method name. Copying in this category saves typing.

However, about 25% C&P instances involved copying and pasting a block or a method.

Copying in this category often creates structural clones and reflects design decisions in a

program. When we multiply this percentage (25%) by the average 16 instances per hour, it

means that a programmer produces four interesting C&P dependencies per hour on average.

Figure 3.10 shows how many lines of code are copied per instance.

3.6 Threats to Validity

The scope of our study was limited to object oriented programming languages (OOPL).

Thus, some results that involve OOPL-specific features may not apply to other programming

languages. For example, higher order functions in functional programming languages may

remove the need to copy a complicated control structure. Nevertheless, OOPLs are widely

used and our study results provide valuable insights for the design of software engineering

tools for OOPLs. Participants in our study were researchers at the IBM T.J. Watson

Research Center. They were expert programmers and were involved in small team research

projects. Our results may not be applicable to larger projects or novice programmers.

We conjecture that novice programmers may copy and paste more to learn programming

language syntax or employ less of their knowledge about C&P history when they maintain

68

0

50

100

150

200

250

300

350

400

74.13% 16.74% 8.04% 1.09%

type/var/method name block method class
Syntactic Unit

C&
P

In
st

an
ce

 C
ou

nt

Figure 3.8: Distribution of C&P instances by different syntactic units

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

S1 S2 S3 S4 S5

Subject ID

C&
P

In
st

an
ce

s
/ H

ou
r

Figure 3.9: C&P frequency per subject

69

0

50

100

150

200

250

300

<=1 <=5 <10 <=15 <=20 <=25 <=30 <=100

Lines of Code

C&
P

In
st

an
ce

 C
ou

nt

Figure 3.10: Distribution of C&P instances by the number of source lines

70

software.

For direct observation, the experimenter’s presence in the room may have affected the

participants’ coding behavior because they knew that we were analyzing the intention of

each C&P operation. Sometimes the participants did not copy and paste unless they thought

they had a valid reason and they seemed to have pressure to write code continuously, which

was unnatural for them. In addition, the accuracy of the direct observation may be lower

than the logger-based observation as manual logging was extremely difficult.

3.7 Key Insights

• Limitations of particular programming languages produce unavoidable duplicates in

a code base. For example, the lack of multiple inheritance in Java induces code

duplicates. During the interviews with the subjects, one subject told us that the

absence of enum construct in Java 1.4 caused him to copy the public static final String

phrase repetitively.

• Programmers use their memory of C&P history to determine when to restructure code.

They deliberately delay code restructuring until they C&P several times, because such

reuse helps them discover the right level of abstraction.

• C&P dependencies are worth maintaining explicitly because they reflect design deci-

sions such as aspects, semantically parallel concerns, and paired operations. Program-

mers often rely on their memory of C&P dependencies when they apply consistent

changes to duplicated code.

• Programmers often copy code to reuse structural templates. Thus, it is desirable

to learn structural code templates and to support reuse of the learned templates.

Additionally, identifying frequently used structural templates will provide input for

better programming language design.

These insights served as a basis for proposing software engineering tools that address

problems associated with common C&P patterns. The proposed tools are described in

71

Section 4.7 together with clone maintenance tools that leverage clone genealogy information.

3.8 Conclusions from the Copy and Paste Study

Common wisdom dictates that good programmers do not use C&P operations because it

tends to produce maintenance problems. Our ethnographic study has shown that program-

mers nevertheless use C&P very frequently, producing up to four architecturally significant

C&P instances per hour. Rather than viewing this as a drawback, we instead take this

as an opportunity to identify and develop software engineering tool support for existing

practices. We discovered that C&P information is useful for program understanding and

that programmers actively make use of C&P history to decide when to restructure code.

We cataloged common C&P patterns and maintenance problems associated with them.

72

Chapter 4

AN EMPIRICAL STUDY OF CODE CLONE GENEALOGIES

The previous chapter’s C&P study suggests that the practice of creating and managing

clones is not necessarily bad. To check whether code clones indeed pose challenges during

software evolution, we need to answer the following questions: “How often do code clones

require consistent updates during software evolution?” “How often do programmers create

clones by copying existing code?” “Can refactoring indeed improve software quality with

respect to clones?” and “How long do code clones stay in the system before they get removed

or refactored?”

While there have been a number of studies on clone evolution [6, 103, 187], these studies

measured only the changes in clone coverage (the ratio of code clones to the total size

of a program). This type of quantitative analysis does not answer the questions above.

For example, when clone coverage increased, it could be due to copying existing code or

introducing a group of completely new code fragments that are similar to one another.

When clone coverage decreased, it could be due to removing clones through refactoring or

updating clones inconsistently.

To study clone evolution structurally and semantically, we defined a formal model of

clone evolution that tracks individual clones and their changes over multiple program ver-

sions. The core of this model is a clone genealogy representation that describes how each

member in a group of clones has changed with respect to other members in the same group.

Then based on the model, we developed a tool that automatically extracts clone genealogies

from a sequence of program versions. Using this tool, we studied clone evolution in two Java

open source projects, carol and dnsjava. In particular, we analyzed (1) how often clones

were updated consistently, (2) how long they stayed in the system, and (3) to what extent

refactoring removed clones.

The rest of this chapter is organized as follows. Section 4.1 formally defines the model

73

of clone evolution, which serves as the basis of the clone genealogy extractor described in

Section 4.2. Section 4.3 describes the study procedure, and Section 4.4 presents an analysis

of clone evolution patterns. Section 4.5 discusses the study limitations, and Section 4.7

proposes clone maintenance tools based on the clone genealogy study results as well as the

C&P study in Chapter 3.

4.1 Model of Clone Genealogy

A clone genealogy describes how groups of code clones change over a sequence of program

versions. In a clone’s genealogy, a group to which the clone belongs is traced to its origin

clone group in the previous version. The model associates related clone groups that have

originated from the same ancestor clone group, and represents how each element in a group

of clones has changed with respect to other elements in the same group.

The basic unit in our model is a Code Snippet, which has two attributes, Text and Loca-

tion. Text is an internal representation of code that a clone detector uses to compare code

snippets. For example, when using CCFinder [149], Text is a parametrized token sequence,

whereas when using CloneDr [26] Text is an isomorphic AST. A Location is an identifier for

matching code across versions. Every code snippet in a particular version of a program has

a unique location. To determine how much the text of a code snippet has changed across

versions, a TextSimilarity function measures the similarity between two texts t1 and t2 (0 ≤

TextSimilarity(t1, t2) ≤ 1). To trace a code snippet across versions, a LocationOverlapping

function measures how much two locations l1 and l2 overlap each other (0 ≤ LocationOver-

lapping(l1, l2) ≤ 1).

A Clone Group is a set of code snippets with identical Text. In other words, a Clone Group

refers to a group of code snippets that are considered equivalent by a clone detector. CG.text

is syntactic sugar for the text of any code snippet in a clone group CG. A Cloning Re-

lationship is defined between two clone groups CG1 and CG2 if and only if TextSimilar-

ity(CG1.text, CG2.text) ≥ simth, where simth is a constant between 0 and 1. An Evolution

Pattern is defined between an old clone group OG in the k − 1th version and a new clone

group NG in the kth version such that there exists a cloning relationship between NG and

OG.

74

We initially defined five types of evolution patterns based on our insights from the C&P

study in Chapter 3. We defined the Add pattern to describe introduction of a new clone

by copying existing code in the old version; the Subtract pattern to describe clone removal

through refactoring or deleting code; the Consistent Change pattern to describe application

of similar edits to clones; the Inconsistent Change pattern to describe not updating some

clones while updating others; and the Same pattern to model no changes to a clone group.

In our model, different kinds of evolution patterns may overlap. For example, combina-

tion of the Consistent Change pattern and the Add pattern represents applying a similar

edit to clones and also copying one of the clones. To clarify the relationship among the five

evolution patterns above and to check whether they can describe all possible changes to a

clone group, we wrote our model in the Alloy modeling language [142]. The relationship

among evolution patterns is described in the Venn diagram in Figure 4.1. In our initial

attempt, we discovered an additional pattern, the Shift pattern, which is a somewhat un-

intuitive but necessary pattern to cover all possible changes to a clone group.1 The six

evolution patterns are described below in Alloy syntax and the entire model is available in

Appendix D.

• Same: all code snippets in NG did not change from OG.

TextSimilarity(NG.text,OG.text) = 1

all cn:CodeSnippet | some co:CodeSnippet | cn in NG ⇒ co in OG && LocationOverlapping(cn,co) = 1

all co:CodeSnippet | some cn:CodeSnippet | co in OG ⇒ cn in NG && LocationOverlapping(cn,co) = 1

• Add : at least one code snippet in NG is newly added. For example, programmers added a new code

snippet to NG by copying an old code snippet in OG.

TextSimilarity(NG.text,OG.text) ≥ simth

some cn:CodeSnippet | all co:CodeSnippet | co in OG ⇒ cn in NG && LocationOverlapping(cn,co) = 0

• Subtract : at least one code snippet in OG does not appear in NG. For example, programmers refac-

tored or removed a code clone.

1Checking the ALL EXHAUSTIVE assert statement in Appendix D without the Shift pattern generated a
counterexample.

75

SAME SHIFT

INCONSISTENT
CHANGE

ADD
CONSISTENT

CHANGE

SUBTRACT

Figure 4.1: The relationship among evolution patterns

TextSimilarity(NG.text,OG.text) ≥ simth

some co:CodeSnippet | all cn:CodeSnippet | cn in NG ⇒ co in OG && LocationOverlapping(cn,co) = 0

• Consistent Change: all code snippets in OG have changed consistently; thus they belong to NG to-

gether. For example, programmers applied the same change consistently to all code clones in OG.

simth ≤TextSimilarity(NG.text,OG.text)< 1

all co:CodeSnippet | some cn:CodeSnippet | co in OG ⇒ cn in NG && LocationOverlapping(cn,co) > 0

• Inconsistent Change: at least one code snippet in OG changed inconsistently; thus it does not belong

to NG anymore. For example, a programmer forgot to change one code snippet in OG.

simth ≤TextSimilarity(NG.text,OG.text)< 1

some co:CodeSnippet | all cn:CodeSnippet | cn in NG ⇒ co in OG && LocationOverlapping(cn,co) = 0

• Shift: at least one code snippet in NG partially overlaps with at least one code snippet in OG.

TextSimilarity(NG.text,OG.text) = 1

some cn:CodeSnippet | some co:CodeSnippet | cn in NG && co in OG && (1 >LocationOverlapping(cn,co)

> 0)

A Clone Lineage is a directed acyclic graph that describes the evolution history of a sink

node (clone group). A clone group in the kth version is connected to a clone group in the

76

A
B

A
B

D
C

A
B

D
C

C

V i V i+1 V i+2 V i+3

A
B

D

Clone Group

Code Snippet

Location Overlapping
Relationship

Consistent Change Add Inconsistent Change
Subtract

Evolution Patterns

A
D

V i+4

Subtract

Figure 4.2: An example clone lineage

k − 1th version by an evolution pattern. For example, Figure 4.2 shows a clone lineage

including the Add, Consistent Change, Inconsistent Change, and Subtract patterns. In the

figure, code snippets with the same text are filled with the same shade.

A Clone Genealogy is a set of clone lineages that have originated from the same clone

group. A clone genealogy is a connected component where every clone group is connected

by at least one evolution pattern.2 A clone genealogy approximates how programmers

create, propagate, and evolve code clones. Figure 4.3 shows an example clone genealogy

that comprises two clone lineages. Ovals in the figure represent clone groups. Appendix E

describes an example genealogy stored in an XML format.

4.2 Clone Genealogy Extractor

Based on the model in Section 4.1, we built a tool that automatically extracts clone genealo-

gies over a project’s lifetime. Our clone genealogy extractor (CGE) requires three inputs:

(1) multiple versions of a program in chronological order, {Vk | 1 ≤ k ≤ n}, (2) a clone

2A clone genealogy is a connected component in the sense that there exists an undirected path for every
pair of clone groups. Although a clone genealogy is often an inverted tree in practice, it is a connected
component in theory because the in-degree of a new clone group can be greater than one when it is
ambiguous to determine the most likely origin of a new clone group.

77

Consistent
Change

Add Inconsistent
change &
Subtract

Subtract

A
B

A
B

D
C

A
B

D
C

A
B

D
A
D

F
G

E
F
G

F
G

H

V i V i+1 V i+2 V i+3 V i+4

Subtract & Add
Inconsistent
change &
Subtract

Add &
Consistent
change

Figure 4.3: An example clone genealogy

detector, and (3) a location tracker that traces a code snippet’s location across versions.3

To assist a user of CGE to prepare multiple versions of a program, CGE automatically

extracts check-in level program snapshots from a source code repository (CVS).4 Because

CVS records individual file revisions but not which files were changed together, CGE uses

Kenyon’s [32] front-end to identify CVS check-in transactions and to check out the source

code that corresponds to each check-in. Depending on the granularity of evolution analysis, a

user can select a subset of versions. For example, a user can select all versions corresponding

to all check-ins or only the versions that increased (or decreased) the total number of lines

of code clones (LOCC).

CGE identifies clone groups in each version Vk using a clone detector. Currently we

use CCFinder [149] described in Section 2.4, but any clone detector can be used. Using a

clone detector, CGE implements the TextSimilarity function. CGE currently identifies the

common part between two texts t1 and t2 using CCFinder and calculates the common part’s

3A location tracker can be considered as a code matching technique (see Section 2.2).

4http://www.cvshome.org

78

Table 4.1: Line number mappings generated using diff

A.txt B.txt diff’s Line mappings

meta data

1: a 1: a 1!→ 1

2: b 2: d 2c2 2!→ 2

3: c 3: c 3!→ 3

4: f 4: e 3a4,5 3!→ 4

5: e 3!→ 5

6: f 4!→ 6

relative proportion to the size of t1 and t2.

TextSimilarity(t1, t2) =
2|t1

⋂
t2|

|t1| + |t2| (4.1)

where |t| is the size of text t and t1
⋂

t2 is the common part of t1 and t2. Using a different

type of clone detector may require reimplementing the TextSimilarity function.

CGE uses a location tracker to implement the LocationOverlapping function, which com-

putes an overlapping score between a location Li in Vk−1 and a location Lj in Vk. Currently

we use a file and line based location tracker based on diff. The tracker first finds a cor-

responding file in the next (or previous) version using the same hierarchical name (e.g.,

/org/xbill/DNS/CertRecord.java). It runs diff on the mapped files, parses the meta informa-

tion in diff’s output, and creates line number mappings. For example, by comparing A.txt

with B.txt in Table 4.1, diff generates the meta information in the third column, which is

used to create line mappings in the fourth column. By converting the line numbers of Lj to

old line numbers in the same file f in Vk−1, the tracker computes the LocationOverlapping

score—a relative proportion of an overlapped region between Li and the calibrated region

Lj.

LocationOverlapping(Li, Lj) =
min(ne, oe) − max(ns, os)

ne − ns
(4.2)

where Li spans from the line os to the line oe, and the calibrated location of Lj in Vk−1

spans from the line ns to the line ne. Using a different type of location tracker or a code

matching technique may require reimplementing the LocationOverlapping function. Please

79

refer to Section 2.2.1 for other line matching techniques.

Using the same clone detector, CGE finds Cloning Relationships between the clone groups

in Vk−1 and the clone groups in Vk for 1 < k ≤ n. For each clone group in Vk, a clone

detector may find several cloning relationships to clone groups in Vk−1. CGE applies the

following heuristic to remove less interesting cloning relationships; For each clone group in

Vk, CGE selects both a cloning relationship with the best LocationOverlapping score and a

cloning relationship with the best TextSimilarity score. Usually, these are the same cloning

relationship.

After applying the heuristic, CGE separates each connected component of cloning rela-

tionships (i.e., a clone genealogy) and then labels evolution patterns in it. CGE visualizes a

genealogy graph using the Graphviz package [80] and allows a user to browse code relevant

to a selected genealogy.

4.3 Study Procedure

Our CGE captures various kinds of clone evolution patterns and thus allows us to explore

a wide variety of research questions about clone evolution. In this study, we focused on

the following questions: (1) how often do programmers update clones consistently? (2) how

long do clones live in the system? and (3) what are evolutionary characteristics of clones

that cannot be easily removed with refactoring techniques?

To determine these characteristics, we chose two subject programs with a significant evo-

lutionary history. We extracted clone genealogies from those programs and then computed

the age of the genealogies and the kinds of evolution patterns they include.

Because our C&P study in Chapter 3 primarily focused on Java programs, we focused

on subject programs written in Java. Carol and dnsjava met this condition and both had

a version history for over two years. In addition, their code size allowed us to manually

inspect genealogies if necessary. Carol is a library that allows clients to use different RMI

(remote method invocation) implementations and has evolved over 26 months from August

2002 to October 2004. Dnsjava is an implementation of DNS (domain name system) in

80

Java that has evolved over 74 months from September 1998 to November 2004.5 Table 4.2

describes the programs’ size in lines of code (LOC), the period that we studied, and the

number of CVS check-ins during the period.6 We studied the history of dnsjava from March

1999 (the first release) because many directories were duplicated for file back up and they

were not cleaned up until the first release.

For our analysis, we focused on versions of the programs in which the LOCC (the total

number of Lines Of Code Clones) increased or decreased from the preceding version; this

identifies the set of program versions that added or deleted code clones or made changes

to code clones. For our target programs, this resulted in studying 37 versions out of 164

versions of carol and 224 versions out of 905 versions of dnsjava.

CCFinder can be tuned using a number of input parameters. We used the default

settings, most noticeably the minimum token length default of 30 tokens. Setting the

minimum at 30 tokens resulted in an average clone size of seven lines in carol and dnsjava.

With this setting, CCFinder found an average clone coverage ratio of 10.6% in carol and

10.5% in dnsjava.

We set the threshold simth of TextSimilarity function to be 0.3 because we empirically

found that 0.3 neither underestimates nor overestimates the size and the length of genealo-

gies. We discuss how simth affects our results in detail in Section 4.5.

CCFinder occasionally detects false positive clones that are similar in a token sequence,

although common sense says that they are not clones. We used our previously defined

concept of a syntactic template to identify which clones are false positives. The idea of a

syntactic template comes from our C&P study in Chapter 3. A syntactic template is a

template of repeated code in a series of syntactically similar code fragments. For example,

a set of field declarations often appear in a row in a class, a series of method invocation

statements appear together in a static initializer, or case statements appear in a row in

a switch-case block. We manually removed 13 out of 122 genealogies in carol and 15 out

of 140 genealogies in dnsjava because they consist of only syntactic templates (see Table

5This study was conducted in early 2005.

6A check-in in our analysis corresponds to a single logical CVS transaction that commits a set of revisions
together within a time window of 3 minutes [313].

81

Table 4.2: Description of two Java subject programs for clone genealogy study

Program carol dnsjava

URL carol.objectweb.org www.dnsjava.org

LOC 7878 ∼ 23731 5756 ∼ 21188

duration 26 months 68 months

of check-ins 164 905

4.4). Example false positive clones that consist of syntactic templates are shown in Table

4.3. Although there could be false negative clones that CCFinder cannot find, we do not

think that there are many because a previous comparison of clone detectors [44] suggests

that CCFinder has a much higher recall than CloneDr (AST-based) [26] or Covet (metric-

based) [202], although its precision is lower than the CloneDr.

4.4 Study Results

This section presents the evolution patterns of code clones in carol and dnsjava and answers

the questions raised in Section 4.3.

4.4.1 Consistently Changing Clones

To determine how often code clones change consistently with other clones in the same

clone group, we measured the number of genealogies with a consistent change pattern.

Throughout this chapter, we use a genealogy instead of a lineage as our measurement unit

for two reasons. (1) Lineages in the same genealogy stem from the same clone group, thus

inheriting the same evolution patterns. (2) A clone group’s location in one lineage may

overlap with that of other lineages in the same genealogy.

We say that a clone genealogy includes a consistent change pattern if and only if all

lineages in the clone genealogy include at least one consistent change pattern. Out of 109

genealogies in carol, 41 genealogies (38%) include a consistent change pattern. Out of 125

genealogies in dnsjava, 45 genealogies (36%) include a consistent change pattern. Fewer

than the half of the clones undergo consistent updates during evolution.

82
Table

4.3:
E

xam
ple

offalse
positive

clones.
C

lones
are

m
arked

in
blue.

/
*
*

*
C
o
n
v
e
r
t
s

r
d
a
t
a

t
o

a
S
t
r
i
n
g

*
/

p
u
b
l
i
c

S
t
r
i
n
g

r
d
a
t
a
T
o
S
t
r
i
n
g
(
)

{

S
t
r
i
n
g
B
u
f
f
e
r

s
b
=

n
e
w

S
t
r
i
n
g
B
u
f
f
e
r
(
)
;

s
b
.
a
p
p
e
n
d
(
f
o
o
t
p
r
i
n
t

&
0
x
F
F
F
F
)
;

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
s
b
.
a
p
p
e
n
d
(
"!

!
!

!
!

"
)
;

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

s
b
9
4
.
a
p
p
e
n
d
(
a
l
g

!
! &

!
!

!
!

!
!

!
0
x
F
F
)
;

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
s
b
.
a
p
p
e
n
d
(
"!

!
!

!
!

"
)
;

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
s
b
.
a
p
p
e
n
d
(
d
i
g
e
s
t
i
d

!
! &

!
!

!
!

!
!

!
0
x
F
F
)
;

!
!

!
!

!
!
i
f
!

!
!

!
!

!
!

!
(
d
i
g
e
s
t!

!
!

!
!
=

!
!

!
!

!
!

n
u
l
l
)

!
! {

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
s
b
.
a
p
p
e
n
d
(
"

!
!

!
!

"
)
;

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
s
b
.
a
p
p
e
n
d
(
b
a
s
e
1
6
.
t
o
S
t
r
i
n
g
(
d
i
g
e
s
t
)
)
;

}

r
e
t
u
r
n

s
b
.
t
o
S
t
r
i
n
g
(
)
;

}

/
*
*

*
C
o
n
v
e
r
t
s

r
d
a
t
a

t
o

a
S
t
r
i
n
g

*
/

p
u
b
l
i
c

S
t
r
i
n
g

r
d
a
t
a
T
o
S
t
r
i
n
g
(
)

{

S
t
r
i
n
g
B
u
f
f
e
r

s
b

=
n
e
w
S
t
r
i
n
g
B
u
f
f
e
r
(
)
;

i
f

(
k
e
y

!
=

n
u
l
l

|
|

(
f
l
a
g
s

&
(
F
L
A
G
_
N
O
K
E
Y
)
)

=
=

(
F
L
A
G
_
N
O
K
E
Y
)

)
{

i
f

(
!
O
p
t
i
o
n
s
.
c
h
e
c
k
(
"
n
o
h
e
x
"
)
)

{

s
b
.
a
p
p
e
n
d
(
"
0
x
"
)
;

s
b
.
a
p
p
e
n
d
(
I
n
t
e
g
e
r
.
t
o
H
e
x
S
t
r
i
n
g
(
f
l
a
g
s

&
0
x
F
F
F
F
)
)
;

}e
l
s
e

s
b
.
a
p
p
e
n
d
(
f
l
a
g
s

&
0
x
F
F
F
F
)
;

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

s
b
.
a
p
p
e
n
d
(
"

!
!

!
!

"
)
;

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

s
b
.
a
p
p
e
n
d
(
p
r
o
t
o

!
! &

!
!

!
!

!
!

!
0
x
F
F
)
;

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

s
b
.
a
p
p
e
n
d
(
"

!
!

!
!

"
)
;

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

s
b
.
a
p
p
e
n
d
(
a
l
g

!
! &

!
!

!
!

!
!

!
0
x
F
F
)
;

!
!

!
!

!
!

!
!
i
f
!

!
!

!
!

(
k
e
y!

!
!

!
!
=

!
!

!
!

!
!

n
u
l
l
)

!
! {

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

s
b
.
a
p
p
e
n
d
(
"

!
! (

!
!

!
!

n
"
)
;

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
s
b
.
a
p
p
e
n
d
(
b
a
s
e
6
4
.
f
o
r
m
a
t
S
t
r
i
n
g
(
k
e
y
,
!

!
!

!
6
4
,!

!
! "

!
!

!
t
"
,

!
!

!
!

!
!

!
!

t
r
u
e
)
)
;

s
b
.
a
p
p
e
n
d
(
"

;
k
e
y
_
t
a
g

=
"
)
;

s
b
.
a
p
p
e
n
d
(
g
e
t
F
o
o
t
p
r
i
n
t
(
)

&
0
x
F
F
F
F
)
;

}

}r
e
t
u
r
n

s
b
.
t
o
S
t
r
i
n
g
(
)
;

}

83

Table 4.4: Clone genealogies in carol and dnsjava(mintoken =30, simth = 0.3)

of genealogies carol dnsjava

total 122 140

false positive 13 15

true positive 109 125

4.4.2 Volatile Clones

To understand how long clones survive in the systems, we measured the age of a clone

genealogy—how many versions a genealogy spans. In our analysis, we classified genealogies

in two groups, dead genealogies that do not include clone groups of the final version and

alive genealogies that include clone groups of the final version. We differentiate a dead

genealogy from an alive genealogy because only dead genealogies provide information about

how long clones stayed in the system before they disappeared. On the other hand, for an

alive genealogy, we cannot tell how long its clones will survive because they are still evolving.

At the end point of our analysis, in carol, out of 109 clone genealogies, 53 of them are dead

and 56 of them are alive. In dnsjava, out of 125 clone genealogies, 107 of them are dead

and 18 of them are alive.

To reason about how long genealogies survived in terms of absolute time as well as in the

number of versions used in our analysis, we define k-volatile genealogies (clone genealogies

that disappeared within k versions) and measure the average lifetime of k-volatile genealo-

gies, i.e., k-volatile genealogies = {g|g is a dead genealogy and 0 ≤ g.age ≤ k}. Figure 4.4

shows the average lifetime of k-volatile genealogies in the number of check-ins (left axis)

and the number of days (right axis). Let f(k) be the number of genealogies with the age k

and fdead(k) be the number of dead genealogies with the age k. CDFdead(k) is a cumulative

distribution function of fdead(k) and it means the ratio of k-volatile genealogies among all

dead genealogies. Let Rvolatile(k) be the ratio of k-volatile genealogies among all genealogies

in the system.

CDFdead(k) =
∑k

i=0 fdead(i)∑n
i=0 fdead(i)

(4.3)

84

carol

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

K (in Versions)

Ch
ec

k-
in

s

0

20

40

60

80

100

120

D
ay

s Avg # Checkins
Avg # Days

dnsjava

0

20

40

60

80

100

120

140

160

0 30 60 90 120 150 180 210

K (in Versions)

Ch
ec

k-
in

s

0

50

100

150

200

250

300

350

D
ay

s Avg # Checkins
Avg # Days

Figure 4.4: The average lifetime of k-volatile clone genealogies

85

carol, sim_th=0.3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35

K (Age in Versions)

Ra
tio

 CDF dead
R volatile

dnsjava, sim_th=0.3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 30 60 90 120 150 180 210

K (Age in Versions)

Ra
tio

CDF dead
R volatile

Figure 4.5: CDFdead(k) and Rvolatile(k) of carol and dnsjava

86

Rvolatile(k) =
∑k

i=0 fdead(i)∑n
i=0 f(i)

(4.4)

Figure 4.5 presents CDFdead(k) and Rvolatile(k) for carol and dnsjava. In carol, 37% of

all genealogies (75% of dead genealogies) disappeared within 5 versions, and 39% of all

genealogies (79% of dead genealogies) disappeared within 10 versions. When we interpret

these data in the number of check-ins or in the number of days by referring to Figure 4.4,

they mean that 37% of all genealogies lasted an average of 9.6 check-ins and 41.7 days and

39% lasted an average of 10.8 check-ins and 45.6 days during the evolution period of 164

check-ins and 800 days in carol.

In dnsjava, 31% of all genealogies (36% of dead genealogies) disappeared within 5 ver-

sions, and 41% of all genealogies (48% of dead genealogies) disappeared within 10 versions.

These data mean that 31% of all genealogies lasted an average of 1.48 check-ins and 1.48

days and 41% lasted an average of 7.35 check-ins and 11.05 days during the evolution period

of 905 check-ins and 2051 days in dnsjava. So in both systems, a large number of clones

were volatile. The large extent of volatile clones suggests that a substantial amount of the

work done by a developer applying a strategy of aggressive, immediate refactoring may not

be cost-effective.

To investigate why code clones disappear during evolution, we built a user interface

that allows tracking code of interest. The same location tracking technique in Section 4.2

was used to map corresponding source lines between consecutive versions. By comparing

clones at the time of disappearance (lineage death) and the corresponding source lines in the

next version, we categorized the reasons why clone lineages disappear into three categories:

Divergent Change means that the clones in the same clone group changed differently enough

that they were no longer considered as clones. Removal means that the clones were deleted

by merging the commonality between the clones (refactoring) or by removing the code that

contains them (e.g., removing files that included the clones). Cut-off means that the length

of each clone in the clone group became shorter than 30 tokens so that they were not found

by CCFinder or the TextSimilarity between clone groups of consecutive versions is less than

the chosen simth threshold. Table 4.5 shows the percentage for each category.

We found that 26% (carol) to 34% (dnsjava) of clone lineages were discontinued because

87

Table 4.5: How do lineages disappear?

Reasons carol dnsjava

Divergent Change 26% 34%

Removal 67% 45%

Cut-off 7% 21%

of divergent changes in the clone group. Refactoring of such volatile clones may not be

necessary and can be counterproductive if a programmer sometimes has to undo refactoring.7

4.4.3 Locally Unfactorable Clones

We define that a clone group is locally refactorable if a programmer can remove duplication

with standard refactoring techniques, such as pull up a method, extract a method, remove

a method, replace conditional with polymorphism, etc. [92]. On the other hand, (1) if a

programmer cannot use standard refactoring techniques to remove clones, (2) if a program-

mer must deal with cascading non-local changes in the design to remove duplication (for

example, modifications to public interfaces), or (3) if a programmer cannot remove dupli-

cation due to programming language limitations, we consider the clone group as locally

unfactorable.8

Table 4.6 presents a code example of a locally unfactorable clone group found in carol.

In this example, exportObject and unexportObject are paired operations that have identical

control logic (if-else logic, iterator logic, and exception handling logic) but throw different

types of exceptions, pass different messages to the tracing module, and invoke different

methods. It is difficult to remove this duplication because Java 1.4 does not provide a unit

of abstraction that encapsulates similar logic involving different types or different method

invocations inside the logic. Although it is possible to remove this duplication by using

7This observation is consistent with the general notion that delaying some design decisions in software
development may at times add value [278].

8Chapter 3 describes a taxonomy of locally unfactorable clones that are often created by copy and paste
in Java. Basit et al. also summarize the characteristics of locally unfactorable clones that are difficult to
remove using abstractions in C++ [23].

88

Table
4.6:

E
xam

ple
of

locally
unfactorable

clones

p
u
b
l
i
c

v
o
i
d

e
x
p
o
r
t
O
b
j
e
c
t
(
R
e
m
o
t
e

o
b
j
)

t
h
r
o
w
s

R
e
m
o
t
e
E
x
c
e
p
t
i
o
n
{

i
f

(
T
r
a
c
e
C
a
r
o
l
.
i
s
D
e
b
u
g
R
m
i
C
a
r
o
l
(
)
)

{

T
r
a
c
e
C
a
r
o
l
.
d
e
b
u
g
R
m
i
C
a
r
o
l
(

"
M
u
l
t
i
P
R
O
D
e
l
e
g
a
t
e
.
e
x
p
o
r
t
O
b
j
e
c
t
(
"

.
.
.

.

}t
r
y

{

i
f

(
i
n
i
t
)

{

f
o
r
(
E
n
u
m
e
r
a
t
i
o
n

e
=
a
c
t
i
v
e
P
t
c
l
s
.
e
l
e
m
e
n
t
s
(
)
;

.
.
.

(
(
O
b
j
D
l
g
t
)
e
.
n
e
x
t
E
l
e
m
e
n
t
(
)
)
.
e
x
p
o
r
t
O
b
j
e
c
t
(
o
b
j
)
;

}

}
e
l
s
e

{

i
n
i
t
P
r
o
t
o
c
o
l
s
(
)
;

/
/
i
t
e
r
a
t
e

p
r
o
t
o
c
o
l

e
l
e
m
e
n
t
s

a
n
d

e
x
p
o
r
t

o
b
j

}

}

}
c
a
t
c
h

(
E
x
c
e
p
t
i
o
n

e
)

{

S
t
r
i
n
g

m
s
g

=
"
e
x
p
o
r
t
O
b
j
e
c
t
(
R
e
m
o
t
e

o
b
j
)

f
a
i
l
"
;

T
r
a
c
e
C
a
r
o
l
.
e
r
r
o
r
(
m
s
g
,
e
)
;

t
h
r
o
w

n
e
w

R
e
m
o
t
e
E
x
c
e
p
t
i
o
n
(
m
s
g
)
;

}

}

p
u
b
l
i
c

v
o
i
d

u
n
e
x
p
o
r
t
O
b
j
e
c
t
(
R
e
m
o
t
e

o
b
j
)

t
h
r
o
w
s

N
o
S
u
c
h
O
b
j
e
c
t
E
x
c
e
p
t
i
o
n

{

i
f

(
T
r
a
c
e
C
a
r
o
l
.
i
s
D
e
b
u
g
R
m
i
C
a
r
o
l
(
)
)

{

T
r
a
c
e
C
a
r
o
l
.
d
e
b
u
g
R
m
i
C
a
r
o
l
(

"
M
u
l
t
i
P
R
O
D
e
l
e
g
a
t
e
.
u
ne
x
p
o
r
t
O
b
j
e
c
t
(
"

.
.
.
.

}t
r
y

{

i
f

(
i
n
i
t
)

{

f
o
r

(
E
n
u
m
e
r
a
t
i
o
n

e
=

a
c
t
i
v
e
P
t
c
l
s
.
e
l
e
m
e
n
t
s
(
)
;

.
.
.

(
(
O
b
j
D
l
g
t
)
e
.
n
e
x
t
E
l
e
m
e
n
t
(
)
)
.
u
ne
x
p
o
r
t
O
b
j
e
c
t
(
o
b
j
)
;

}

}
e
l
s
e

{

i
n
i
t
P
r
o
t
o
c
o
l
s
(
)
;

/
/
i
t
e
r
a
t
e

p
r
o
t
o
c
o
l

e
l
e
m
e
n
t
s

a
n
d

u
n
e
x
p
o
r
t

o
b
j

}}

}
c
a
t
c
h

(
E
x
c
e
p
t
i
o
n

e
)

{

S
t
r
i
n
g

m
s
g

=
"
u
n
e
x
p
o
r
t
O
b
j
e
c
t
(
R
e
m
o
t
e

o
b
j
)

f
a
i
l
"
;

T
r
a
c
e
C
a
r
o
l
.
e
r
r
o
r
(
m
s
g
,
e
)
;

t
h
r
o
w

n
e
w

N
o
S
u
c
h
O
b
j
e
c
t
E
x
c
e
p
t
i
o
n
(
m
s
g
)
;

}

}

89

a generic type in Java 5.0, by transforming the code to use the strategy design pattern

(p. 315, [94]) and changing public interfaces, or by changing the external library’s APIs

(e.g., exportObject and unexportObject), these transformations either incur non-local changes

or require using language constructs that were not available in Java 1.4.9 This limitation

is not specific to Java only. There is no programming language that provides all possible

levels of abstraction.

A locally unfactorable genealogy means that a programmer cannot discontinue any of its

clone lineages by local refactoring. In other words, a clone genealogy is locally unfactorable

if and only if all of its clone lineages end with a clone group that is locally unfactorable.

In the two subject programs, we inspected all clone lineages to find those that are locally

unfactorable. 70 genealogies (64%) in carol and 61 genealogies (49%) in dnsjava are locally

unfactorable.

4.4.4 Long-Lived Clones

Programmers would get a good return on their refactoring investment if clones live for a

long time and if they tend to change with other clones. But our data show that even when

refactoring looks attractive, it may not be feasible given the significant number of clones

that are locally unfactorable.

Out of 37 genealogies that lasted more than half of carol ’s software history (18 versions

out of 37 versions), 29 of them include consistent change patterns, 24 of them comprise

locally unfactorable clones, and 19 of them include both consistent change patterns and

locally unfactorable clones. Out of 18 genealogies that lasted more than half of dnsjava’s

software history (112 versions out of 224 versions), 15 of them include consistent change

patterns, 13 of them comprise locally unfactorable clones, and 11 of them include both

consistent change patterns and locally unfactorable clones.

Figure 4.6 shows the cumulative fraction of (1) consistently changed genealogies, i.e.,∑k

i=0
fconsistent(i)∑k

i=0
f(i)

, (2) locally unfactorable genealogies, and (3) locally unfactorable genealo-

gies that include consistent change patterns. As k increases (meaning that as the genealogies

9Note that Java 5.0 became available in September 2004 and this code was written prior to that.

90

get older), the more genealogies include a consistently changing pattern and comprise lo-

cally unfactorable clones. This result suggests that the current programming languages and

conventional refactoring techniques cannot improve many troublesome clones—those that

are long-lived and consistently changing.

4.5 Discussion

This section discusses how the text similarity threshold affects our analysis results and

describes limitations of our study.

4.5.1 Impact of Similarity Threshold

The text similarity threshold (simth) sets the bar for defining a cloning relationship. A low

simth can find a consistent change pattern between OG and NG while a high simth will

consider that OG’s lineage is discontinued. Simth affects the size and length (age) of clone

genealogies and the number of consistent change patterns.

Table 4.7 shows that, when 0.1 is used, CGE finds fewer genealogies with a larger size

and a longer length because it finds more cloning relationships and thus combines several

genealogies to one. When 0.5 is used, CGE finds more genealogies with a smaller size

and a shorter length because it divides a long clone genealogy into many short and small

genealogies. When simth is 0.1, the ratio of consistently changed genealogies is 2% higher

in dnsjava and 26% higher in carol than using 0.3. Figure 4.7 shows CDF (k) in carol and

dnsjava when simth is 0.1, 0.3, and 0.5. CDF (k) of 0.1 shows a coarse-grained distribution

because simth 0.1 reduces the total number of genealogies. Figure 4.7 shows that our choice

of simth 0.3 generates a finer-grained distribution than using 0.1 and estimates the number

of volatile genealogies more conservatively than using 0.5.

4.5.2 Study Limitations

Clone Detection Technique CGE incorrectly counts the number of consistent change

patterns in some cases because CCFinder detects only a contiguous token string as a clone.10

10Gemini, a clone analysis and visualization tool, identifies gapped clones (i.e., non-contiguous code clones)
by post-processing CCFinder’s output [283].

91

carol

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35

K (in Versions)

Ra
tio

Consistently Changed

Locally Unfactorable

Consistently Changed
and Locally Unfactorable

dnsjava

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 30 60 90 120 150 180 210

K (in Versions)

Ra
tio

Consistently Changed

Locally Unfactorable

Consistently Changed
and Locally Unfactorable

Figure 4.6: Cumulative fraction of consistently changed genealogies, locally unfactorable
genealogies, and consistently changed and locally unfactorable genealogies

92

Table 4.7: Average size and length of genealogies with varying simth

simth

0.1 0.3 0.5

of genealogies carol 27 122 153

including false positives dnsjava 63 140 180

of consistently carol 16 41 53

changed genealogies dnsjava 21 45 52

avg size carol 117.52 26.01 20.74

(in # of clone groups) dnsjava 233.73 105.17 81.81

avg age carol 25.19 12.57 12.56

(length) dnsjava 63.49 46.16 40.93

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120 150 180 210

K (Age in Version)

sim_th=0.1(dnsjava)
sim_th=0.3(dnsjava)
sim_th=0.5(dnsjava)
sim_th=0.1(carol)
sim_th=0.3(carol)
sim_th=0.5(carol)

Figure 4.7: Cumulative distribution function of dead genealogies with varying simth

93

For example, when code is inserted in the middle of one clone in a clone group, the existing

clone group is broken into two new clone groups with shorter contiguous text, causing

identification of two consistent patterns rather than one inconsistent change pattern. As

another example, even if a programmer consistently modified OG to create NG, CCFinder

does not find a cloning relationship between OG and NG if they do not share a contiguous

token string greater than the size of simth(|OG.text| + |NG.text|)/2. The absence of a

cloning relationship can be mistakenly interpreted as a discontinuation of a lineage. This

limitation can be overcome by plugging in clone detectors that find non-contiguous code

clones, such as CP-Miner [187], PDG-based detectors [176, 173], and metric-based detectors

[148, 202, 212]. We speculate that using these clone detectors will not change our key findings

as other follow-up studies that use different clone detectors support the same key findings

(see Section 4.6).

Location Tracking Technique We implemented a file and line based location tracker

based on the diff algorithm; thus our location tracking algorithm is limited in two ways.

First, it depends on diff to resolve ambiguity in finding a corresponding line. For example,

when a file A contains abc in the k − 1th version and contains cba in the kth version, diff

considers that ab is deleted before c and ba is inserted after c, even if a programmer replaced

a to c and c to a. Second, our algorithm considers that two files are related only when their

hierarchical file names match. For example, when a file A is renamed to B or A is split into

two files B1 and B2, the evolution patterns between A and B or A and B1(B2) would be

identified as the Add and Subtract patterns. We speculate that code matching techniques

and refactoring reconstruction techniques in Section 2.2 can improve our location tracker

by inferring how classes were renamed, split, or merged.

Subject Programs Our two subject programs both comprise about 20,000 lines of code.

The clone coverage ratio of these programs was smaller than many programs reported in the

literature. We speculate that carol and dnsjava may have fewer locally unfactorable and

consistently changing clones than larger programs whose duplication is difficult to remove

without compromising many existing design decisions. Both carol and dnsjava have been

94

maintained by a small number of people: two developers for dnsjava and six developers for

carol. The small team size may have affected our study results.

The granularity of our analysis was a check-in that changed the total number of lines

of code clones (LOCC); thus, we did not observe the changes between each check-in, or the

changes that did not result in ∆LOCC &= 0 even if the clones’ text changed. Our study also

does not model clones that do not live long enough to make it to the revision history. Based

on our experience of observing programmers copy and paste, we suspect that programmers

create more clones temporarily before finding an appropriate level of an abstraction.

Our definition of locally unfactorable clones is Java language dependent; thus our claims

about the locally unfactorable clones may not apply to other languages. We speculate that,

in other programming languages, different types of locally unfactorable clones would be

found.

4.6 Comparison with Clone Evolution Analyses

This section describes several clone evolution analysis techniques—many of which were

developed after our study in 2005—and compares them with ours.

Evolution of code clones was studied for the first time by Laguë et al. [180]. They

studied clones in six versions of a large telecommunication software system and found that

a significant number of clones were removed but the overall number of clones increased

over time in the system. Their approach traces code clones in consecutive versions using a

metric-based clone detector and classifies clones into four categories: new clones, modified

clones, never modified clones, and deleted clones. However, their analysis does not address

how elements in a group of code clones change with respect to other elements in the group.

Geiger et al. [95] studied the relation of code clones and change couplings (files which are

committed at the same time by the same author with the same modification description) in

the Mozilla project. Our study explains why Geiger et al. did not find a strong correlation

between clones and change coupling: the amount of consistently changing clones is lower

than may have been believed. Similarly, Lozano et al. [194] examined the relation between

code clones and change coupling at a finer granularity (method-level) in dnsjava.

Aversano et al. [11] slightly refined our clone evolution model by further categoriz-

95

ing the Inconsistent Change pattern into the Independent Evolution pattern and the Late

Propagation pattern. Independent evolution means that programmers intentionally applied

inconsistent updates to clones to implement different pieces of functionality. Late propaga-

tion means that programmers must have accidentally applied inconsistent updates to clones

because programmers later propagated the same change to them. They used the SimScan

clone detector11 and analyzed clone evolution in dnsjava and ArgoUML. In their study, only

45% of clone groups underwent consistent changes, 32% underwent independent evolution,

and 18% underwent late propagation. Through manual analysis, they found that, if the

clones contain bugs, developers always consistently update clones.

Krinke [177] also extended our clone genealogy analysis and independently studied clone

evolution patterns in five open source projects (ArgoUML, carol, jdt.core, Emacs, and

FilZilla). Krinke came to similar conclusions. Only roughly 45% to 55% of the clones

change consistently and many clones disappear in a short amount of time due to divergent

changes. Furthermore, it is rare for inconsistently changed clone groups to become consis-

tently changed clones later by applying missed changes, contradicting Aversano et al.’s Late

Propagation result.

Balint et al. [18] developed a visualization tool that shows the evolution of code clones.

Their Clone Evolution View visualizes code clones at a line granularity and also shows four

types of additional information: (1) who created and modified code clones, (2) the time of

the modifications, (3) the location of clones in the system, and (4) the size of code clones.

Balint et al. applied this tool to three open source projects (Ant, ArgoUML and Ptolemy2)

and discovered several common cloning patterns such as Inconsistent Line Cloning Fixed by

the Same Author. Though their visualization explicitly represents clone evolution, it differs

by focusing on meta information instead of code change.

To the best of our knowledge, our clone genealogy extractor is the first tool that system-

atically analyzes clone evolution patterns by monitoring how a clone group evolves. Our

study is one of the first to report that code cloning is not necessarily harmful and refactor-

ing is not always the best solution for clones. Many researchers [11, 74, 95, 102, 152, 194]

11http://www.blue-edge.bg/simscan

96

independently reproduced similar results from different subject programs.

4.7 Proposed Tools

Our clone genealogy study results indicate that the problems of code clones are not so black

and white as previous research has assumed and that refactoring would not help several

types of clones. Based on our clone studies (Chapter 3 and Chapter 4), we propose new

clone maintenance approaches. For each tool, we describe what it does, what kinds of

potential benefit it provides, and the mechanism through which it can be implemented.

Cloning Dependency Tracking We propose a tool that maintains and visualizes cloning

dependencies. This tool can help programmers locate related code clones. Suppose that a

programmer copied example code and then modified a small part of it. When the example

code requires some adaptive changes—e.g., a library used in the example is updated to a

new version—all instances of the copied code must be located. The programmer may need

to consult the original author to figure out how to adapt the copied code appropriately, if

he does not fully understand the logic of the copied code.

We found a concrete example from the Mozilla project. One bug required a programmer

to fix bugs that had been propagated to 12 different places by copy and paste. This bug was

created by invoking the appendFrames method instead of insertFrames method. (See Figure

4.8.) The code snippet was copied twice within the same method and the method itself

was copied three times. Ultimately, 12 structural clones containing that faulty code snippet

were produced. The programmer who fixed the bug had to lexically search the code base

for comments starting with XXX in order to apply the appropriate modifications consistently.

Lexical search will fail if XXX did not exist in the copied comment, or if the structural

template evolved very differently.

This cloning dependency tracker can be implemented either by capturing copy and paste

operations in IDEs or using the Add pattern in the extracted clone genealogy.

Structural Template Inference We propose a tool that learns a structural template

from the frequently copied code and assists programmers in reusing the template in a safe

97

// XXX We can't just assume these // XXX We can't just assume these
frames are being appended, we frames are being appended, we
need to determine where in the list need to determine where in the list
they should be inserted... they should be inserted...
If (If (state.m$$$$Items.childList state.m$$$$Items.childList) {) {

state.m$$$$.containingBlock state.m$$$$.containingBlock
- - > > AppendFrames AppendFrames (…) (…)
} }
…. ….

nsCSSFrameConstructor

ContentAppend

ContentInserted

DoDeletingFrameSubTree

CantRenderReplace

Figure 4.8: Mozilla bug id: 217604

manner. This tool can save repetitive edits by providing advanced block completion or by

removing the code that is irrelevant to the pasted context. This tool can be implemented

by monitoring subsequent edits on copied code in an IDE or by extracting the common

internal representation of clones. Duala-Ekoko and Robillard’s Clone Tracker [74] extracts

a AST-based structural template descriptor by comparing clones found by the SimScan

clone detector.12

Cloning Related Bug Detection and Prevention When a programmer fails to change

clones consistently, this missed update could lead to a bug. We propose a tool that detects

and prevents cloning related bugs by identifying a missed update. This tool can be imple-

mented by detecting the Consistent Change pattern followed by the Inconsistent Change

pattern in a clone genealogy as consistently changed clones are likely to change similarly in

the future.

There are several motivating examples for such a tool. Li et al. reported that errors in

Linux were created when a programmer copied code but failed to rename identifiers correctly

in the pasted code [187]. Ying et al., also reported a cloning related bug in Mozilla [308].

A web browser using the gtk UI toolkit and the version using the xlib UI toolkit were code

12http://blue-edge.bg/download.html

98

clones. When a developer changed the version using gtk but did not update the version

using xlib, this inconsistent update led to a serious defect, “huge font crashes X Windows.”

Refactoring Recommendation Although many modern IDEs provide automatic refac-

toring features, they do not suggest what to refactor or when to refactor code. We believe

that clones are good candidates for refactoring and there’s a right time to refactor them.

If programmers refactor clones too early, they may have to undo the refactoring when the

clones diverge. On the other hand, if programmers wait too long before they restructure

code, they would get only marginal benefit on their investment. This proposed refactoring

recommender can leverage clone genealogy information—the age of clones and the frequency

of consistent changes—to suggest which code and when to refactor.

Simultaneous Text Editing Recommendation Simultaneous text editing is proposed

and prototyped by Miller and Myers to automate repetitive text editing [215]. After describ-

ing a set of regions to edit, a user can edit any one record and see equivalent edits applied

simultaneously to all other records. A similar editing technique, called linked editing, applies

the same editing change to a set of code clones specified by a user [281]. These editing tech-

niques require a user to manually specify what must be simultaneously edited. We propose

a tool that recommends clones suitable for simultaneous text editing by monitoring the fre-

quency of the Consistent Change pattern and by assessing the cost of the refactoring. This

tool can effectively maintain many long-lived, consistently changing, locally unfactorable

clones.

4.8 Conclusions from the Clone Genealogy Study

Our clone genealogy study found that refactoring may not always improve software with

respect to clones for two reasons. First, many code clones exist in the system for only a

short time; extensive refactoring of such short-lived clones may not be worthwhile if they

are likely to diverge from one another very soon. Second, many clones, especially long-

lived clones that have changed consistently with other elements in the same group, are

not easily refactorable due to programming language limitations. These insights show that

99

refactoring will not help in dealing with some types of clones and open up opportunities for

complementary clone maintenance tools that target these other classes of clones. In addition,

our analysis of consistent clone updates helped us build insights into systematic changes.

This motivated our rule-based change inference approach that leverages the systematicness

of code-level changes.

100

Chapter 5

INFERRING CHANGES TO API NAME AND SIGNATURE

In many situations, programmers need to comprehend differences between two program

versions: They often review code changes done by other developers. They also inspect their

own code changes when writing documentation or check-in comments. In these situations,

programmers may ask the following questions about code changes: “What changed between

the two program versions?” “Is anything missing in that change?” and “Why was this set

of files changed together?” Our goal is to help programmers answer these kinds of questions

by building a tool that extracts high-level change descriptions. Achieving this goal is also

important for enabling various kinds of mining software repository research that analyzes

program history by matching corresponding code elements across versions.

Based on the insight that high-level changes are often systematic at a code level, our

approach uses rule-based representations to concisely describe systematic changes and to

note exceptions to systematic change patterns. This chapter in particular describes how

we instantiated this rule-based change inference approach at a method-header level (API-

level). Our API-change rule concisely describes systematic API changes, and our algorithm

automatically infers such rules from two program versions.

Section 5.1 describes the representation of API change-rules. Section 5.2 describes the

API change-rule inference algorithm. Section 5.3 presents the results on five open source

projects and compares our approach to three other approaches.

5.1 Definition of API Change-Rule

As our survey in Section 2.2 shows, many existing techniques take two program versions as

input and automatically infer changes from one version to the other. These techniques usu-

ally match code at a fixed granularity and represent the inferred changes as an unstructured,

often lengthy, list of code matches. Although this unstructured representation is adequate

101

for conventional uses (e.g., transferring code coverage information in profile propagation

tools), it is not effective in helping programmers reason about software changes at a high

level. Programmers are usually left with the burden of reading all code matches one by one

and discovering emerging patterns from them.

Consider an example where a programmer reorganizes a chart drawing program by the

type of a rendered object, moving axis-drawing classes from the package chart to the package

chart.axis. To add tool-tip on/off information, she appends a boolean parameter to a set of

chart-creation interfaces. A method-level matching tool [167, 316] would report a long list

of matches by individually enumerating each moved method and each modified interface.

One may have to examine hundreds or thousands of matches before discovering that a few

simple transformations took place. Moreover, if the programmer neglected to move one axis

drawing class, this error would be hard to detect.

It is important to note that both changes consist of applying a similar transformation

to a set of related code elements. One change moves a group of classes that match the *Axis

pattern from package chart to package chart.axis. The other adds a boolean parameter to a

group of methods that match the create*Chart pattern.

Our change vocabulary represents a group of similar transformations explicitly in a rule-

based representation. This chapter discusses a change-rule representation at the level of a

method-header (i.e., API level). Given two program versions (P1, P2), our goal is to find

a set of API change-rules, in turn generating a set of method-header level matches. Each

change-rule maps a subset of method-headers in P1 to a subset of method-headers in P2.

API change-rules model a program only at the level of method-headers and do not

model changes within method bodies, control logic, temporal logic, etc. Hence, applying

the inferred change-rules to an old program version does not reconstruct a new version.

Transformation. Our API change-rules support transformations at the level of a method-

header. A method-header is defined as a tuple, (package:String, class:String, procedure:String,

input argument list:List[String], return type:String). In pseudo code descriptions, a method

header is represented as (pack, cls, pr, sig, ret). For presentation purposes, a Java method-

102

Table
5.1:

C
om

parison
betw

een
program

m
er’s

intent
and

existing
tools’results

P
rogram

m
er’s

In
ten

t
M

atch
in

g
T
o
ol

R
esu

lts
[167]

R
efactorin

g
R

econ
stru

ction
R

esu
lts

[295]

M
ove

classes
th

at
d
raw

ax
es

[
c
h
a
r
t
.
D
a
t
e
A
x
i
s.

..,
c
h
a
r
t
.
a
x
i
s
.
D
a
t
e
A
x
i
s.

..]
M

ove
class

D
a
t
e
A
x
i
s

from
c
h
a
r
t

to
c
h
a
r
t
.
a
x
i
s

from
c
h
a
r
t

p
ackage

[
c
h
a
r
t
.
N
u
m
b
e
r
A
x
i
s.

..,
c
h
a
r
t
.
a
x
i
s
.
N
u
m
b
e
r
A
x
i
s
.
..]

M
ove

class
N
u
m
b
e
r
A
x
i
s

from
c
h
a
r
t

to
c
h
a
r
t
.
a
x
i
s

to
c
h
a
r
t
.
a
x
i
s

p
ackage

[
c
h
a
r
t
.
V
a
l
u
e
A
x
i
s.

..,
c
h
a
r
t
.
a
x
i
s
.
V
a
l
u
e
A
x
i
s
.
..]

M
ove

class
V
a
l
u
e
A
x
i
s

from
c
h
a
r
t

to
c
h
a
r
t
.
a
x
i
s

W
id

en
th

e
A

P
Is

of
ch

art
[
c
r
e
a
t
e
A
r
e
a
C
h
a
r
t
(
D
a
t
a
)
,

c
r
e
a
t
e
A
r
e
a
C
h
a
r
t
(
D
a
t
a
,

b
o
o
l
e
a
n
)
]

A
d
d
b
o
o
l
e
a
n

p
aram

eter
to

c
r
e
a
t
e
A
r
e
a
C
h
a
r
t

factory
m

eth
o
d
s

b
y

ad
d
in

g
a

[
c
r
e
a
t
e
L
C
h
a
r
t
(
I
n
t
D
a
t
a
)
,

c
r
e
a
t
e
L
C
h
a
r
t
(
I
n
t
D
a
t
a
,

b
o
o
l
e
a
n
)
]

A
d
d
b
o
o
l
e
a
n

p
aram

eter
to

c
r
e
a
t
e
L
C
h
a
r
t

b
o
o
l
e
a
n

ty
p
e

argu
m

en
t

[
c
r
e
a
t
e
P
i
e
C
h
a
r
t
(
P
i
e
D
a
t
a
)
,

c
r
e
a
t
e
P
i
e
C
h
a
r
t
(
P
i
e
D
a
t
a
,

b
o
o
l
e
a
n
)
]

A
d
d
b
o
o
l
e
a
n

p
aram

eter
to

c
r
e
a
t
e
P
i
e
C
h
a
r
t

103

header is represented as return type package.class.procedure(input argument list).1 Each transforma-

tion is a tuple modifying operation.

• packageReplace(x:Method, f :String, t:String):

change x’s package name from f to t:

if(x.pack==f) x.pack:= t;

• classReplace(x:Method, f :String, t:String):

change x’s class name from f to t:

if(x.cls==f) x.cls:= t;

• procedureReplace(x:Method, f :String, t:String):

change x’s procedure name from f to t:

if(x.pr==f) x.pr:= t;

• returnReplace(x:Method, f :String, t:String):

change x’s return type from f to t:

if(x.ret==f) x.ret:= t;

• inputSignatureReplace(x:Method,f :List[String], t:List[String]):

change x’s input argument list from f to t:2

if(x.sig.equals(f)) x.sig:= t;

• argReplace(x:Method, f :String, t:String):

change argument type f to t in x’s input argument list:

for (0<=index<x.sig.size()) {if (x.sig.get(index)==f) x.sig.set(index,t)}

• argAppend(x:Method, t:List[String]):

append all of the argument types in t to the end of x’s input argument list:

x.sig.addAll(t)

1The return type is sometimes omitted for presentation purposes.

2inputSignatureReplace subsumes argReplace, argAppend, and argDelete.

104

• argDelete(x:Method, t:String):

delete every occurrence of type t in the x’s input argument list:

x.sig.removeAll(new List[t])

• typeReplace(x:Method, f :String, t:String):

change every occurrence of type f to t in x:

if (x.cls==f) x.cls:= t;

if (x.cls==x.pr && x.cls==f) x.pr:= t; /* constructor methods */

if (x.ret==f) x.ret:= t;

for (0<=index<x.sig.size()) {if (x.sig.get(index)==f) x.sig.set(index,t)}

Rule. A change-rule consists of a scope, exceptions and a transformation.

• for all x:method-header in (scope)

except (exceptions)

transformation(x)

The only method-headers transformed are those in the scope but not in the exceptions.

When a group of method-headers have similar names, we summarize these method-headers

as a scope expression using a wild-card pattern matching operator. For example, *.*Plot.get*Range()

describes methods with any package name, any class name that ends with Plot, any pro-

cedure name that starts with get and ends with Range, and an empty argument list.3 This

use of a wild card pattern is based on the observation that programmers tend to name code

elements similarly when they belong to the same concern [111].

For example, the following rule means that all methods that match the chart.*Plot.get*Range()

pattern take an additional ValueAxis argument.

• for all x:method-header in chart.*Plot.get*Range()

argAppend(x, [ValueAxis])

[Interpretation: All methods with a name “chart.*Plot.get*Range()” appended an input argument with the

3Wild-card pattern matching is implemented using java.util.regex.Pattern in Java 1.4. A Java method
header m matches a scope expression s if Pattern.compile(s).matcher(m.toString()) returns true.

105

ValueAxis type.]

Rules explicitly note exceptions that violate systematic change patterns. For the preced-

ing example, the following rule describes that the getVerticalRange method did not change

its input signature similarly as other methods.

• for all x:method-header in chart.*Plot.get*Range()

except {chart.MarkerPlot.getVerticalRange}

argAppend(x, [ValueAxis])

[Interpretation: All methods with a name “chart.*Plot.get*Range()” added an input argument with the

ValueAxis type except the chart.MarkerPlot.getVerticalRange method.]

In addition, to discover emerging transformation patterns, a scope can have disjunctive

scope expressions. The following rule means that all methods whose class name includes

Plot or JThermometer changed their package name from chart to chart.plot.

• for all x:method-header in chart.*Plot*.*(*)

or chart.*JThermometer*.*(*)

packageReplace(x, chart, chart.plot)

[Interpretation: All methods with a name “chart.*Plot*.*(*)” or “chart.*JThermometer*.*(*)” moved from

the chart package to the chart.plot package.]

Rule-based Matching. We define a matching between two versions of a program by

a set of change-rules. The methods that are not matched by any rules are either deleted

or added methods.4 For example, the five rules in Table 5.2 explain seven matches. The

unmatched method O2 is considered deleted. The scope of one rule may overlap with

the scope of another rule as some methods undergo more than one transformation. Our

algorithm ensures that we infer a set of rules such that the application order of rules does

not matter.

5.2 Inference Algorithm

Our algorithm accepts two versions of a program and infers a set of API change-rules. Our

algorithm has four parts: (1) generating seed matches, (2) generating candidate rules based

4Method headers that are identical in both versions are excluded from a rule-based matching.

106

Table
5.2:

R
ule-based

m
atching

exam
ple

A
set

of
m

eth
o
d
-h

ead
ers

in
P

1
A

set
of

m
eth

o
d
-h

ead
ers

in
P

2

O
1.

c
h
a
r
t
.
V
e
r
t
i
c
a
l
P
l
o
t
.
d
r
a
w
(
G
r
p
h
,
S
h
p
)

N
1.

c
h
a
r
t
.
p
l
o
t
.
V
e
r
t
i
c
a
l
P
l
o
t
.
d
r
a
w
(
G
r
p
h
)

O
2.

c
h
a
r
t
.
V
e
r
t
i
c
a
l
R
e
n
d
e
r
e
r
.
d
r
a
w
(
G
r
p
h
,
S
h
p
)

N
2.

c
h
a
r
t
.
p
l
o
t
.
H
o
r
i
z
o
n
t
a
l
P
l
o
t
.
r
a
n
g
e
(
G
r
p
h
)

O
3.

c
h
a
r
t
.
H
o
r
i
z
o
n
t
a
l
P
l
o
t
.
r
a
n
g
e
(
G
r
p
h
,
S
h
p
)

N
3.

c
h
a
r
t
.
a
x
i
s
.
H
o
r
i
z
o
n
t
a
l
A
x
i
s
.
g
e
t
H
e
i
g
h
t
(
)

O
4.

c
h
a
r
t
.
H
o
r
i
z
o
n
t
a
l
A
x
i
s
.
h
e
i
g
h
t
(
)

N
4.

c
h
a
r
t
.
a
x
i
s
.
V
e
r
t
i
c
a
l
A
x
i
s
.
g
e
t
H
e
i
g
h
t
(
)

O
5.

c
h
a
r
t
.
V
e
r
t
i
c
a
l
A
x
i
s
.
h
e
i
g
h
t
(
)

N
5.

c
h
a
r
t
.
C
h
a
r
t
F
a
c
t
o
r
y
.
c
r
e
a
t
e
A
r
e
a
C
h
a
r
t
(
D
a
t
a
,

b
o
o
l
e
a
n
)

O
6.

c
h
a
r
t
.
C
h
a
r
t
F
a
c
t
o
r
y
.
c
r
e
a
t
e
A
r
e
a
C
h
a
r
t
(
D
a
t
a
)

N
6.

c
h
a
r
t
.
C
h
a
r
t
F
a
c
t
o
r
y
.
c
r
e
a
t
e
G
a
n
t
t
C
h
a
r
t
(
I
n
t
e
r
v
a
l
,

b
o
o
l
e
a
n
)

O
7.

c
h
a
r
t
.
C
h
a
r
t
F
a
c
t
o
r
y
.
c
r
e
a
t
e
G
a
n
t
t
C
h
a
r
t
(
I
n
t
e
r
v
a
l
)

N
7.

c
h
a
r
t
.
C
h
a
r
t
F
a
c
t
o
r
y
.
c
r
e
a
t
e
P
i
e
C
h
a
r
t
(
P
i
e
D
a
t
a
,

b
o
o
l
e
a
n
)

O
8.

c
h
a
r
t
.
C
h
a
r
t
F
a
c
t
o
r
y
.
c
r
e
a
t
e
P
i
e
C
h
a
r
t
(
P
i
e
D
a
t
a
)

R
u
le

M
atch

es
E

x
p
lain

ed

sco
pe

excep
tio

n
s

tra
n
sfo

rm
a
tio

n

c
h
a
r
t
.
*
P
l
o
t
.
*
(
*
)

p
a
c
k
a
g
e
R
e
p
l
a
c
e
(
x
,
c
h
a
r
t
,
c
h
a
r
t
.
p
l
o
t
)

[O
1,

N
1],

[O
3,

N
2]

c
h
a
r
t
.
*
A
x
i
s
.
*
(
*
)

p
a
c
k
a
g
e
R
e
p
l
a
c
e
(
x
,
c
h
a
r
t
,
c
h
a
r
t
.
a
x
i
s
)

[O
4,

N
3],

[O
5,

N
4]

c
h
a
r
t
.
C
h
a
r
t
F
a
c
t
o
r
y
.
c
r
e
a
t
e
*
C
h
a
r
t
(
*
)

a
r
g
A
p
p
e
n
d
(
x
,
[
b
o
o
l
e
a
n
]
)

[O
6,

N
5],

[O
7,

N
6],

[O
8,

N
7]

c
h
a
r
t
.
*
.
*
(
G
r
p
h
,
S
h
p
)

{O
2}

a
r
g
D
e
l
e
t
e
(
x
,
S
h
p
)

[O
1,

N
1],

[O
3,

N
2]

c
h
a
r
t
.
*
A
x
i
s
.
h
e
i
g
h
t
(
)

p
r
o
c
e
d
u
r
e
R
e
p
l
a
c
e
(
x
,
h
e
i
g
h
t
,
g
e
t
H
e
i
g
h
t
)

[O
4,

N
3],

[O
5,

N
4]

107

on the seeds, (3) iteratively selecting the best rule among the candidate rules, and (4)

post-processing the selected candidate rules to output a set of API change-rules. We first

describe a näıve version of our algorithm, followed by a description of essential performance

improvements for the second and third parts of the algorithm. Finally, we summarize key

characteristics of our algorithm.

Part 2 is a bottom-up approach in the sense that hypotheses about high-level changes

are generated from seeds. Part 3 is a top-down approach in the sense that rules with a large

number of matches are found before finding rules with fewer number of matches.

Part 1. Generating Seed Matches. We start by searching for method headers that

are similar on a textual level, which we call seed matches. Seed matches provide initial

hypotheses about the kind of changes that occurred. Given the two program versions (P1,

P2), we extract a set of method headers O and N from P1 and P2 respectively. Then, for

each method header x in O −N , we find the closest method header y in N −O in terms of

the token-level name similarity, which is calculated by dividing x and y into a list of tokens

starting with capital letters and then computing the longest common subsequence at a token

level [139]. Our seed match generation algorithm is summarized in Algorithm 1. If the name

similarity is over a threshold γ, the pair is added to the initial set of seed matches. In our

study, we found that thresholds in the range of 0.65-0.70 (meaning 65% to 70% of tokens

are the same) gave good empirical results. The seeds need not all be correct matches, as

our rule selection algorithm (Part 3) rejects bad seeds and leverages good seeds. Seeds can

instead come from other sources such as check-in comments, recorded refactorings, or other

matching tools’ results. Many algorithms match code elements based on string similarity

using n-gram or bi-gram matching of source code [90, 302]. We speculate that, compared to

these, our LCS-based algorithm is more sensitive to reordering of tokens but more effective

for code written in the CamelCase naming convention.5

5CamelCase naming is the practice of writing compound words or phrases in which words are joined
without spaces and are capitalized within the compound.

108

Algorithm 1: Seed Generation
Input:

P1 /* an old program version */

P2 /* a new program version */

γ /* a seed similarity threshold */

Output:

S ={(d,c) | d ∈ D, c ∈ C where tokenSim (d,c) > γ} /* a set of seed matches */

/* A Java method-header is defined as a tuple of (pack, cls, pr, sig, ret) where pack

is a package name, cls is a class name, pr is a procedure name, sig is a

list of input argument types (i.e., [arg1, arg2, . . .]), and ret is a return

type. */

O:= extractMethodHeaders(P1);

N:= extractMethodHeaders(P2);

D := O − N /* domain */

C := N − O/* codomain */

S := ∅ ;

foreach d in D do
bestMatch:= null;

bestSimToken:= 0;

foreach c in C do
simToken:= tokenSim (d, c);

if (simToken > γ) ∧ (simToken > bestSimToken) then
bestSimToken:= simToken;

bestMatch:= c;
end

end

S := S ∪ {(d, bestMatch)};
end

109

Part 2. Generating Candidate Rules. For each seed match [x, y], we build a set of

candidate rules in three steps. A candidate rule may include one or more transformations

t1, . . . ti such that y = t1(...ti(x)), unlike a change-rule, where for every match [x, y], y is

the result of applying a single transformation to x.

We write candidate rules as “for all x:method-header in scope, t1(x)∧...∧ti(x).” This representa-

tion allows our algorithm to find a match [x, y] where x undergoes multiple transformations

to become y.

Step 1. We compare x and y to find a set of transformations T= {t1, t2, . . ., ti} such that

t1(t2(. . . ti(x)))= y. We then create T ’s power set 2T . For example, a seed [chart.VerticalAxis.height(),

chart.plot.VerticalAxis.getHeight()] produces the power set of packageReplace(x, chart, chart.plot)

and procedureReplace(x, height, getHeight). The pseudo code of function extractTransformations(seed)

and function extractSignatureTransformations(lsig,rsig) is detailed in pages 110 and 111.

Step 2. We conjecture scope expressions from a seed match [x, y]. We divide x’s full name

to a list of tokens starting with capital letters. For each subset, we replace every token in

the subset with a wild-card operator to create a candidate scope expression. As a result,

when x consists of n tokens, we generate a set of 2n scope expressions based on x. For

the preceding example seed, our algorithm finds S ={*.*.*(*), chart.*.*(*), chart.Vertical*.*(*),

. . ., *.*Axis.height(), . . ., chart.VerticalAxis.height()}.

Step 3. We generate a candidate rule with scope expression s and compound transformation

t for each (s, t) in S × 2T . We refer to the resulting set of candidate rules as CR. Each

element of CR is a generalization of a seed match.

Part 3. Evaluating and Selecting Rules. Our goal is to select a small subset of

candidate rules in CR that explain a large number of matches. While selecting a set of

candidate rules, we enforce candidate rules to have a limited number of exceptions.

The inputs are a set of candidate rules (CR), a domain (D = O − N), a codomain

(C = N), and an exception threshold (0 ≤ ε < 1). The outputs are a set of selected

candidate rules (R), and a set of found matches (M). For a candidate rule r, “for all x in

scope, t1(x)∧...∧ti(x)”:

1. r has a match [a, b] if a ∈ scope, t1, ..., ti are applicable to a, and t1(...ti(a)) = b.

110

Function extractTransformations(seed)
l:= seed.left;

r:= seed.right;

T := ∅ ; /* a set of transformations t1, t2, ...ti such that t1(...(ti(l))) = r.

*/

if l.pack &= r.pack then
T := T ∪ packageReplace(x, l.pack, r.pack)

end

if l.cls &= r.cls then

if l.cls is an inner class name then
T := T ∪ classReplace(x, l.cls, r.cls);

else
T := T ∪ typeReplace(x, l.cls, r.cls);

end

end

if (l.pr &= r.pr) ∧ (l.pr is not a constructor) then
T := T ∪ procedureReplace(x, l.pr, r.pr);

end

if l.ret &= r.ret then
T := T ∪ returnReplace(x, l.ret, r.ret);

end

if l.sig &= r.sig then
T := T ∪ extractInputSignatureTransformation (l.sig, r.sig);

end

2T := createPowerSet (T);

return 2T ;

111

Function extractInputSignatureTransformation(lsig, rsig)
Transforamtion sigt := null;

if lsig.size() = rsig.size() then
n :=0;

for 0≤i<lsig.size() do

if lsig.get(i)&= rsig.get(i) then
sigt := argReplace(x, lsig.get(i), rsig.get(i);

n:= n+1;
end

end

if n &= 1 then

/* Allow an argReplace transformation only if applying a single

argReplace transformation to lsig generates rsig. */

sigt := null;
end

end

else if (lsig.size() < rsig.size()) ∧ lsig.subList(0, lsig.size()).equals(rsig.subList(0, lsig.size())

then

/* Allow an argAppend transformation only if lsig is a prefix of rsig */

appendOperand := rsig.subList(lsig.size()+1, rsig.size());

sigt := argAppend(x, appendOperand)

end

else if (rsig.convertListToSet() ⊂ lsig.convertListToSet()) ∧ (|rsig.convertListToSet() −

lsig.convertListToSet()| = 1) then

/* Allow an argDelete transformation only if {rsig} is a subset of {lsig}

and |{rsig}−{lsig}|=1. */

sigt := argDelete(x, rsig.convertListToSet() − lsig.convertListToSet);

end

if sigt == null then
sigt := inputSignatureReplace(x, lsig, rsig);

end

return sigt;

112

2. a match [a, b] conflicts with a match [a′, b′] if a = a′ and b &= b′

3. r has a positive match [a, b] given D, C, and M , if [a, b] is a match for r, [a, b] ∈

{D × C}, and none of the matches in M conflict with [a, b]

4. r has a negative match (an exception) [a, b], if it is a match for r but not a positive

match for r.

5. r is a valid rule if the number of its positive matches is at least (1−ε) times the number

of its matches. For example, when ε is 0.34 (our default), r’s negative matches must

be fewer than roughly one third of its matches.

Our algorithm greedily selects one candidate rule at each iteration such that the selected

rule maximally increases the total number of matches. Initially we set both R and M to

the empty set. In each iteration, for every candidate rule r ∈ CR, we compute r’s matches

and check whether r is valid. Then, we select a valid candidate rule s that maximizes

|M ∪ P | where P is s’s positive matches. After selecting s, we update CR := CR − {s},

M := M ∪ P , and R := R ∪ {(s, P,E)} where P and E are s’s positive and negative

matches respectively, and we continue to the next iteration. The iteration terminates when

no remaining candidate rules can explain any additional matches. The näıve version of this

greedy algorithm has O(|CR|2 × |D|) time complexity.

Part 4. Post Processing. To convert a set of candidate rules to a set of change-rules,

for each transformation t, we find all candidate rules that contain t and then create a new

scope expression by combining these rules’ scope expressions. Then we find exceptions to

this new rule by enumerating negative matches of the candidate rules and checking if the

transformation t does not hold for each match.

Optimized Algorithm. Two observations allow us to improve the näıve algorithm’s

performance. First, if a candidate rule r can add n additional matches to M at the ith

iteration, r cannot add more than n matches on any later iteration. By storing n, we can

skip evaluating r on any iteration where we have already found a better rule s that can add

113

more matches than r. Second, candidate rules have a subsumption structure because the

scopes can be subsets of other scopes (e.g., *.*.*(*Axis) ⊂ *.*.*(*)).

The pseudo code of our optimized algorithm is described in Algorithm 4 and function

selectTheBestRule on pages 114–115.

Our optimized algorithm behaves as follows. Suppose that the algorithm is at the ith

iteration, and after examining k − 1 candidate rules in this iteration, it has found the best

valid candidate rule s that can add N additional matches. For the kth candidate rule rk,

(1) If rk could add fewer than N additional matches up to i-1st iteration, skip evaluating

rk as well as candidate rules with the same set of transformations but a smaller scope, as

our algorithm does not prefer rk over s.

(2) Otherwise, reevaluate rk.

(2.1) If rk cannot add any additional matches to M , remove rk from CR.

(2.2) If rk can add fewer than N additional matches regardless of its validity, skip

evaluating candidate rules with the same set of transformations but a smaller scope.

(2.3) If rk is not valid but can add more than N additional matches to M , evaluate

candidate rules with smaller scope and the same set of transformations.

(3) Update s and N as needed and go to step (1) to consider the next candidate rule in CR.

By starting with the most general candidate rule for each set of transformations and

generating more candidate rules on demand only in step (2.3) above, the optimized algorithm

is much more efficient that the näıve algorithm. Running our tool currently takes only a few

seconds for the usual check-ins and about seven minutes in average for a program release

pair. Though optimized, our algorithm is not optimal in the sense that it does not guarantee

finding the smallest number of rules for the same set of matches. This optimized algorithm’s

worst case complexity is the same as the näıve algorithm, O(|CR|2 × |D|). In the case of

expanding only one rule to investigate its children rules at each level of the subsumption

lattice, its time complexity is O(|logn(CR)|2 × |D|) where n is the number of tokens in

seed.left.

Key Characteristics of Our Algorithm. First, our algorithm builds insight from seed

matches, generalizes the scope that a transformation applies to, and validates this insight.

114

Algorithm 4: Rule Generation and Selection - Optimized Algorithm
Input:

S /* a set of seed matches */

ε /* an exception threshold */

D /* domain: extractMethodHeaders(P1) − extractMethodHeaders(P2) */

C /* codomain: extractMethodHeaders(P2) */

Output:

R /* a set of selected rules */

M /* a set of found matches */

/* Initialize R, M, and CR */

R := ∅, M := ∅, CR := ∅;

/* Create an initial set of rules */

foreach seed ∈ S do
2T := extractTransformations (seed);

foreach trans ∈ 2T do
scope:= findTheMostGeneralScope (seed.left, trans);

rule:= createNewRule (scope, trans);

CR := CR ∪ {rule};
end

end

cont := true;

while cont do
n := |M |;

s = selectTheBestRule (CR, D, C, M, ε);

R := R ∪ {s};

CR := CR − {s};

M := M ∪ s.positive;

if (|M|=n) then
cont := false;

end

end

115

Function selectTheBestRule(CR, D, C, M, ε)

/* numRemainingPositive (r) returns the number of |r.positive.getLefts() -

M.getLefts()|. */

/* isValid (r, D, C, M, ε) returns true if the number of r’s positive matches is

at least (1-ε) times the number of r’matches. */

/* Scan rules in CR and update N */

N := 0, s := null;

foreach rk ∈ CR do

if (numRemainingPositive (rk) > N) ∧ (isValid (rk, D, C, M, ε)) then
N = numRemainingPositive (rk);

s = rk;
end

end

/* If an invalid rule rk in CR can find more than N matches, expand its

children rules. */

toBeRemoved := ∅; toBeAdded := ∅;

foreach rk ∈ CR do

if numRemainingPositive (rk)=0 then
toBeRemoved := toBeRemoved ∪ {rk};

end

else if (numRemainingPositive (rk) > N) ∧ (isValid (rk, D, C, M, ε))= false then
toBeRemoved := toBeRemoved ∪ {rk}; children = createChildrenRules (rk,N);

foreach c ∈ children do

if (isValid (c, D, C, M, ε)) ∧ (numRemainingPositive (c) > N) then
N := numRemainingPositive (c); s := c;

end

end

toBeAdded := toBeAdded ∪ children;
end

end

/* Add toBeAdded to CR and remove toBeRemoved from CR. */

CR := CR ∪ toBeAdded;

CR := CR − toBeRemoved;

return s ;

116

Second, it prefers a small number of general rules to a large number of specific rules. Third,

when there are a small number of exceptions that violate a general rule, our algorithm

allows these exceptions but remembers them.

5.3 Evaluation

We assess the benefits of our API change-rule inference technique in two ways. First, we

evaluate its accuracy by measuring the precision and recall of the inferred rules. Second,

we measure our inferred rules’ effectiveness in helping programmers reason about program

changes by comparing the conciseness of our results with other approaches’ results.

To evaluate our inferred rules, we compared the method-header level matches found by

our inferred rules (M) with the ground truth—a set of correct matches (E). We identified

a set of correct matches in two steps. First, we used our own inference algorithm on each

version pair in both directions (which can find additional matches) and computed the union

of those matches with the matches found by other approaches. Second, we labeled correct

matches through a manual inspection. For this manual inspection, we developed a viewer

that shows each rule along with the corresponding method-header level matches (Figure

5.1). Our inferred rules are shown in the top pane; the corresponding method-header level

matches are shown in the bottom pane along with the matches found by other approaches.

To help with inspection, matches that are found by one approach but not the other are

marked in color.6

Our quantitative evaluation is based on the three following criteria.

Precision: the percentage of our matches that are correct, |E∩M |
|M | .

Recall: the percentage of correct matches that our tool finds, |M∩E|
|E| .

Conciseness: the measure of how concisely a set of rules explains matches, represented

as a M/R ratio = |M |
|Rules| . A high M/R ratio means that using rules instead of plain matches

significantly reduces the size of results.

Our evaluations are based on released versions as well as check-in snapshots, i.e., in-

ternal, intermediate versions. The primary difference is that there tends to be a much

6Determining the correctness of matches is a subjective process. Having independent coders and measur-
ing inter-rater agreement among the coders could increase confidence about our evaluation data sets.

117

larger delta between successive program releases than between successive check-in snap-

shots. To demonstrate our tool’s effectiveness for cases where existing approaches produce

overwhelmingly large results, our data set includes a release-granularity data on purpose.

Section 5.3.1 presents rule-based matching results for three open source release archives.

Sections 5.3.2 presents comparison with two refactoring reconstruction tools [295, 302] and

a method-level origin analysis tool [167]. Section 5.3.3 discusses the impact of the seed

generation threshold (γ) and the exception threshold (ε). Section 5.3.4 discusses threats to

the validity of our evaluation.

5.3.1 API Change-Rule Based Matching Results

Subject Programs. We chose three open source Java programs that have release archives

on sourceforge.net and contain one thousand to seven thousand methods. The moderate

size lets us manually inspect matches when necessary. JFreeChart is a library for drawing

different types of charts, JHotDraw is a GUI framework for technical and structured graph-

ics, and jEdit is a cross platform text editor. On average, release versions were separated

by a two-month gap in JFreeChart and a nine-month gap in JHotDraw and jEdit.

Results. Table 5.3 and Table 5.4 summarize results for the projects (γ=0.7 and ε=0.34).

|O| and |N | are the number of methods in an old version and a new version respectively.

|O∩N | is the number of methods whose name and signature did not change. Running time

is described in minutes.

The precision of our tool is generally high in the range of 0.78 to 1.00, and recall is in

the range 0.70 to 1.00. The median precision and the median recall for each set of subjects

is above, often well above, 0.90.

The M/R ratio shows significant variance not only across the three subjects but also for

different release pairs in the same subject. The low end of the range is at or just over 1

for each subject, representing cases where each rule represents roughly a single match. The

high end of the range varies from 2.39 (for JEdit) to nearly 244.26 (for JHotDraw). We

observed, however, that most matches are actually found by a small portion of rules (recall

our algorithm finds rules in descending order of the number of matches). Figure 5.2 plots

118

F
igure

5.1:
A

view
er

that
presents

each
rule

w
ith

corresponding
m

ethod-header
m

atches

119

Table 5.3: Rule-based matching results (1)

JFreeChart (www.jfree.org/jfreechart)

The actual release numbers are prefixed with 0.9.

Versions |O| |N | |O ∩ N | Rule Match Prec. Recall M/R Time

4→5 2925 3549 1486 178 1198 0.92 0.92 6.73 21.01

5→6 3549 3580 3540 5 6 1.00 1.00 1.20 <0.01

6→7 3580 4078 3058 23 465 1.00 0.99 20.22 1.04

7→8 4078 4141 0 30 4057 1.00 0.99 135.23 43.06

8→9 4141 4478 3347 187 659 0.91 0.90 3.52 22.84

9→10 4478 4495 4133 88 207 0.99 0.93 2.35 0.96

10→11 4495 4744 4481 5 14 0.79 0.79 2.80 <0.01

11→12 4744 5191 4559 61 113 0.78 0.79 1.85 0.40

12→13 5191 5355 5044 10 145 1.00 0.99 14.50 0.11

13→14 5355 5688 5164 41 134 0.94 0.86 3.27 0.43

14→15 5688 5828 5662 9 21 0.90 0.70 2.33 0.01

15→16 5828 5890 5667 17 77 0.97 0.86 4.53 0.32

16→17 5890 6675 5503 102 285 0.91 0.86 2.79 1.30

17→18 6675 6878 6590 10 61 0.90 1.00 6.10 0.08

18→19 6878 7140 6530 98 324 0.93 0.95 3.31 1.67

19→20 7140 7222 7124 4 14 1.00 1.00 3.50 <0.01

20→21 7222 6596 4454 71 1853 0.99 0.98 26.10 62.99

MED 0.94 0.93 3.50 0.43

MIN 0.78 0.70 1.20 0.00

MAX 1.00 1.00 135.23 62.99

120

Table 5.4: Rule-based matching results (2)

Versions |O| |N | |O ∩ N | Rule Match Prec. Recall M/R Time

JHotDraw (www.jhotdraw.org)

5.2→5.3 1478 2241 1374 34 82 0.99 0.92 2.41 0.11

5.3→5.41 2241 5250 2063 39 104 0.99 0.98 2.67 0.71

5.41→5.42 5250 5205 5040 17 17 0.82 1.00 1.00 0.07

5.42→6.01 5205 5205 0 19 4641 1.00 1.00 244.26 27.07

MED 0.99 0.99 2.54 0.41

MIN 0.82 0.92 1.00 0.07

MAX 1.00 1.00 244.26 27.07

jEdit (www.jedit.org)

3.0→3.1 3033 3134 2873 41 63 0.87 1.00 1.54 0.13

3.1→3.2 3134 3523 2398 97 232 0.93 0.98 2.39 1.51

3.2→4.0 3523 4064 3214 102 125 0.95 1.00 1.23 0.61

4.0→4.1 4064 4533 3798 89 154 0.88 0.95 1.73 0.90

4.1→4.2 4533 5418 3799 188 334 0.93 0.97 1.78 4.46

MED 0.93 0.98 1.73 1.21

MIN 0.87 0.95 1.23 0.61

MAX 0.95 1.00 2.39 4.46

121

the cumulative distribution of matches for the version pairs with the median M/R ratio

from each of the three projects. The x axis represents the percentage of rules found after

each iteration, and the y axis represents the recall and precision of matches found up to

each iteration.

In all three cases, the top 20% of the rules find over 55% of the matches, and the top

40% of the rules find over 70% of the matches. In addition, as the precision plots show,

the matches found in early iterations tend to be correct matches evidenced by a systematic

change pattern. The fact that many matches are explained by a few rules is consistent with

the view that a single conceptual change often involves multiple low level transformations,

and it confirms that leveraging a systematic change structure is a good matching approach.

Our tool handled the major refactorings in the subject programs quite well. For ex-

ample, consider the change from release 4 to 5 of JFreeChart. Although nearly half of the

methods cannot be matched by name, our tool finds 178 rules and 1198 matches. The

inferred rules indicate that there were many package-level splits as well as low-level API

changes. As presented below, these kind of high-level change patterns are not detected by

other tools we analyzed. Examples of the inferred rules in JFreeChart include:

• for all x:method-header in chart.*Plot.*(CategoryDataSet)

or chart.*.*(Graph, Rect, Rect2D)

or chart.*.*(Graph, Plot, Rect2D)

argAppend(x, [int])

[Interpretation: All methods with a name “chart.*Plot.*(CategoryDataSet),” “chart.*.*(Graph, Rect, Rect2D)”

or “chart.*.*(Graph, Plot, Rect2D)” appended an int argument.]

• for all x:method-header in int renderer.*.draw*(*, Graph, Rect)

returnReplace(x, int, AxisState)

[Interpretation: All methods with a name “renderer.*.draw*(*, Graph, Rect)” changed their return type from

int to AxisState.]

122

Table
5.5:

C
om

parison:
num

ber
of

m
atches

and
size

of
result

O
th

e
r

A
p
p
ro

a
ch

O
u
r

A
p
p
ro

a
ch

Im
p
ro

v
e
m

e
n
t

X
in

g
a
n
d

S
tro

u
lia

(X
S
)

M
a
tch

R
e
fa

c
to

rin
g

M
a
tch

R
u
le

s

jfreech
a
rt

(17
release

p
airs)

8883
4004

9633
939

8%
m

ore
m

atch
es

77%
d
ecrease

in
size

W
e
ig

e
rb

e
r

a
n
d

D
ie

h
l
(W

D
)

M
a
tch

R
e
fa

c
to

rin
g

M
a
tch

R
u
le

s

jE
d
it

R
C

A
ll

1333
2133

1488
906

12%
m

ore
m

atch
es

58%
d
ecrease

in
size

(2715
ch

eck
-in

s)
R
C

B
est

1172
1218

1488
906

27%
m

ore
m

atch
es

26%
d
ecrease

in
size

T
o
m

ca
t

R
C

A
ll

3608
3722

2984
1033

17%
few

er
m

atch
es

72%
d
ecrease

in
size

(5096
ch

eck
-in

s)
R
C

B
est

2907
2700

2984
1033

3%
m

ore
m

atch
es

62%
d
ecrease

in
size

S
.
K

im
e
t

a
l
(K

P
W

)
M

a
tch

M
a
tch

R
u
le

s

jE
d
it

(1189
ch

eck
-in

s)
1430

2009
1119

40%
m

ore
m

atch
es

22%
d
ecrease

in
size

A
rgo

U
M

L
(4683

ch
eck

-in
s)

3819
4612

2127
21%

m
ore

m
atch

es
44%

d
ecrease

in
size

123

Table 5.6: Comparison: precision

Comparison of Matches Match Precision

Xing and Stroulia (XS) XS ∩ Ours 8619 1.00

jfreechart Ours − XS 1014 0.75

(17 release pairs) XS − Ours 264 0.75

Weißgerber and Diehl (WD) WD ∩ Ours 1045 1.00

RCAll Ours − WD 443 0.94

jEdit WD − Ours 288 0.36

(2715 check-ins) WD ∩ Ours 1026 1.00

RCBest Ours − WD 462 0.93

WD − Ours 146 0.42

WD ∩ Ours 2330 0.99

RCAll Ours − WD 654 0.66

Tomcat WD − Ours 1278 0.32

(5096 check-ins) WD ∩ Ours 2251 0.99

RCBest Ours − WD 733 0.75

WD − Ours 656 0.54

S. Kim et al. (KPW) KPW ∩ Ours 1331 1.00

jEdit Ours − KPW 678 0.89

(1189 check-ins) KPW − Ours 99 0.75

KPW ∩ Ours 3539 1.00

ArgoUML Ours − KPW 1073 0.78

(4683 check-ins) KPW − Ours 280 0.76

124

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 20% 40% 60% 80% 100%

Percentage of Found Rules

Pr
ec

is
io

n
an

d
Re

ca
ll

of
 F

ou
nd

 M
at

ch
es

 Precision(JFreeChart0.9.8-
0.9.9)
Precision(JHotDraw-5.3-5.41)

Precision(JEdit4.0-4.1)

Recall(JFreeChart0.9.8-0.9.9)

Recall(JHotDraw5.3-5.41)

Recall(JEdit4.0-4.1)

Figure 5.2: Recall and precision vs. percentage of found matches

5.3.2 Comparison with Refactoring Reconstruction Tools

Refactoring reconstruction tools (Section 2.2.2) compare two versions of a program and look

for code changes that match a predefined set of refactoring patterns [92]. Among these tools,

we compared our matching results with Xing and Stroulia’s approach (XS) [302], Weißgerber

and Diehl’s approach (WD) [295], and S. Kim et al.’s approach (KPW) [167]. We chose

these three approaches for comparison because they are representative of many refactoring

tools. They were developed and published around the same time (from 2005 to 2007), and

their results on open source project data were available to us. XS provided their results

on JFreeChart release archives, WD provided their results on jEdit and Tomcat check-in

snapshots, and KPW provided their results on jEdit and ArgoUML check-in snapshots.

In all three cases, we uniformly compared the precision and recall of method-level

matches found by each approach. This required us building a tool that deduces method-level

matches from XS and WD’s inferred refactorings. We also compared the size of inferred

125

changes (the number of rules in our approach, the number of relevant refactorings in XS

and WD’s approach, and the number of method-level matches in KPW’s approach).

Comparison with Xing and Stroulia’s UMLDiff. XS’s tool UMLDiff extracts class

models from two versions of a program; traverses the two models; identifies corresponding

entities based on their name and structure similarity; and reports additions and removals of

these entities and inferred refactorings. XS can find most matches that involve more than

one refactoring; however, to reduce its computational cost, it does not handle combinations

of move and rename refactorings such as ‘move CrosshairInfo class from chart to chart.plot

package’ and ‘rename it to CrosshairState.’ In contrast, our tool finds the following two rules

that explain the combination of move and rename.

• for all x:method-header in *.*.*(*)

typeReplace(x, CrosshairInfo, CrosshairState)

[Interpretation: The CrosshairInfo type was renamed to the CrosshairState type.]

• for all x:method-header in chart.*Marker.*(*)

packageReplace(x, chart, chart.plot)

[Interpretation: All methods with a name “chart.*Marker.*(*)” moved from the chart package to the

chart.plot package.]

The comparison results are summarized in Tables 5.5 and 5.6. Overall, XS’s precision

is about 2% (=8807/8883-9369/9633) higher. However, our tool finds 761 (=1014×0.75)

correct matches not found by XS while there are only 199 (=264×0.75) correct matches

that our tool failed to report. More importantly, our tool significantly reduces the result

size by 77% by describing results as rules. Matches missed by XS often involve both rename

and move refactorings. Matches missed by our tool often had a very low name similarity,

indicating a need to improve our current seed generation algorithm.

Comparison with Weißgerber and Diehl’s Work. WD’s tool extracts added and

deleted entities (fields, methods, and classes) by parsing deltas from a version control system

and then compares these entities to infer various kinds of structural and local refactorings:

move class, rename method, remove parameter, etc. The tool finds redundant refactor-

126

ing events for a single match. For example, if the Plot class were renamed to DatePlot,

it would infer “rename class Plot to DatePlot” as well as move method refactorings for all

methods in the Plot class. When it cannot disambiguate all refactoring candidates, it uses

the clone detection tool CCFinder [149] to rank these refactorings based on code similar-

ity. For example, if VerticalPlot.draw(Graph) is deleted and VerticalPlot.drawItem(Graph) and

VerticalPlot.render(Graph) are added, it finds both “rename method draw to drawItem” and

“rename method draw to render,” which are then ordered.

We compared our results both with (1) all refactoring candidates RCall and (2) only the

top-ranked refactoring candidates RCbest. The comparison results with RCbest and RCall

(γ=0.65 and ε=0.34) are shown in Table 5.5 and 5.6. Compared to RCbest, our approach

finds 27% more matches yet decreases the result size by 26% in jEdit, and finds 3% more

matches yet decreases the result size by 62% in Tomcat. This result shows our approach

achieves better matching coverage while retaining concise results. We manually inspected

50 sample check-ins to estimate precision for the matches missed by one tool but not the

other as well as the matches found by both tools. For jEdit, our approach found 462 matches

not identified by WD’s RCbest, and RCbest found just over 146 matches that we failed to

report. When combined with the precision, this means our approach found about 430

(=462×0.93) additional useful matches, and their approach found about 61 (=146×0.42)

additional useful matches. Tomcat shows roughly similar results. WD’s tool missed many

matches when compound transformations were applied. Our tool missed some matches

because γ=0.65 did not generate enough seeds to find them.

Comparison with S. Kim et al.’s Origin Analysis. For comparison, both our tool

and KPW’s tool were applied to jEdit and ArgoUML’s check-in snapshots. Table 5.5 and

5.6 shows the comparison result (γ=0.65 and ε=0.34). For jEdit, our approach finds 40%

more matches yet reduces the result size by 22%. For ArgoUML, it finds 21% more matches

yet reduces the result size by 44%.

We also compared our matches to KPW’s matches and inspected the matches from 50

sample check-ins to measure precision. For jEdit, we found over 678 matches not identified

by KPW’s approach. KPW’s approach found about 100 matches that we did not. When

127

combined with the precision of sampled matches, this means our approach found over 600

(=678×0.89) useful matches and that KPW’s approach found about 75 (=99×0.75) useful

matches. ArgoUML shows roughly similar results. This result is noteworthy because KPW’s

approach considers more information such as calling relationships as well as clone detection

results in addition to name similarity. We suspect that it is because of KPW’s approach’s

two limitations: It cannot accept correct matches when their overall similarity score is lower

than a certain threshold, and it cannot easily prune incorrect matches once their overall

similarity score is over a certain threshold and is the highest among potential matches. On

the other hand, our algorithm tends to reject matches whose transformation is an isolated

incident even if the similarity score is high. Our tool’s incorrect matches usually come

from bad seeds that coincidentally have similar names. Overall, our approach finds more

matches without sacrificing its precision and represents results more concisely than KPW’s

approach.

5.3.3 Impact of Seed and Exception Thresholds

Seed Threshold. Our results in part depend on the quantity and quality of seeds. Figure

5.3 shows how our algorithm behaves when we change the seed generation threshold γ for

JFreechart (0.9.4→0.9.5). We varied γ from 0.9 to 0.5 and measured recall of seeds, precision,

recall, and the ratio of rejected seeds to the total number of seeds. When γ is set high in

the range of 0.9 to 0.8, the name matching technique finds a relatively small number of

seeds, but the seeds tend to be all good seeds. So our algorithm rejects very few seeds

and leverages the good seeds to quickly reach recall of 0.65 to 0.85. However, the recall is

still below 0.85 as the seeds do not contain enough transformations. As γ decreases, more

seeds are produced, and a higher percentage of them are bad seeds that our algorithm later

rejects. Using a low threshold (< 0.6) generally leads to higher recall (above 0.9) but it

lowers precision and increases the running time since there are more candidate rules based

on bad seeds. For the results in Figure 5.3, we observed a roughly linear increase from 6

minutes (γ=0.9) to 26 minutes (γ=0.5).

In general, when the precision and recall of seed matches are low, our algorithm improves

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1
Name Similarity Threshold for Finding Seeds

Recall of Seeds

The ratio of rejected seeds to
the total number of seeds
Precision

Recall

Figure 5.3: Impact of seed threshold γ

both measures significantly. When the seed matches already have precision and recall over

0.9, the algorithm still improves both measures, although less so because the seeds are

already very good. However, even in this case, our algorithm significantly improves the

conciseness measure. Effective seed generation and its interaction with our candidate rule

selection algorithm needs additional research.

Exception Threshold. Table 5.7 shows the matching results with different exception

thresholds: 0.25, 0.34, and 0.5. Using a low threshold increases running time and slightly

decreases the M/R ratio. Surprisingly we found that changing exception thresholds does

not affect precision and recall much. We suspect that it is because most exceptions come

from deleted entities.

129

Table 5.7: Impact of exception threshold

Exception Threshold Precision Recall M/R ratio Running Time (Min)

0.25 0.94 0.91 14.12 10.44

0.34 0.94 0.91 14.14 9.19

0.50 0.93 0.91 14.33 7.54

All values are average values for JFreeChart data set.

5.3.4 Threats to Validity

To measure precision, we manually inspected the matches generated by our tool and by

other tools. Manual labeling is subject to evaluator bias. All data are publicly available,7

so other researchers can independently assess our results or use our data.

Our effort to date is limited in a number of ways. First, we have not explored other

(non-Java) programming languages and even different naming conventions, all of which

could have consequences. Second, we have not explored possible ways to exploit informa-

tion from programming environments such as Eclipse that support higher-level refactoring

operations.

5.3.5 Limitations

Our API change-rules are transformation functions. Thus, our approach cannot concisely

capture the following scenarios that require mapping a single method-header in an old

version to multiple method-headers in a new version: (1) An old, deprecated API is kept for

backward compatibility purposes, and (2) An old method is split to two new methods, e.g., a

modified old method and a new helper method. It is possible to mitigate this 1 : n matching

multiplicity problem by running our tool backward and finding rules that transform a new

program version to an old program version.

Our API change-rules do not leverage the name of input arguments. Thus, our algo-

rithm could accidentally aggregate API-level changes that are syntactically homogeneous

but semantically different. For example, when a programmer adds an age input argument

7www.cs.washington.edu/homes/miryung/matching

130

of type int to the printAge() method and also adds a fileID argument of type int to the

printFile(), our approach could find the following rule that summarizes unrelated low-level

changes.

• for all x:method-header in *.*.print*(*)

argAppend(x, [int])

[Interpretation: All methods with a name “*.*.print*(*)” appended an int argument.]

5.4 Summary of API Change-Rule Inference

Based on the insight that high-level changes are often systematic at a code level, we de-

veloped a rule-based change inference approach. The core of this approach is (1) a rule

representation that explicitly captures systematic changes and (2) a corresponding infer-

ence algorithm that automatically finds such rules from two program versions.

In particular, this chapter describes an instantiation of this approach at a method-

header level. Our comparative evaluation on open source projects shows that our approach

produces 22 to 77% more concise results than other refactoring reconstruction tools. In

terms of producing method-level matches, our approach has a high precision (median 98

to 99%) and recall (median 93 to 94%). The next chapter discusses how we extended this

rule-based approach to discover systematic changes within method-bodies as well as at a

field level.

131

Chapter 6

INFERRING CHANGES TO PROGRAM STRUCTURE

Software engineers often inspect program differences when reviewing others’ code changes,

when writing check-in comments, or when determining why a program behaves differently

from expected behavior. For example, suppose Bill asks Alice, his team lead, to review his

most recent software change. Bill’s check-in message, “Common methods go in an abstract

class. Easier to extend/maintain/fix,” suggests some questions to Alice: “Was it indeed

an extract superclass refactoring?” “Did Bill make some other changes along the way?”

and “Did Bill miss any parts of the refactoring?” Alice is left to answer these questions

by a tedious investigation of the associated diff output, which comprises 723 lines across 9

files. She may need to check even more code, perhaps the entire code-base or at least some

surrounding unchanged code, for potential missed updates.1

Existing program differencing approaches (Section 2.2) generally try to help program-

mers answer these kinds of high-level questions by returning numerous lower-level changes.

In many cases, this collection of lower-level changes has a latent structure because a high-

level change operation was applied to the program. Existing approaches do not identify

regularities in code changes created by a high-level change and subsequently cannot detect

inconsistency in code changes, leaving it to a programmer to discover potential bugs.

To complement existing differencing approaches, we designed Logical Structural Diff

(LSDiff) that discovers a latent structure in low-level changes. LSDiff abstracts a program

as code elements (packages, types, methods, and fields) and their structural dependencies

(method-calls, field-accesses, subtyping, overriding, containment) based on two premises.

First, programmers often look for structural information when inspecting program differ-

ences: which code elements changed and how their structural dependencies are affected by

1This scenario is based on a real example found in our evaluation (carol revision 430) and Ko et al.’s
study [170].

132

the change. (See Section 6.3.) Second, code elements that change similarly together often

share common structural characteristics such as using the same field or implementing the

same interface. Finding such shared characteristics in changed code is useful for discovering

systematic changes.

LSDiff infers logic rules to discover and represent systematic structural differences. Re-

maining non-systematic differences are output as logic facts. For the preceding scenario,

the following LSDiff output can help Alice understand the rationale of Bill’s change; Bill

created the AbsRegistry class by pulling up host fields and setHost methods from the classes

implementing the NameSvc interface; however, he did not complete the refactoring on the

LmiRegistry class that also implements the NameSvc interface. In addition to the extract su-

perclass refactoring, Bill made changes that seem to alter program behavior by deleting calls

to the SQL.exec method. After reading this, Alice decided to double check with Bill why

LmiRegistry was left out and why he deleted calls to the SQL.exec method.

Fact 1. added type(AbsRegistry)

[Interpretation: AbsRegistry is a new class.]

Rule 1. past subtype(“NameSvc”, t) ∧ past field(f, “host”, t) ⇒ deleted field(f, “host”, t) except t=“LmiRegistry”

[Interpretation: All host fields in NameSvc’s subtypes got deleted except LmiRegistry class.]

Rule 2. past subtype(“NameSvc”, t) ∧ past method(m, “setHost”, t) ⇒ deleted method(m, “setHost”, t)

except t=“LmiRegistry”

[Interpretation: All setHost methods in NameSvc’s subtypes got deleted except LmiRegistry class.]

Rule 3. past subtype(“NameSvc”, t) ∧ past method(m, “getHost”, t) ⇒ deleted calls(m, “SQL.exec”)

except [m=“LmiRegistry.getHost”,t=“LmiRegistry”]

[Interpretation: All getHost methods in NameSvc’s subtypes deleted calls to SQL.exec except LmiRegistry

class . . .]

The core idea of discovering and representing systematic changes is similar to Chapter 5’s

API change-rule inference. Specifically, LSDiff is an instantiation of our rule-based approach

at the level of a program structure. LSDiff’s rule representation and inference algorithm

differ in several ways: First, the goal of API change-rule inference was to match method-

headers across program versions to enable program analysis over multiple versions. LSDiff

aims to discover a logical structure that relates line-level differences to complement existing

133

diff. Second, while API change-rules focus on changes above the level of method-headers,

LSDiff accounts for changes within method-bodies as well as at a field level. Third, from

a change representation perspective, while API change-rules rely on a regular expression

to group related code elements, LSDiff uses conjunctive logic literals to allow programmers

to understand shared structural characteristics of systematically changed code, not only

a shared naming convention, e.g. “all setHost methods in Service’s subclasses” instead

of “all methods with name *Service.setHost(*).” Finally, from a rule-inference technique

perspective, our API change-rule inference algorithm finds rules in an open system because

there is no ground truth for a code matching problem. On the other hand, LSDiff’s algorithm

learns rules in a closed system by first computing structural differences and then enumerating

all rules within the rule search space set by the input parameters.

To evaluate LSDiff, we conducted a focus group study with professional software en-

gineers in a large E-commerce company. The participants’ comments show that LSDiff is

promising both as a complement to diff’s file-based approach and also as a way to help pro-

grammers discover potential bugs by identifying exceptions to inferred systematic changes.

We also compared our results with (1) structural differences that an existing differencing

approach would produce at the same abstraction level for an evenhanded comparison and

(2) textual deltas computed by diff. These quantitative assessments show that, on average,

LSDiff produces 9.3 times more concise results by identifying 75% of structural differences

as systematic changes. LSDiff finds an average of 9.7 more contextual facts that cannot be

found in the delta such as LmiRegistry’s host field not being deleted.

The rest of this chapter is organized as follows. Section 6.1 and Section 6.2 describe

how LSDiff represents and identifies structural differences. Section 6.3 discusses the focus

group study. Section 6.4 describes quantitative and qualitative assessments. Section 6.5

discusses LSDiff’s limitations and future work. Section 6.6 reinforces the benefits of inferred

change-rules by demonstrating applications that can be built using our approach. Example

change-rules are drawn from our empirical evaluation of LSDiff as well as API-level change

inference. Section 6.7 concludes.

134

6.1 Definition of Logical Structural Delta

LSDiff represents each program version using a set of predicates that describe code elements

and their dependencies. Some of the predicates (1-7 below) describe code elements and

their containment relationships. The others describe structural dependencies (field-access,

method-call, subtyping, and overriding). To support grouping of code elements with the

same simple name, our predicates include both the simple and the fully qualified name.

Table 6.1 shows the fact-base representation (a database of facts) of an example program.

LSDiff captures only structural differences and does not capture differences in control logic,

temporal logic, etc. Thus, unlike diff, its output cannot be used to reconstruct a new version

by applying the delta to an old version. Appendix F describes the predicates in the Tyruba

logic programming language [289].

1. package (packageFullName:string):

There is a package packageFullName.

2. type (typeFullName:string, typeShortName:string, packageFullName:string):

There is a class or an interface typeShortName in the packageFullName package.

3. method (methodFullName:string, methodShortName:string, typeFullName:string):

There is a method methodShortName in the typeFullName type.

4. field (fieldFullName:string, fieldShortName:string, typeFullName:string):

There is a field fieldShortName in the typeFullName type.

5. return (methodFullName:string, returnTypeFullName:string):

The methodFullName method returns an object with the returnTypeFullName type.

6. fieldoftype (fieldFullName:string, declaredTypeFullName:string):

The fieldFullName field is declared with the type declaredTypeFullName.

7. typeintype (innerTypeFullName:string, outerTypeFullName:string).

The innerTypeFullName type is contained in the outerTypeFullName type.

8. accesses (fieldFullName:string, accessorMethodFullName:string).

The fieldFullName is accessed by the accessorMethodFullName method.

9. calls (callerMethodFullName:string, calleeMethodFullName:string).

The callerMethodFullName method calls the calleeMethodFullName method.

135

Ta
bl

e
6.

1:
A

fa
ct

-b
as

e
re

pr
es

en
ta

ti
on

of
tw

o
pr

og
ra

m
ve

rs
io

ns
an

d
th

ei
r

di
ffe

re
nc

es

P
o

(a
n

ol
d

ve
rs

io
n
)

P
n

(a
n
ew

ve
rs

io
n
)

F
B

n
(a

fa
ct

-b
as

e
of

th
e

n
ew

ve
rs

io
n
)

∆
F
B

c
l
a
s
s

B
M
W

i
m
p
l
e
m
e
n
t
s

C
a
r

c
l
a
s
s

B
M
W

i
m
p
l
e
m
e
n
t
s

C
a
r

su
b
ty

p
e(

“C
ar

”,
“B

M
W

”)
,
..

.

v
o
i
d

s
t
a
r
t

(
K
e
y

c
)

{
v
o
i
d

s
t
a
r
t

(
K
e
y

c
)

{
m

et
h
o
d
(“

B
M

W
.s

ta
rt

”,
“s

ta
rt

”,
B

M
W

)

.
.
.

K
e
y
.
c
h
k

(
n
u
l
l
)
;

.
.
.

ca
lls

(“
B
M

W
.s
ta

rt
”,

“K
ey

.c
h
k”

).
..

+
ca

lls
(“

B
M

W
.s
ta

rt
”,

“K
ey

.c
h
k”

)

c
l
a
s
s

G
M

i
m
p
l
e
m
e
n
t
s

C
a
r

c
l
a
s
s

G
M

i
m
p
l
e
m
e
n
t
s

C
a
r

su
b
ty

p
e(

“C
ar

”,
“G

M
”)

,
..

.

v
o
i
d

s
t
a
r
t

(
K
e
y

c
)

{
v
o
i
d

s
t
a
r
t

(
K
e
y

c
)

{
m

et
h
o
d
(“

G
M

.s
ta

rt
”,

“s
ta

rt
”,

“G
M

”)

i
f

(
c
.
o
n
)

{
.
.
.
.

K
e
y
.
c
h
k

(
c

)
;

ca
lls

(“
G
M

.s
ta

rt
”,

“K
ey

.c
h
k”

)
-a

cc
es

se
s(

“K
ey

.o
n
”,

“G
M

.s
ta

rt
”)

.
.
.

..
.

..
.

+
ca

lls
(“

G
M

.s
ta

rt
”,

“K
ey

.c
h
k”

)

c
l
a
s
s

K
i
a

i
m
p
l
e
m
e
n
t
s

C
a
r

c
l
a
s
s

K
i
a

i
m
p
l
e
m
e
n
t
s

C
a
r

su
b
ty

p
e(

“C
ar

”,
“K

ia
”)

,
..

.

v
o
i
d

s
t
a
r
t

(
K
e
y

c
)

{
v
o
i
d

s
t
a
r
t

(
K
e
y

c
)

{
m

et
h
o
d
(“

K
ia

,s
ta

rt
”,

“s
ta

rt
”,

“K
ia

”)

c
.
o
n

=
t
r
u
e
;

.
.
.
.

.
.
.

..
.

-a
cc

es
se

s(
“K

ey
.o

n
”,

“K
ia

.s
ta

rt
”)

c
l
a
s
s

B
u
s

{
c
l
a
s
s

B
u
s

{
ty

p
e(

“B
u
s”

)

v
o
i
d

s
t
a
r
t

(
K
e
y

c
)

{
v
o
i
d

s
t
a
r
t

(
K
e
y

c
)
;

m
et

h
o
d
(“

B
u
s,

st
ar

t”
,

“s
ta

rt
”,

B
u
s)

-a
cc

es
se

s(
“K

ey
.o

n
”,

“B
u
s.
st

ar
t”

)

c
.
o
n

=
f
a
l
s
e
;
}

}
l
o
g
(
)
;

}
}

ca
lls

(“
B

u
s.
st

ar
t”

,
“l

og
”)

+
ca

lls
(“

B
u
s.
st

ar
t”

,
“l

og
”)

c
l
a
s
s

K
e
y

{
c
l
a
s
s

K
e
y

{
ty

p
e

(“
K

ey
”)

b
o
o
l
e
a
n

o
n

=
f
a
l
s
e
;

b
o
o
l
e
a
n

o
n

=
f
a
l
s
e
;

fi
el

d
(“

K
ey

.o
n
”,

“o
n
”,

“K
ey

”)

v
o
i
d

c
h
k

(
K
e
y

c
)

{
.
.
.

v
o
i
d

c
h
k

(
K
e
y

c
)

{
m

et
h
o
d

(“
K

ey
.c

h
k”

,
“c

h
k”

,
“K

ey
”)

v
o
i
d

o
u
t

(
)

{
.
.
.

v
o
i
d

o
u
t
p
u
t

(
K
e
y

c
)
{

.
.
.

m
et

h
o
d

(“
K

ey
.o

u
tp

u
t”

,
“o

u
tp

u
t”

,
“K

ey
”)

..
.

•
F
or

pr
es

en
ta

ti
on

p
u
rp

os
es

,
fu

lly
q
u
al

ifi
ed

n
am

es
ar

e
sh

or
te

n
ed

,
an

d
th

e
ad

d
ed

an
d

d
el

et
ed

fa
ct

s
in
∆

F
B

ar
e

n
ot

ed
w

it
h

+
an

d
−

si
gn

re
sp

ec
ti
ve

ly
.

F
B

o
is

om
it
te

d
to

sa
ve

sp
ac

e;
it

ca
n

b
e

in
fe

rr
ed

b
as

ed
on

F
B

n
an

d
∆

F
B
.

136

Table 6.2: LSDiff rule inference example

∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)

⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”, “Key.chk”) 2. past method(m, “start”, t)

3. added calls(“GM.start”, “Key.chk”) ∧ past subtype(“Car”,t)

4. added calls(“Bus.start”, “log”) ⇒ added calls(m, “Key.chk”)

except t = Kia

3. added calls(“Bus.start”, “log”)

10. subtype (superTypeFullName:string, subTypeFullName:string).

The subTypeFullName type either inherits or implements the type superTypeFullName.

11. inheritedfield (fieldShortName:string, superTypeFullName:string, subTypeFullName:string).

The subTypeFullName type inherits the fieldShortName field from the superTypeFullName type.

12. inheritedmethod (methodShortName:string, superTypeFullName:string, subTypeFullName:string).

The subTypeFullName type inherits the methodShortName method from the superTypeFullName

type. 2

Applying a set-difference operator to the fact-base of an old version (FBo) and the fact-

base of a new version (FBn) produces structural differences, ∆FB. (See Table 6.1.) However,

using ∆FB as a program delta has two weaknesses. First, because it lists fact-level differ-

ences without any high level structure, it is time-consuming to read and understand when

it contains a large number of facts. Second, it describes only the structural dependen-

cies in changed code fragments but not those of their surrounding context. For example,

suppose that a program change involves removing all accesses to Key.on and invoking the

Key.chk method from Car’s subtypes’ start methods. ∆FB lists the three deleted accesses facts

separately and does not include contextual information that new method-calls to Key.chk

occurred in the context of Car’s subtypes.

Our approach overcomes these two weaknesses by inferring logic rules from the union of

2It is possible to add more predicates or modify existing predicates. For example, one can add throwEx-
ception(methodFullName:string, typeName:string) to model exception handling or modify the type, method
and field predicates to model changes to their visibility: public, private and protected.

137

all three fact-bases: FBo, FBn, and ∆FB. To distinguish which fact-base each fact belongs

to, we prefix past and current to the facts in FBo and FBn respectively and deleted and

added to the corresponding facts in ∆FB. Inferring rules from all three fact-bases has two

advantages: First, our rule-based delta is concise because a single rule can imply a number

of related facts. Second, by inferring rules from not only the delta but also from unchanged

code, our approach finds contextual facts such as subtype(“Car”, “Kia”), which is not in ∆FB

but signals a potential missed update, +calls(“Kia.start”, “Key.chk”).

LSDiff Rule. Just as logic rules describe the relationship among groups of related logic

facts, LSD rules describe high-level systematic changes by relating groups of facts in the

three fact-bases.

To represent a group of similar facts at once, we create a logic literal by binding some

of a predicate’s arguments to variables. For example, subtype(“Foo”, t) represents all subtype

facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with boolean logic operators. In

particular, LSDiff rules are horn clauses where the conjunction of one or more literals in the

antecedent implies a single literal in the conclusion, i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). LSDiff

rules are in the subset of Datalog queries, which ensures termination and fast evaluation.3

All variables are universally quantified and variables do not appear in the conclusion unless

they are bound in the antecedent. LSDiff Rules are either ungrounded rules (rules without

constant bindings) or partially grounded rules (rules with constant bindings).

A rule r has a match f in ∆FB if f is a fact created by grounding r’s conclusion with

constants that satisfy r’s antecedent given FBo, FBn, and ∆FB. A rule r has an exception

if there is no match in ∆FB implied by a true grounding of its antecedent. For example, a

rule A(x)⇒B(x) has a match B(c1) and an exception x=c2 if A(c1), A(c2), and B(c1) are in the

three fact-bases, but B(c2) is not in ∆FB. We explicitly encode exceptions as a part of a rule

to note anomalies to a systematic change.

LSDiff supports a restricted set of Datalog rule styles. The styles are shown in Table

6.3: Only deleted * or added * can appear in the consequent of a rule. The antecedent of

3Datalog is a subset of Prolog that ensures termination. Because of its good run-time efficiency compared
to full Prolog, Datalog is argued to be a good choice for program queries [115].

138

a rule cannot have predicates with different prefixes. These rule styles force LSDiff to

learn regularities about changes between the two versions, not the regularities in the old or

new version itself. These rule styles are effective in expressing general kinds of systematic

changes, including:

• dependency removal or feature deletion by stating that all code elements with similar

characteristics in the old version were removed. (e.g., past * ⇒ deleted *),

• consistent updates to clones by stating that all code elements with similar characteristics

in the old version added similar code (e.g., past * ⇒ added *),

• replacement of API usages by relating deletions and additions of dependencies (e.g.,

deleted * ⇒ added *),

• feature addition by stating that all code elements with particular characteristics in the

new version are added by the change (e.g., current * ⇒ added *), etc.

Example. Suppose that a programmer removes all accesses to the Key.on field and adds calls

the Key.chk method from Car’s subtypes’ start methods. Table 6.1 presents the fact-bases

and Table 6.2 shows the rule inference and ∆FB reduction process. By inferring a rule, “all

accesses to the Key.on field are removed from the old version (#1 in ∆FB′),” ∆FB is reduced to

∆FB′ by replacing the three deleted accesses facts with the rule. By inferring a rule, “all Car’s

subtypes’ start methods added calls to the Key.chk method (#2 in ∆FB′′),” ∆FB′ is reduced to

∆FB′′ by winnowing out the two added calls facts. This rule also signals inconsistency that

Kia did not change similarly.

The remaining added calls(“Bus.start”, “log”) is output as is, because it does not form a

systematic change pattern.

6.2 Inference Algorithm

Our algorithm accepts two versions of a program and outputs a logical structural delta that

consists of logic rules and facts. Our algorithm has three parts: (1) generating fact-bases,

(2) inferring rules from the fact-bases, and (3) post-processing the inferred rules.

Part 1. Fact-base Generation. We create FBo and FBn from the old and new ver-

sion respectively by extracting logic facts using JQuery [144], a logic query-based program

investigation tool. JQuery analyzes a Java program using the Eclipse JDT Parser; thus,

139

Ta
bl

e
6.

3:
LS

D
iff

ru
le

st
yl

es
an

d
ex

am
pl

e
ru

le
s

R
u
le

S
ty

le
s

H
ig

h
-L

ev
el

E
x
am

p
le

R
u
le

an
d

It
s

In
te

rp
re

ta
ti

on

A
n
te

ce
d
en

t
⇒

C
on

cl
u
si

on
C

h
an

ge
P
at

te
rn

s

p
as

t
*

⇒
d
el

et
ed

*
d
ep

en
d
en

cy
re

m
ov

al
,

p
as

t
ca

lls
(m

,
“D

B
.e

xe
c”

)
⇒

d
el

et
ed

ca
lls

(m
,
“D

B
.e

xe
c”

)

fe
at

u
re

d
el

et
io

n
,
et

c.
A

ll
m

et
h
o
d
s

th
at

ca
ll
ed

D
B
.
e
x
e
c

in
th

e
ol

d
ve

rs
io

n
d
el

et
ed

a
ca

ll
d
ep

en
d
en

cy
to

D
B
.
e
x
e
c
.

p
as

t
*

⇒
ad

d
ed

*
co

n
si

st
en

t
p
as

t
ac

ce
ss

es
(“

L
og

.o
n
”,

m
)
⇒

ad
d
ed

ca
lls

(m
,
“L

og
.t
ra

ce
”)

m
ai

n
te

n
an

ce
,
et

c.
A

ll
m

et
h
o
d
s

th
at

ac
ce

ss
ed

L
o
g
.
o
n

in
th

e
ol

d
ve

rs
io

n
ad

d
ed

a
ca

ll
d
ep

en
d
en

cy
to

L
o
g
.
t
r
a
c
e
.

cu
rr

en
t

*
⇒

ad
d
ed

*
d
ep

en
d
en

cy
ad

d
it

io
n
,

cu
rr

en
t

m
et

h
o
d
(m

,
“g

et
H

os
t”

,
t)

∧
cu

rr
en

t
su

b
ty

p
e(

“S
vc

”,
t)

⇒
ad

d
ed

m
et

h
o
d
(m

,
“g

et
H

os
t”

,
t)

fe
at

u
re

ad
d
it

io
n
,
et

c.
A

ll
g
e
t
H
o
s
t

m
et

h
o
d
s

in
th

e
S
v
c
’s

su
b
cl

as
se

s
ar

e
n
ew

ly
ad

d
ed

on
es

.

d
el

et
ed

*
⇒

ad
d
ed

*
re

la
te

d
co

d
e

ch
an

ge
,

d
el

et
ed

m
et

h
o
d
(m

,
“g

et
H

os
t”

,
t)

⇒
ad

d
ed

in
h
er

it
ed

fi
el

d
(“

ge
tH

os
t”

,
“S

er
vi

ce
”,

t)

ad
d
ed

*
⇒

d
el

et
ed

*
A

P
I

u
sa

ge
ch

an
ge

,
et

c
A

ll
ty

p
es

th
at

d
el

et
ed

g
e
t
H
o
s
t

m
et

h
o
d

in
h
er

it
g
e
t
H
o
s
t

fr
om

S
e
r
v
i
c
e

in
st

ea
d
.

140

its precision depends on the Eclipse’s static analysis capability. We then compute ∆FB

using a set-difference operator and remove spurious added and deleted facts caused by code

renaming or moving using inferred method-header level refactorings from Chapter 5. Note

that ∆FB in Table 6.1 does not contain −method(“Key.out”, . . .) and +method(“Key.output”, . . .)

by accounting for the renaming.

Part 2. First Order Logic Rule Learning. Our goal is to infer rules each of which

corresponds to a high-level systematic change and thus explains a group of added and

deleted facts. This step takes the three fact-bases and outputs inferred rules and remaining

unmatched facts in ∆FB. Some rules refer to groups of past and current facts, providing

structural characteristics about changed code that cannot be found in ∆FB only.

Three input parameters define which rules to be considered in the output: (1) m, the

minimum number of facts a rule must match, (2) a, the minimum accuracy of a rule, where

accuracy = # matches / (# matches + # exceptions), and (3) k, the maximum number

of literals in a rule’s antecedent. A rule is considered valid if the number of matches and

exceptions is within the range set by these parameters.

Our rule learning algorithm is a bounded-depth search algorithm that enumerates rules

up to a certain length. The depth is determined by k. Increasing k allows our algorithm

to find more contextual information from FBo and FBn. Evaluating all possible rules with

k literals in the antecedent has the same effect as examining surrounding contexts that are

roughly k dependency hops away from changed code fragments. Our algorithm enumerates

rules incrementally by extending rules of length i to create rules of length i + 1. In each

iteration, we extend the ungrounded rules from the previous iteration by appending each

possible literal to the antecedent of the rules. Then for each ungrounded rule, we try all

possible constant substitutions for its variables. After selecting valid rules in this iteration,

we winnow out the selected rules’ matches from U (a set of unmatched facts in ∆FB) and

proceed to the next iteration.

Some rules are always true regardless of change content and do not provide any specific

information about code change. For example, deleting a package deletes all contained types

in the package, and deleting a method implies deleting all structural dependencies involving

the method. To prevent learning such rules, we have written 30 default winnowing rules by

141

hand and winnow out the facts from U in the beginning of our algorithm.

For the rest of this section, we explain two subroutines in detail: (1) extending un-

grounded rules from the previous iteration and (2) generating a set of partially grounded

rules from an ungrounded rule. Then we discuss a beam search heuristic that we use to tame

the exponential growth of the rule search space. Our rule inference algorithm is summarized

in Algorithm 6.

Subroutine 1. Extending Ungrounded Rules. For each ungrounded rule from the

previous iteration, we identify all possible predicates that can be appended to its antecedent.

For each of those predicates, we create a set of candidate literals by enumerating all possible

variable assignments. After we create a new rule by appending each candidate literal to the

ungrounded rule’s antecedent, we check two conditions: (1) we have not already generated

an equivalent rule, and (2) it matches at least m facts in U . If the rule has fewer than m

matches, we discard it because adding a literal to its antecedent or grounding its variables to

constants can find only fewer matches. If the two conditions are met, we add the ungrounded

rule to the list of new ungrounded rules to try constant substitutions for its variables and

to pass to the next iteration. The pseudo code of this subroutine is described on page 144.

Subroutine 2. Generating Partially Grounded Rules. To create partially grounded

rules from an ungrounded rule, we consider each variable in turn and try substituting

each possible constant for it as well as leaving it alone. At each step within this process, we

evaluate the rule to check how many matches it finds in U . If it finds fewer than m matches,

we discard the rule and do not explore further substitutions, as more specific rules can find

only fewer matches than m. The pseudo code of this subroutine is described on page 145.

Beam Search. As the size of the rule search space increases exponentially with the number

of variables in ungrounded rules, enumerating rules quickly becomes infeasible for longer

rules. To tame this exponential growth, we use a beam search heuristic: in each iteration,

we save only the best β number of ungrounded rules and pass them to the next iteration.

The beam search is a widely used heuristic in first order logic rule learning [171]. As our

tests found no improvement when β was increased beyond 100, we used this as a default.

To select the best β rules, we first rank rules by their number of matches. When there’s

a tie, we prefer rules with fewer number of exceptions, as these rules are worth refining

142

Algorithm 6: LSDiff Rule Inference Algorithm
Input:

FBo /* a fact-base of an old program version */

FBn /* a fact-base of a new program version */

∆FB /* fact-level differences between FBo and FBn */

m /* the minimum number of facts a rule must match to be selected */

a /* the minimum accuracy of a rule */

k /* the maximum number of literals in a rule’s antecedent */

β /* beam search window size */

Output:

L /* a set of valid learned rules */

/* Initialize R (a set of ungrounded rules), L, and U (a set of facts in ∆FB

that are not covered by L). */

R := ∅, L := ∅, U := ∆FB;

U := reduceDefaultWinnowingRules (∆FB, FBo, FBn) ;

/* reduce ∆FB using default winnowing rules. */

foreach i = 0 . . . k do

if (i = 0) then

R := createInitialUngroundedRules (m) ; /* create ungrounded rules with

an empty antecedent by enumerating all possible consequents. */

else

R := extendUngroundedRules (R) ; /* extend all ungrounded rules in R by

adding all possible literals to their antecedent. */

foreach r ∈ R do

G := createPartiallyGroundedRules (r) ; /* try all possible constant

substitutions for r’s variable. */

foreach g in G do

if isValid (g) then
L :=L ∪ {g};

U :=U − {g.matches};

R :=selectRules (R, β) ; /* select the best β rules in R */

end

143

Function createInitialUngroundedRules
conclusions = ∅;

/* for each predicate that could be in the conclusion, */

foreach p ∈ DELTA PREDICATES do

/* create a literal l by instantiating p with new variable bindings. */

/* create a new rule r and set its consequent to l */

l:= createLiteral(p, freshvariables());

r:= new Rule();

r.setConsequent(l);

if |r.matches| ≥ m then
conclusions:= conclusions ∪ {r};

end

end

return conclusions;

further. If there is still a tie, we prefer rules whose variables are more general in terms of

Java containment hierarchy: package > type > field = method > name.

Part 3. Post Processing. Rules with the same length may still have overlapping

matches after Part 2. To avoid outputting rules that cover the same set of facts in the

∆FB, we select a subset of the rules using the greedy version of the SET-COVER algorithm

[14]. In this step, we use the same ranking order as in our beam search. We then output

the selected rules and the remaining unmatched facts in ∆FB.

6.3 Focus Group Study

To understand our target users’ perspectives on LSDiff, we conducted a focus group study

with professional software engineers from a large E-commerce company. We selected this

study method for several reasons. First, LSDiff is a prototype tool in an early stage and

we need to assess its potential benefits before investing our efforts in user interface devel-

opment. A focus group study fits our needs, as it is typically carried out in an early stage

of product development to gather target users’ opinions on new products, concepts, or mes-

sages. Second, we needed to develop concrete hypotheses about how programmers use diff

144

Function extendUngroundedRules(R)
NR := ∅;

foreach r ∈ R do

/* for each antecedent predicate candidate, */

foreach p ∈ ANTECEDENT PREDICATES do

bindings := enumerateBindingsForPredicate (r, p); /* enumerate variables

bindings for the predicate p. */

foreach b ∈ bindings do

/* create a new antecedent literal l by instantiating p with b. */

/* create a new rule by copying r and add l to the new rule’s

antecedent. */

r:= new Rule(r);

r.addAntecedentLiteral(l);

if |r.matches| ≥ m ∧ !(r ∈ NR) then
NR := NR ∪ {r};

end

end

end

end

return NR;

145

Function createPartiallyGroundedRules(r)
NR:= ∅;

S = new Stack() ; /* a stack of partially-grounded rules */

S.push(r) ; /* add the initial ungrounded rules with no constants. */

/* for each head of the stack, */

while !S.isEmpty() do
pr = S.pop();

foreach variable ∈ pr.remainingVariables() do

constants := getReplacementConstants(pr, variable); /* use Tyruba engine to

find all possible constant substitutions for the variable. */

foreach constant ∈ constants do

n = substitute(pr, variable, constant); /* create a new copy of pr,

substitute the corresponding variable with constant */

if |n.matches| ≥ m ∧ accuracy(n) ≥ a then
NR := NR ∪ {n };

end

if n.remainingVariables.size() > 0 then

S.push(n); /* add the new rule to the stack to continue constant

substitutions. */

end

end

end

end

return NR;

146

Table 6.4: Focus group participant profile

Title Years in SW Industry diff or P4 code change review

P1 SDE 10+ Daily Daily

P2 Senior SDE 14+ Daily Daily

P3 Senior Principal SDE 30+ Daily Weekly

P4 SDET 6+ Weekly Daily

P5 SDET 6+ Weekly Daily

and what are the difficulties of using diff for understanding code changes. A focus group

is good for developing hypotheses that can be further tested by quantitative studies such

as survey and experiments. Third, compared to other qualitative study methods, a focus

group has a relatively low cost.

The goal of the focus group was to answer: (1) In which task contexts do programmers

need to understand code changes? (2) What are difficulties of using program differencing

tools such as diff? and (3) How can LSDiff complement existing uses of program differencing

tools?

With the help of a liaison at the company, we identified a target group consisting of soft-

ware development engineers (including those in testing), technical managers, and software

architects. A screening questionnaire asked the target group about their programming and

software industry experience, their familiarity with Java, how frequently they use diff and

diff-based version control systems, and the size of code bases that they regularly work with.

Appendix I describes the screener questionnaire. All sixteen participants responded to the

questionnaire and five out of them attended the focus group: each had primary development

responsibilities; each had industry experience ranging from 6 to over 30 years; each used

related tools at least weekly; and each reviewed code changes daily except one who did only

weekly. Table 6.4 shows their profile.

Once the focus group participants were targeted, we created a discussion guide to allow a

moderator to thoroughly cover all the necessary topics and questions. The discussion guide

consists of a 5 minute introduction, a 10 minute discussion on the current practice of using

diff, a 10 minute introduction and demonstration of LSDiff, a 5 minute initial evaluation of

147

LSDiff, and a 10 minute hands-on trial of reviewing a sample LSDiff output followed by a

15 minute in-depth evaluation of LSDiff. Appendix J shows the entire discussion guide.

The hands-on trial used a sample LSDiff output on carol project revision 430.4 We

chose this change because it is a conceptually simple change based on dispersed textual

modifications of 723 lines across 9 files. LSDiff identified the systematic nature of the

change, inferring 12 rules and 7 facts.

We used CSDiff5 to prepare a regular word-level differencing result as an HTML doc-

ument, in which each modified file is presented as a hyperlink to the new version’s source

file, deleted words are presented with red strike-through, and added words are highlighted

in yellow. We then manually augmented the HTML diff document by creating an overview

of systematic changes using the inferred rules. Each inferred rule was directly translated

to an English sentence and presented as a hyperlink. (See Figure 6.1.) Upon clicking the

hyperlink, a programmer can see the rule’s accuracy, which code elements support the rule,

and which code elements violate the rule. (See below.)

“All host fields in the classes that implement NameService interface got deleted except in the

LmiRegistry class.”

past subtype(”NameService”,t) ∧ past field(f,”host”,t)

⇒ deleted field(f,”host”,t) except t=”LmiRegistry”

Accuracy: (5/6)

deleted field(”CmiRegistry.host”,”host”,”CmiRegistry”)

deleted field(”IIOPCosNaming.host”,”host”,”IIOPCosNaming”)

deleted field(”JRMPRegistry.host”,”host”,”JRMPRegistry”)

deleted field(”JacCosNaming.host”,”host”,”JacCosNaming”)

deleted field(”JeremieRegistry.host”,”host”,”JeremieRegistry”)

Exception: [t=”LmiRegistry”, f=”LmiRegistry.host”]

In addition, by clicking each match, a programmer can navigate to corresponding word-

level differences. (See Figure 6.2.) When the word-level differences are a part of systematic

4http://www.cs.washington.edu/homes/miryung/LSDiff/carol429-430.htm

5http://www.componentsoftware.com/Products/CSDiff/

148

C

arol R
evision 430.

SV
N

 check-in m
essage: C

om
m

on m
ethods go in an abstract class. Easier to extend/m

aintain/fix
A

uthor: benoif @
 Thu M

ar 10 12:21:46 2005 U
TC

723 lines of changes across 9 files (2 new

 files and 7 m
odified files)

Inferred R
ules

1
(50/50)

B
y this change, six classes inherit m

any m
ethods from

 A
bsR

egistry class.
2

(32/32)
B

y this change, six classes im
plem

ent N
am

eService interface.
3

(6/8)
A

ll m
ethods that are included in JacO

R
B

C
osN

am
ing class and N

am
eService interface are deleted except start and stop m

ethods.
4

(5/6)
A

ll host fields in the classes that im
plem

ent N
am

eService interface got deleted except Lm
iR

egistry class.
5

(5/6)
A

ll port fields in the classes that im
plem

ent N
am

eService interface got deleted except Lm
iR

egistry class.
6

(5/6)
A

ll getH
ost m

ethods in the classes that im
plem

ent N
am

eService interface got deleted except Lm
iR

egistry class.
7

(5/6)
A

ll getPort m
ethods in the classes that im

plem
ent N

am
eService interface got deleted except Lm

iR
egistry class.

8
(5/6)

A

ll setC
onfigProperties m

ethods in the classes that im
plem

ent N
am

eService interface got deleted except Lm
iR

egistry class.
9

(5/6)
A

ll setH
ost m

ethods m
ethods in the classes that im

plem
ent N

am
eService interface got deleted except Lm

iR
egistry class.

10
(5/6)

A
ll setPort m

ethods in the classes that im
plem

ent N
am

eService interface got deleted except Lm
iR

egistry class.
11

(3/3)
A

ll configurationProperties fields got deleted.
12

(3/4)

A
ll D

EFA
U

LT_PO
R

T_N
U

M
B

ER
 fields are added by this change except JacO

R
B

C
osN

am
ing class.

R
em

aining C
hange Facts

A
dded C

lass
A

bsR
egistry

A
dded C

lass
D

um
m

yR
egistry

A
dded M

ethod
JRM

PR
egistry.getR

egistry
D

eleted Field
IIO

PC
osN

am
ing.D

EFA
U

L_PO
R

T
D

eleted Field
JacO

R
B

C
osN

am
ing.started

A
dded Field A

ccess
C

m
iR

egistry's constructor added accesses to ClusterRegistry.D
EFA

U
LT_PO

RT field.
A

dded Field A
ccess

JacO
R

B
C

osN
am

ing's constructor added accesses to JacO
R

B
C

osN
am

ing.D
EFA

U
LT_PO

RT_N
U

M
B

ER
 field.

F
igure

6.1:
O

verview
based

on
LSD

iff
rules

149

changes, the corresponding rule description is inserted as a hyperlink so that a programmer

can navigate to other related code changes. (See line 49 and 50 in Figure 6.2.)

During the focus group, I worked as the moderator of the focus group discussion. We

audio-taped the discussion and had a note-taker transcribe the conversation. Appendix K

shows the transcript of the focus-group discussion.

Our key findings are organized by the questions asked by the moderator.

When do programmers use diff? Programmers often use diff when reviewing other

engineers’ code changes or when resolving a problem report. When the program’s execution

behavior is different from their expectation or when investigating unfamiliar code, program-

mers examine the evolutionary context of the involved code: how the code changed over time

and why it was changed.

“The one that comes up the most frequently is a code review. . .Multiple times a day, someone

makes changes and sends them out so that everybody can see it.”

“In troubleshooting, you get an error and I think the code should be doing this. . . , this

variable is not being set or they did not anticipate these situations. ’Is it that I got a bad input?’

or ’Are they not handled correctly or what?’ . . . The only documentation you have is the code

that you are staring at right there. So you wanna know how the code got to the state that it is

at. ”

“. . . When I’m troubleshooting and trying to figure out what’s wrong with a piece of code,

usually I’d like to know some context about when it changed, cause when something broke on

a certain day, it is nice to find out about what changed at that time.”

“. . . You need to see generational changes; not just this file and that file but how it has

changed over time . . . how it went through a series of change motivations. . . ”

“It’s hard to change something without knowing how it evolved and it is in the state that it

is at.”

What would you like to have in an ideal program differencing tool? Program-

mers would like to see program-wide, explicit, semantic relationships between different

changed files. Many complained that diff’s file-based organization is inadequate for rea-

150

F
igure

6.2:
Sam

ple
H

T
M

L
diff

output
augm

ented
w

ith
LSD

iff
rules

151

soning about related changes. Though organizing changes based on containment hierarchy

information—for example, Eclipse diff’s tree view—is useful to some degree, they believe it

is still inadequate for global changes such as a refactoring that affects multiple files.

“The diff tools that I use, they are all file-oriented. They don’t have notions, which I think

you are trying to address is that, they don’t have semantic relationships between different files.

I want to say ’What did I change due to this problem?’ It might have changed over 300 different

files. I’d like to see not just one file but all 300 files that were included as a part of that. It is

scaling up from a single source file to into spacing in which correlated change took place.”

“. . . You may want to group similar methods together. . . Diff doesn’t help with that and if

a tool was aware of that, that would be great. Not just simple methods added here and there.”

“Let’s say that somebody refactored something, and they took a big chunk of code and

moved it from this file to that file. Looking at this one file, you have no idea about its history

and how it evolved. It evolved over here and then (it) got cut over here and pasted over here.

So it’s like you have no idea, and you have just lost all the contexts. ”

“P4(Perforce) seems to be smart about language-level diffs. It’s not like a typical diff where

it is just a line-level . . . especially when you are doing a merge, it figures out, ‘this is a method

encapsulated here, not just a collection of lines.’ It’s not perfect about recognizing related

changes and it would be nice if it does better.”

In general, the participants thought explicitly representing code elements is important.

Their questions often focused on whether LSDiff accounts for Java language syntax.

“Does it use type information?”

“There goes to my scoping question. All the ints go to longs in a particular class, or a

method, or a package?”

In which task contexts would you use LSDiff? The participants believed that LSDiff

can be used in the situations where they are already using diff such as code reviews, in

particular, when there is a large amount of changes. One testing engineer said he would like

to use LSDiff to understand the evolution of the component that he is writing test cases for

[62, 270].

“This is definitely good for code review. It gives you a lot more context behind the actual

152

change.”

“This is definitely a winner tool. It lets you do things that would be so tough to do with diff

that you don’t even try.”

“I write tests for the new XXXXXX SDK, an E-commerce platform SDK. They released a

PR1 and now a PR2. We wrote all our tests against PR1 and now we have to move them to

PR2. How do we figure out those differences? Specifically with testing, this is where this can

be really powerful. You don’t have to go by line by line. . . This will make the tester’s time much

more efficient.”

Strengths of LSDiff The participants believed that LSDiff’s ability to discover excep-

tions can help programmers find missing updates and better understand design decisions.

“This ’except’ thing is great, because there’s always the situation that you are thinking, ‘why

is this one different?’”

“I think a lot of times you’re going to have 50 and 50. These 4 were changed and these

4 weren’t. It just gives you more context. It just tells you that this thing is different for some

reason. You can’t infer the intent of a programmer, but this is pretty close. . . ”

“Tell me if this tool does, it would be really useful if 9 out of 10 got changed, but one

got forgotten. It doesn’t know it got certainly forgotten, but with a high probability that this

instance is kinda against the other ones. In fact, it is a missing change.”

“If I’m going to assume that this was a correct change, it might be interesting for me to

look at the the exceptions and contrast with those. Then I would understand better why these

ones need to change. It’s just more context.”

The participants thought that the change overview based on the inferred rules would

reduce change investigation time. Programmers can start from rules and drill down to

details in a top down manner as opposed to reading changed-lines file by file without having

the context of what they are reading about.

“I guess it is much a higher level of abstraction. . . You may start with the summary of changes

and dive down to detail using a tool like diff. Diff will print out details and this will give you

overall things. It is complementary in different levels. ”

“This and diff have a very little overlap actually. Because this is a different level of abstrac-

153

tion, so this differencing is contextual. It is much more complementary to diff. It gives you

condensed information. ”

“And then when you click through to drill down, you know what you’re looking at.”

“You know what to expect. You can minimize the time that you are looking at code.”

“If I am following a code base, I’d like to read the change list or read something like this to

see how it’s changed.”

Limitations of LSDiff The participants were concerned that LSDiff does not identify

cross-language systematic changes such as changing a Java program and subsequently chang-

ing XML configuration files. Some were concerned that LSDiff would not provide much

additional benefits for non-systematic, random, or small changes and that LSDiff may find

uninteresting systematic changes. For example, “all newly added constructors are contained in the

types with a toString() method” is a valid systematic pattern but may be uninteresting to pro-

grammers.

“LSDiff has some awareness of what the file has in it. And you cannot do that with config

files. In fact, I think this would be a great improvement.”

“This will look for relationships that do not exist.”

“This wouldn’t be used if you were just working with one file. If you don’t have rules about

the structure of the file, it does not make sense to use it.”

“This looks great for big architectural changes but I am wondering what it would give you

if you had lots of random changes.”

Overall, our focus group participants were very positive about LSDiff and asked us when

they can use it for their work. They believed that LSDiff can help programmers reason about

related changes effectively and it can allow top-down reasoning of code changes, as opposed

to reading diff outputs without having a high-level context.

“This is cool. I’d use it if we had one.”

“This is a definitely winner tool.”

154

6.4 Assessments

Subject Programs. We applied LSDiff to two open source projects, carol and dnsjava,

and to LSDiff itself. We selected these programs because their medium code size (up to

30 KLOC) allowed us to manually analyze changes in these programs in detail. Carol is a

library that allows clients to use different remote method invocation implementations. From

its version control system, we selected 10 version pairs with check-in comments that indicate

non-trivial changes. Its size ranged from 10800 LOC to 29050 LOC and from 90 files to

190 files. Dnsjava is an implementation of domain name services in Java. From its release

archive, we selected 29 version pairs. Its program size ranged from 5080 LOC to 14500 LOC

and from 40 files to 83 files. We also selected LSDiff’s first 10 versions pairs—revisions that

are at least 8 hours apart and committed by different authors. Its program size ranged from

15651 LOC to 16897 LOC and from 93 files to 101 files.

6.4.1 Comparison with Structural Delta

We compared LSDiff’s result (LSD) with ∆FB because ∆FB represents what an existing

program differencing approach would produce at the same abstraction level. The goal of

this comparison is to answer the following questions:

(1) How often do individual changes form systematic change patterns? LSDiff is based on

the observation that high-level changes are often systematic at a code level. To understand

how often this observation holds true in practice, we measured coverage, the percentage of

facts in ∆FB explained by inferred rules: # of facts matched by rules / ∆FB. For example,

when 10 rules explain 90 facts out of 100 facts in ∆FB, the coverage of rules is 90%.

(2) How concisely does LSDiff describe structural differences by inferring rules in compar-

ison to an existing differencing approach that computes differences without any structure?

We measured conciseness improvement: ∆FB / (# rules + # facts). For example, when 4

rules and 16 remaining facts explain all 100 facts in ∆FB, LSD improves conciseness by a

factor of 5.

(3) How much contextual information does LSDiff find from unchanged code fragments?

We believe that analyzing the entire snapshot of both versions instead of only deleted and

155

Table 6.5: Comparison with ∆FB

FBo FBn ∆FB Rule Fact Coverage Conciseness Additional Facts

Carol

Min 3080 3452 15 1 3 59% 2.3 0.0

Max 10746 10610 1812 36 71 98% 27.5 19.0

Median 9615 9635 97 5 16 87% 5.8 4.0

Avg 8913 8959 426 10 20 85% 9.9 5.5

dnsjava

Min 3109 3159 4 0 2 0% 1.0 0.0

Max 7200 7204 1500 36 201 98% 36.1 91.0

Median 4817 5096 168 3 24 88% 4.8 0.0

Avg 5144 5287 340 8 37 73% 8.4 14.9

LSDiff

Min 8315 8500 2 0 2 0% 1.0 0.0

Max 9042 9042 396 6 54 97% 28.9 12.0

Median 8732 8756 142 1 11 91% 9.8 0.0

Avg 8712 8783 172 2 17 68% 11.2 2.3

Median 6650 6712 132 2 17 89% 7.3 0.0

Avg 6632 6732 302 7 27 75% 9.3 9.7

added text can discover relevant contextual information, reducing a programmer’s burden

of examining code that surrounds deleted or added text. We measured how many additional

facts LSDiff finds by analyzing all three fact-bases as opposed to only ∆FB: # facts in FBo

and FBn that are mentioned by the rules but are not contained in ∆FB. For example, the

second rule in Table 6.2 refers to three additional facts subtype(“Car”,“BMW”), subtype(“Car”,

“GM”) and subtype(“Car”, “Kia”).

Table 6.5 shows the results for the three data sets with the default parameter settings

m=3, a=0.75, k=2. (Section 5.3.4 describes how varying these parameters affects the

results.) On average, 75% of facts in ∆FB are covered by inferred rules; this implies that

75% of structural differences form higher-level systematic change patterns. Inferring rules

improves the conciseness measure by a factor of 9.3 on average. LSDiff finds an average of

9.7 more facts than ∆FB.

156

Table 6.6: Comparison with textual delta (1)

Textual Delta LSD

Files CLOC Hunk % Rule Fact

Version + - X Total Touched

carol (carol.objectweb.org)

62-63 7 1 13 21 2151 44 19% 12 71

128-129 0 0 10 10 164 11 7% 1 4

289-290 0 0 1 1 67 9 1% 2 3

387-388 0 0 12 12 528 107 7% 7 21

388-389 0 0 12 12 90 31 7% 3 4

421-422 3 0 11 14 4313 131 7% 36 30

429-430 2 0 7 9 723 71 4% 12 7

480-481 6 4 25 35 3032 132 17% 24 29

547-548 1 0 5 6 90 11 3% 1 10

576-577 4 2 4 10 1133 27 4% 1 25

MED 2 0 11 11 626 38 7% 5 16

AVG 2 1 10 13 1229 57 8% 10 20

LSDiff

3-4 2 0 6 8 747 33 7% 3 23

4-13 5 0 5 10 563 13 8% 0 13

13-20 1 0 5 6 276 10 5% 0 8

20-21 0 5 6 11 637 37 9% 6 19

21-26 0 0 6 6 60 10 6% 1 6

26-27 0 0 3 3 31 3 3% 0 0

27-28 0 0 2 2 96 17 2% 0 2

28-34 0 0 4 4 178 28 4% 1 54

34-36 1 0 7 8 344 39 8% 2 8

36-39 0 0 2 2 9 2 2% 0 0

MED 0 0 5 6 227 15 6% 1 8

AVG 1 1 5 6 294 19 5% 1 13

157

Table 6.7: Comparison with textual delta (2)

Textual Delta LSD

Files CLOC Hunk % Rule Fact

Version + - X Total Touched

dnsjava (www.dnsjava.org)

0.1-0.2 1 0 5 6 137 17 14% 1 17

0.2-0.3 8 0 28 36 1120 134 73% 3 21

0.3-0.4 1 1 24 26 711 45 52% 3 35

0.4-0.5 3 2 25 30 978 95 57% 31 37

0.5-0.6 0 0 9 9 272 45 18% 6 29

0.6-0.7 6 0 10 16 1052 40 25% 5 53

0.7-0.8 6 1 16 23 1354 78 34% 23 46

0.8-0.8.1 0 0 3 3 27 3 5% 1 2

0.8.1-0.8.2 0 0 42 42 1519 344 70% 19 55

0.8.2-0.8.3 0 0 6 6 307 40 10% 1 45

0.9-0.9.1 1 2 6 9 553 30 13% 0 13

0.9.1-0.9.2 58 56 3 117 15915 115 100% 21 55

0.9.2-0.9.3 0 0 1 1 5 1 2% 0 0

0.9.3-0.9.4 0 0 1 1 9 1 2% 0 0

0.9.4-0.9.5 0 0 4 4 307 16 7% 0 5

0.9.5-1.0 3 0 61 64 1181 105 100% 9 43

1.0-1.0.1 0 0 6 6 52 11 9% 0 10

1.0.1-1.0.2 0 0 13 13 457 47 20% 4 36

1.0.2-1.1 16 2 35 53 3362 264 62% 29 174

1.1-1.1.1 1 0 13 14 413 29 17% 4 13

1.1.1-1.1.2 0 0 5 5 26 6 6% 0 6

1.1.2-1.1.3 2 0 2 4 240 10 4% 0 10

1.1.3-1.1.4 0 0 3 3 47 11 4% 0 5

1.1.4-1.1.5 0 0 8 8 354 41 10% 11 24

1.1.5-1.1.6 1 0 8 9 271 14 10% 0 7

1.1.6-1.2.0 2 1 21 24 2150 208 27% 36 201

1.2.0-1.2.1 0 0 28 28 323 56 34% 10 23

1.2.1-1.2.2 0 0 14 14 436 72 17% 3 31

1.2.2-1.2.3 0 0 4 4 36 8 5% 0 4

MED 0 0 8 9 354 40 17% 3 23

AVG 4 2 14 20 1159 65 28% 8 34

AVG 3 2 11 16 997 54 19% 7 27

158

Table
6.8:

E
xtracted

rules
and

associated
change

descriptions
(1)

S
ou

rce
R
u
les

an
d

T
h
eir

In
terpretation

E
xcerp

t
from

C
h
an

ge
D

escrip
tion

carol

62-63
cu

rren
t

fi
eld

(f,n
,“C

arolC
on

fi
gu

ration
”)

∧
cu

rren
t

accesses(f,“C
arolC

on
fi
gu

ration
.load

C
arolC

on
fi
gu

ration
()”)

A
n
ew

sim
p
lifi

ed

⇒
ad

d
ed

fi
eld

(f,n
,“C

arolC
on

fi
gu

ration
”)

con
fi
gu

ration
m

ech
an

ism
.

A
ll

fi
eld

s
in

th
e
C
a
r
o
l
C
o
n
f
i
g
u
r
a
t
i
o
n

class
th

at
are

accessed
from

th
e
l
o
a
d
C
a
r
o
l
C
o
n
f
i
g
u
r
a
t
i
o
n

m
eth

o
d

are
n
ew

ly
ad

d
ed

.
(w

ith
b
u
g

id
referen

ces)

p
ast

fi
eld

(f,n
,“C

arolD
efau

ltV
alu

es”)
∧

p
ast

fi
eld

oftyp
e(f,“P

rop
erties”)

⇒
d
eleted

fi
eld

(f,n
,“C

arolD
efau

ltV
alu

es”)

A
ll
P
r
o
p
e
r
t
i
e
s

ty
p
e

fi
eld

s
in

th
e
C
a
r
o
l
D
e
f
a
u
l
t
V
a
l
u
e
s

class
got

d
eleted

.

128-129
cu

rren
t

m
eth

o
d
(m

,“getP
ort()”,t)

⇒
ad

d
ed

m
eth

o
d
(m

,“getP
ort()”,t)

P
ort

n
u
m

b
er

trace
p
rob

lem
.

A
ll
g
e
t
P
o
r
t

m
eth

o
d
s

are
n
ew

m
eth

o
d
s.

421-422
cu

rren
t

calls(m
,“N

am
in

gE
xcep

tion
H

elp
er.create(E

xcep
tion

)”)
⇒

ad
d
ed

calls(m
,“N

am
in

gE
xcep

tion
H

elp
er.create(E

xcep
tion

)”)
R

efactorin
g

of
th

e
sp

i
p
ackage...

p
ast

calls(m
,“JN

D
IR

em
oteR

esou
rce.getR

esou
rce()”)

⇒
d
eleted

calls(m
,“T

h
row

ab
le.prin

tS
tackT

race()”)
(247

w
ord

s
lon

g)

A
ll

calls
to

th
e
N
a
m
i
n
g
E
x
c
e
p
t
i
o
n
H
e
l
p
e
r
.
c
r
e
a
t
e

m
eth

o
d

are
n
ew

.

A
ll

m
eth

o
d
s

th
at

called
th

e
g
e
t
R
e
s
o
u
r
c
e

m
eth

o
d

n
o

lon
ger

call
th

e
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e

m
eth

o
d
.

cu
rren

t
in

h
erited

m
eth

o
d
(m

,“A
b
sC

on
text”,t)

⇒
ad

d
ed

in
h
erited

m
eth

o
d
(m

,“A
b
sC

on
text”,t)

p
ast

m
eth

o
d
(m

,n
,“JR

M
P
C
on

text”)
=

¿
d
eleted

m
eth

o
d
(m

,n
,“JR

M
P
C
on

text”).
..

M
an

y
m

eth
o
d
s

in
h
erit

im
p
lem

en
tation

from
th

e
A
b
s
C
o
n
t
e
x
t

class.

A
ll

m
eth

o
d
s

in
th

e
J
R
M
P
C
o
n
t
e
x
t

class
w

ere
d
eleted

.

429-430
ad

d
ed

typ
e(“A

b
sR

egistry”)
C

om
m

on
m

eth
o
d
s

go
in

cu
rren

t
in

h
erited

m
eth

o
d
(m

,
“A

b
sR

egistry”,
t)

⇒
ad

d
ed

in
h
erited

m
eth

o
d
(m

,
“A

b
sR

egistry”,
t)

an
ab

stract
class,

p
ast

su
b
typ

e(“N
am

eS
vc”,

t)
∧

p
ast

fi
eld

(f,
“h

ost”,
t)

⇒
d
eleted

fi
eld

(f,
“h

ost”,
t),

excep
t

t=
“L

m
iR

egistry”
easier

to
ex

ten
d
/m

ain
tain

/fi
x
.

p
ast

su
b
typ

e(“N
am

eS
vc”,

t)
∧

p
ast

m
eth

o
d
(m

,
“getH

ost()”,
t)

⇒
d
eleted

m
eth

o
d
(m

,
“getH

ost()”,
t),

excep
t

t=
“L

m
iR

egistry”

A
b
s
R
e
g
i
s
t
r
y

is
a

n
ew

class.

M
an

y
m

eth
o
d
s

in
h
erit

im
p
lem

en
tation

from
th

e
A
b
s
R
e
g
i
s
t
r
y

class.

A
ll
h
o
s
t

fi
eld

s
in

th
e
N
a
m
e
S
v
c’s

su
b
ty

p
es

w
ere

d
eleted

.

A
ll
g
e
t
H
o
s
t

m
eth

o
d
s

in
th

e
N
a
m
e
S
v
c’s

su
b
ty

p
es

w
ere

d
eleted

.

159

Ta
bl

e
6.

9:
E

xt
ra

ct
ed

ru
le

s
an

d
as

so
ci

at
ed

ch
an

ge
de

sc
ri

pt
io

ns
(2

)

S
ou

rc
e

R
u
le

s
an

d
T

h
ei

r
In

te
rp

re
ta

ti
on

E
xc

er
p
t

fr
om

C
h
an

ge
D

es
cr

ip
ti
on

48
0-

48
1

p
as

t
ca

lls
(m

,“
C
ar

ol
C
u
rr

en
tC

on
fi
gu

ra
ti
on

.s
et

R
M

I(
S
tr

in
g)

”
)
⇒

d
el

et
ed

ca
lls

(m
,“

E
n
u
m

er
at

io
n
.n

ex
tE

le
m

en
t(

))
”

C
h
an

ge
th

e
co

n
fi
gu

ra
ti

on

cu
rr

en
t

ac
ce

ss
es

(“
M

u
lt
iC

on
te

xt
.c

on
te

xt
sO

fC
on

fi
gu

ra
ti
o
n
s”

,m
)
⇒

ad
d
ed

ca
lls

(m
,“

It
er

at
or

.n
ex

t(
)”

)
p
ro

ce
ss

of
C

ar
ol

as
d
is

cu
ss

ed
..

.

A
ll

m
et

h
o
d
s

th
at

ca
ll
ed

th
e
C
a
r
o
l
C
u
r
r
e
n
t
C
o
n
f
i
g
u
r
a
t
i
o
n
.
s
e
t
R
M
I

m
et

h
o
d

n
o

lo
n
ge

r
ca

ll
th

e
(1

39
w

or
d
s

lo
n
g.

)

E
n
u
m
e
r
a
t
i
o
n
.
n
e
x
t
E
l
e
m
e
n
t

m
et

h
o
d
.

A
ll

m
et

h
o
d
s

th
at

ac
ce

ss
th

e
M
u
l
t
i
C
o
n
t
e
x
t
.
c
o
n
t
e
x
t
s
O
f
C
o
n
f
i
g
u
r
a
t
i
o
n
s

fi
el

d
ad

d
ed

ca
ll
s

to
th

e

I
t
e
r
a
t
o
r
.
n
e
x
t

m
et

h
o
d
.

d
n
sj
av

a

0.
6-

0.
7

cu
rr

en
t

m
et

h
o
d
(m

,n
,“

R
R
se

t”
)
∧

cu
rr

en
t

ca
lls

(“
C
ac

h
e.

ad
d
R
R
se

t(
R
R
se

t,
by

te
,O

b
je

ct
)”

,m
)

D
N

S
.d

n
s

u
se

s
C

ac
h
e

⇒
ad

d
ed

m
et

h
o
d
(m

,n
,“

R
R
se

t”
)

R
R
s
e
t
’s

m
et

h
o
d
s

th
at

ar
e

ca
ll
ed

b
y

th
e
C
a
c
h
e
.
a
d
d
R
R
s
e
t

m
et

h
o
d

ar
e

n
ew

.

1.
0.

2-
1.

1
p
as

t
m

et
h
o
d
(m

,“
se

n
d
A

sy
n
c(

)”
,t
)
⇒

ad
d
ed

re
tu

rn
(m

,“
O

b
je

ct
”)

R
es

ol
ve

r.
se

n
d
A

sy
n
c

re
tu

rn
s

p
as

t
m

et
h
o
d
(m

,“
se

n
d
A

sy
n
c(

)”
,t
)
⇒

d
el

et
ed

re
tu

rn
(m

,“
in

t”
)

an
O

b
je

ct
in

st
ea

d
of

an
in

t.

A
ll
s
e
n
d
A
s
y
n
c

m
et

h
o
d
s

re
tu

rn
an

ob
je

ct
w

it
h

th
e
O
b
j
e
c
t

ty
p
e.

A
ll
s
e
n
d
A
s
y
n
c

m
et

h
o
d
s

n
o

lo
n
ge

r
re

tu
rn

an
ob

je
ct

w
it

h
th

e
i
n
t

ty
p
e.

1.
1.

4-
1.

1.
5

p
as

t
ca

lls
(m

,“
.u

p
d
at

e.
p
ar

se
R
R
(T

ok
en

iz
er

,s
h
or

t,
in

t)
”)

⇒
d
el

et
ed

ca
lls

(m
,“

S
tr

in
g.

eq
u
al

s(
O

b
je

ct
)”

)
u
p
d
at

e
cl

ie
n
t

sy
n
ta

x
en

h
an

ce
m

en
t

p
as

t
ca

lls
(m

,“
.u

p
d
at

e.
p
ar

se
S
et

(T
ok

en
iz

er
,s

h
or

t)
”)

⇒
d
el

et
ed

ca
lls

(m
,“

.u
p
d
at

e.
p
ar

se
R
R
(T

ok
en

iz
er

,s
h
or

t,
in

t)
”)

(a
d
d
/d

el
et

e/
re

q
u
ir

e/
p
ro

h
ib

it
/g

lu
e)

p
as

t
ca

lls
(m

,“
.u

p
d
at

e.
p
ar

se
S
et

(T
ok

en
iz

er
,s

h
or

t)
”)

⇒
ad

d
ed

ca
lls

(m
,“

S
tr

in
g.

st
ar

ts
W

it
h
(S

tr
in

g)
”)

n
o

lo
n
ge

r
re

q
u
ir

e
-r

,
-s

,
or

-n
.

A
ll

m
et

h
o
d
s

th
at

ca
ll
ed

th
e
u
p
d
a
t
e
.
p
a
r
s
e
R
R

m
et

h
o
d

n
o

lo
n
ge

r
ca

ll
th

e
S
t
r
i
n
g
.
e
q
u
a
l
s

m
et

h
o
d
.

A
ll

m
et

h
o
d
s

th
at

ca
ll
ed

th
e
u
p
d
a
t
e
.
p
a
r
s
e
R
R

m
et

h
o
d

n
o

lo
n
ge

r
ca

ll
th

e
u
p
d
a
t
e
.
p
a
r
s
e
R
R

m
et

h
o
d
.

A
ll

m
et

h
o
d
s

th
at

ca
ll
ed

th
e
u
p
d
a
t
e
.
p
a
r
s
e
R
R

m
et

h
o
d

n
o

lo
n
ge

r
ca

ll
th

e
S
t
r
i
n
g
.
s
t
a
r
t
s
W
i
t
h

m
et

h
o
d
.

L
S
D

iff

20
-2

1
p
as

t
ty

p
e(

t1
,n

,“
ed

u
.u

w
.c

s.
ls
d
”)

∧
p
as

t
ty

p
e(

t2
,n

,“
ed

u
.u

w
.c

s.
ls
d
.j
q
u
er

y”
)
⇒

d
el

et
ed

ty
p
e(

t1
,n

,“
ed

u
.u

w
.c

s.
ls
d
”)

n
o

co
rr

es
po

n
d
in

g
co

m
m

en
t

A
ll

cl
as

se
s

in
th

e
l
s
d

p
ac

ka
ge

th
at

h
av

e
th

e
sa

m
e

n
am

e
cl

as
s

in
th

e
j
q
u
e
r
y

p
ac

ka
ge

go
t

d
el

et
ed

.

160

6.4.2 Comparison with Textual Delta.

In practice, programmers often use diff and read programmer-provided descriptions such as

check-in comments or change logs. It is infeasible to directly compare LSDiff results (LSD)

with traditional diff results (TD) and change descriptions. Diff computes textual differences

while LSDiff computes only structural differences, and change descriptions are often missing,

hard to trace back to a program, and in free-form. Thus, our goal is not to directly compare

them but to understand when LSDs complement TDs and change descriptions. For this

investigation, we built a viewer that visualizes each rule with diff outputs, similar to what

is shown in Figure 6.1 and Figure 6.2.

Table 6.6 and Table 6.7 show quantitative comparison results. CLOC represents the

number of added, deleted, and changed lines. Hunk represents the number of blocks with

consecutive line changes, and % Touched represents the percentage of files that programmers

must inspect to examine the change completely out of the total number of files in both

versions. It is computed as (# added files + # deleted files + 2 × # changed files) / (

total # files in both versions). The more hunks there are and the higher the percentage of

touched files is, generally the harder it is to inspect a TD.

While the average TD for carol has over 1200 lines of changes across 13 different files,

LSD represents these changes as roughly 10 rules and 20 facts. While the average TD for

dnsjava has over 1100 lines across 20 different files, the average LSD has 8 rules and 34

facts. For our own program, while the average TD has about 300 lines of changes across

6 files, the average LSD has 1 rule and 13 facts. Overall, while an average textual delta

consists of 997 lines of change scattered across 16 files, our LSD reports an average of 7

rules and 27 facts, relatively smaller than an equivalent textual delta.

The benefits of LSD appear to depend heavily on how systematic the change is. (See

Table 6.8). When changes are structurally systematic—e.g., refactoring, feature addition

and removal, dependency addition and removal, constant pool migration—LSDs contain

only a few rules and facts even if TDs contain a large number of hunks scattered across

many files. Consider the change in carol 429-430, “Common methods go in an abstract

class, Easier to extend/maintain/fix.” If a programmer intends to understand whether this

161

change is truly an extract superclass refactoring and whether the refactoring was completed,

she needs to examine over 700 lines across 9 files. On the other hand, LSD summarizes

this change using only 12 rules and 7 facts and provides concrete information about the

refactoring—AbsRegistry was created by pulling up host related fields and methods from the

classes implementing NameSvc interface except for LmiRegistry. Consider another change in

carol 128-129, “Bug fix, port number trace problem.” To understand how the bug was fixed,

a programmer needs to read over 150 lines scattered across 10 files. Our LSD represents

the same change with only 1 rule and 4 facts—getPort methods were added to six different

classes and they were invoked from a tracer module, TraceCarol. If a programmer examines

the LSD before reading the TD, upon inspecting one corresponding file, she can probably

skip five other files that include getPort.

When several different systematic changes are mixed with many random non-systematic

changes, LSDs tend to contain many rules and facts. Despite a large amount of informa-

tion in those LSDs, we believe LSDs can still complement scattered and verbose TDs by

providing an overview of systematic changes, helping programmers focus on remaining non-

systematic changes instead. For instance, a programmer may find the TD for carol 421-422

overwhelming since it includes more than 4000 lines of changes across 14 files. In this case,

LSD rules can help programmers quickly understand the systematic changes—modifying

exception handling to use NamingExceptionHelper and creating a superclass AbsContext by ex-

tracting common methods from Context classes—and focus on other changes instead.

In several cases, TD shows some changes but LSD is empty because LSD does not model

differences in comments, control logic, and temporal logic. For example, the LSD for dnsjava

0.9.2-0.9.3 is empty because the code change includes only one added if statement and does

not incur changes in structural dependencies.

Overall, our comparison shows that the more systematic code changes are, the smaller

number of rules and facts LSDs include. On the other hand, TDs may be scattered across

many files and hunks even if the change is structurally homogeneous and systematic. Con-

sistent with our focus on systematic changes, when the change is very small or completely

random, LSDiff provides little additional benefits.

162

6.4.3 Comparison with Programmer-Provided Change Descriptions.

Programmers often write check-in comments or update a change log file to convey their

change intentions. To understand how LSDs and change descriptions complement each

other, we compared LSDs with check-in comments (carol and LSDiff) and change logs (dns-

java). For this comparison, we examined and interpreted all LSD rules and facts and then

traced them to corresponding sentences in the change description. Table 6.8 and Table 6.9

show the comparison results.

In many cases, although change descriptions hint at systematic changes, they do not

provide much detail. For example, the check-in comment for carol 62-63—“a new simplified

configuration mechanism”—does not indicate which classes implement the new configura-

tion mechanism. LSD rules show that CarolConfiguration added many fields to be used by

loadCarolConfiguration, and CarolDefaultValues deleted all Properties type fields.

In some cases, change comments and LSDs agree on the same information with a similar

level of detail. For example, in dnsjava 1.0.2-1.1, both the LSD and the change log describe

that sendAsync methods return Object instead of int. In some other cases, LSDs and change

descriptions discuss different aspects of change. For instance, the change comments for carol

480-481 refer to email discussions on the design of new APIs and include code examples

while LSD provides implementation details such as the use of Iterator instead of Enumeration.

Because change descriptions are free-form, they can contain any kind of information at

any level of detail; however, it is often incomplete or too verbose. More importantly, it is

generally hard to trace back to a program. We believe that LSDs can complement change

descriptions by providing concrete information that can be traced to code.

6.5 Discussion

6.5.1 Impact of Input Parameters.

The input parameters, m (the minimum number of facts a rule must match), a (the minimum

accuracy), and k (the maximum number of literals a rule can have in its antecedent) define

which rules should be considered in the output. To understand how varying these parameters

affects our results, we varied m from 1 to 5, a from 0.5 to 1 with an increment of 0.125, and

163

Table 6.10: Impact of varying input parameters

Rule Fact Cvrg. Csc. Ad’l. Time(Min)

1 39.6 0 100% 7.4 10.1 2.0

2 14.6 13.1 92% 10.6 7.4 11.2

m 3 9.9 20.4 85% 9.9 5.5 9.1

4 7.7 25.7 82% 9.1 5.4 8.7

5 5.7 30 80% 8.5 3.5 7.8

0.5 11.1 15.6 89% 10.6 2.1 6.8

0.625 9.7 17.2 88% 11.0 4.0 7.3

a 0.75 9.9 20.4 85% 9.9 5.5 9.0

0.875 10.8 24.2 78% 8.6 9.1 12.7

1 13.3 26.2 78% 7.9 12.5 16.5

k 1 7.5 33.8 78% 7.2 0.4 0.7

2 9.9 20.4 85% 9.9 5.5 9.1

k from 1 to 2. Table 6.10 shows the results in terms of average for the carol data set.

When m is 1, all facts in ∆FB are covered by rules by definition. As m increases, fewer

rules are found and they cover fewer facts in ∆FB.

As a increases, a smaller proportion of exceptions is allowed per rule; thus, our algorithm

finds more rules each of which covers a smaller proportion of the facts, decreasing the

conciseness and coverage measures.

Changing k from 1 to 2 allows our algorithm to find more rules and improves the addi-

tional information measure from 0.4 to 5.5 by considering unchanged code fragments that

are further away from changed code. With our current tool, we were not able to experiment

with k greater than 2 because the large rule search space led to a very long running time.

In the future, we plan to explore using Alchemy—a state-of-the-art first order logic rule

learner developed at the University of Washington [171]—to find rules more efficiently.

6.5.2 Threats to Validity.

In terms of our focus group study, though it is common to commission an external, profes-

sional research vendor, I designed the discussion guide and took a moderator role due to

164

the difficulty of finding a vendor with similar expertise in program differencing tools. The

moderator’s intimate knowledge and bias towards LSDiff may have led the participants to

support the moderator’s views. Though conducting multiple focus groups and contrasting

them is encouraged, we conducted only a single focus group. Furthermore, the participants’

view may be biased to practices in their organization—where code reviews are often done

by emails.

In terms of internal validity, the inferred rules are incomplete in nature as they depend

on both input parameter settings and the predefined rule styles (Table 6.3). We need to

investigate further about what other types of systematic changes that LSDiff does not cover

and how frequent they are.

As some participants in the focus group pointed out, LSDiff may report systematic

changes that are not of interest to the programmer. Determining the frequency and cost

of such false positives is beyond the scope of our work-to-date largely because it is heavily

dependent on tasks, projects and programmers. Resolving this will likely take in-depth

evaluations of LSDiff in the context of real development tasks; these evaluations will need

to consider how to distinguish uninteresting patterns from unanticipated but interesting

patterns.

In terms of external validity, although our assessment in Section 6.4 provides a valuable

illustration of how LSDiff can complement existing uses of diff, our findings may not gen-

eralize to other data sets. We need further investigations into how a program size and the

gap between program versions affect LSDiff results.

6.6 Application of Change-Rules

Our inferred change-rules represent program differences in a concise and comprehensible

form and also make it easier for programmers to note inconsistencies in code changes. This

allows them to serve as a basis for many software engineering applications. We sketch several

such applications and include motivating examples from our study. Some of the example

rules below are slightly modified for presentation purposes.

165

Finding Bugs While examining the inferred API change-rules, we found that the excep-

tions of change-rules often signal a bug arising from incomplete or inconsistent changes. For

example, the rule

• for all x:method-header in J*.addTitle(*)

except JThermometer.addTitle(Title)

procedureReplace(x, addTitle, addSubtitle)

[Interpretation: All methods with a name “J*.addTitle(*)” changed their procedure name from addTitle to

addSubtitle except the JThermometer.addTitle(Title) method.]

has one exception, which indicates that a programmer misspelled addSubtitle to addSubitle

when modifying the addTitle method of JThermometer, which is a subclass of JFreeChart. This

misspelling causes dynamic dispatching to JThermometer not to function properly because

addSubtitle is no longer overridden.

As another example, consider the following two API change-rules, in which the second

one is found one release after the first one. We suspect that a programmer fixed only two

out of the three problems, leaving one bug.

• for all x:method-header in *.draw(*, Key, *)

except { HorizontalBar, VerticalBar, StatBar }

argReplace(x, Key, Category)

[Interpretation: All methods with a name “*.draw(*, Key, *)” changed a Key type input argument to a

Category type argument.]

• for all x:method-header in *Bar.draw(*, Key, *)

except { VerticalBar }

argReplace(x, Key, Category)

[Interpretation: All methods with a name “*Bar.draw(*, Key, *)” changed a Key type input argument to a

Category type argument.]

A similar idea that detects potential errors from inferred refactorings has been explored

by Görg and Weißgerber [106]. However, they check only a predefined set of refactoring

consistency patterns.

166

Empirical Software Evolution Analysis Our inferred API change-rules can be used

for understanding API evolution. For example, the following rule describes that Shape type

in some APIs were removed to hide unnecessary details from clients.

• for all x:method-header in chart.*.*(Graphic, *, Shape)

argDelete(x, Shape)

[Interpretation: All methods with a name “chart.*.*(Graphic, *, Shape)” deleted Shape type arguments in

their input signature.]

Furthermore, inferred change-rules may reveal volatility of some API changes. In the

following example, the first rule shows that the use of Category type was replaced by [Key,

int] type. In the next release, the same change was quickly reversed.

• for all x:method-header in *.*.*(Category)

inputSignatureReplace(x,[Category],[Key, int])

[Interpretation: All methods with a name “*.*.*(Category)” changed their input signature from one Category

type argument to a tuple of (Key, int).]

• for all x:method-header in *.*.*(Key, int)

inputSignatureReplace(x,[Key, int],[Category])

[Interpretation: All methods with a name “*.*.*(Key, int)” changed its input signature from a tuple of (Key,

int) to a Category type argument.]

Checking Dependency Creation and Removal When team leads review a patch, they

often wonder whether a new dependency is unexpectedly introduced or whether existing

dependencies are completely removed as intended. In our study, we have found many

inferred LSDiff rules clearly show such dependency creation and removal; for example, the

following two rules show that all call dependencies to NamingHelper are newly introduced and

that all accesses to JNI.URL in the old version are completely removed.

• current calls(m, “NamingHelper()”) ⇒ added calls(m, “NamingHelper()”)

[Interpretation: All method-calls to the NamingHelper method in the new version are new.]

• past accesses(“JNI.URL”, m)⇒deleted accesses(“JNI.URL”, m)

[Interpretation: All methods that accessed the JNI.URL field deleted the accesses to the JNI.URL field.]

167

Identifying Related Changes Programmers often need to sort out mixed logical changes

because some programmers commit unrelated changes together. Our inferred LSDiff rules

can help identify related changes by showing the common characteristics of co-changed code.

Consider dnsjava release 0.6-0.7; there are two added classes, Cache and CacheResponse, and

three added methods in RRSet. Despite its change comment, “DNS.dns uses Cache,” it is

not clear whether all added code fragments implement the cache feature. The following rule

shows that the three methods are indeed a part of cache feature because they are called by

Cache.addRRSet.

• current calls(“Cache.addRRSet”, m)⇒added method(m,“RRset”)

[Interpretation: All methods that are called from the Cache.addRRSet method are new methods.]

6.7 Summary of Logical Structural Diff

LSDiff discovers and represents systematic structural differences as logic rules. Each rule

concisely describes a group of changes that share similar structural characteristics and notes

anomalies to systematic change patterns.

Through a focus group study with professional software engineers, we assessed LSDiff’s

potential benefits and studied when and how LSDiff can complement existing program

differencing tools. Our study participants believe that the grouping of related systematic

changes can complement diff’s file-based organization and the detection of anomalies can

help programmers discover potential missed updates.

In addition, we quantitatively compared LSDiff results with what an existing program

differencing approach would produce at the same abstraction level; LSDiff produces 9.3

times more concise results and finds 9.7 additional structural facts that cannot be found by

looking at the code that changed between versions.

168

Chapter 7

CONCLUSIONS AND FUTURE WORK

Section 7.1 summarizes this dissertation’s contributions, and Section 7.2 describes future

research ideas.

7.1 Summary of Contributions

To help programmers reason about software changes at a high-level, this dissertation intro-

duced a program differencing approach that extracts high-level change descriptions.

Based on the insight that high-level changes often require systematic code-level changes,

our approach discovers and represents systematic code changes as first order logic rules. The

core of this approach is novel rule-based representations that explicitly capture systematic

changes and corresponding rule-inference algorithms that automatically discover such rules

from two program versions. This approach is instantiated at two abstraction levels: first at a

method-header level and then at the level of code elements and their structural dependencies.

This rule-based change inference approach has been assessed both quantitatively and

qualitatively through its application to multiple open source projects’ change history and

through a focus group study with professional developers from a large E-commerce company.

The participants’ comments show that our approach is promising both as a complement to

diff’s file-based approach and also as a way to help programmers discover potential bugs

by identifying exceptions to inferred systematic changes. The quantitative assessments

show that our API change-rule inference produces 22–77% more concise matching results

compared to other method level matching tools and refactoring reconstruction tools. Our

LSDiff produces 9.3 times more concise results by identifying 75% of structural differences

as systematic changes compared to an existing program differencing approach.

169

7.2 Future Work

Improvement of Logical Structural Diff Logic rules are not always easy to read by

developers; as it is fairly mechanical to translate inferred rules to English sentences, we plan

to build a rule translator.1

Our empirical studies of rules indicate that there is a need for even higher-order represen-

tations beyond rules; for example, complex refactorings and design pattern changes are often

described as a collection of related rules. We intend to build a higher-order representation

and a clustering algorithm that discovers sets of related rules.

Exploiting Change Semantics and Structures We plan to use change-rules as a

foundation to approach problems in release planning, regression testing, and cost estimation.

In particular, we are interested in research questions including the following: By reasoning

about temporal and structural dependencies among program deltas, can we assist software

engineers in identifying the unit of logical software changes. How can we better select and

prioritize regression tests by exploiting the homogeneity and heterogeneity found in program

changes? Can we better estimate software change cost using the semantic structure of past

similar changes?

Past empirical studies of software evolution have primarily focused on quantitative and

statistical analyses of a program over multiple versions, largely ignoring the structure and

semantics of software changes between versions. How do such studies compare with quali-

tative studies of software evolution using inferred rules? We believe that the homogeneity

and heterogeneity found in program changes may shed light on the problem of assessing

software quality. In particular, we plan to use LSDiff to build a better understanding of

the frequency and characteristics of systematic changes. For example, it may be feasible

to run experiments to assess how often systematic changes are aligned with a containment

hierarchy, with crosscutting changes, with refactorings, or indeed with none of these known

kinds of systematic change.

1In this dissertation, english rule descriptions were produced manually.

170

Beyond Source Code Level Change-Rules We will investigate software changes from

various angles such as abstraction level, time, behavior, and type of software artifact. (1)

The notion of a program delta must be extended from “between two versions” to “across a

series of versions” as programmers often complete a single logical change in phases or submit

several unrelated changes in a single check-in. (2) How should we identify and represent

differences in run-time behavior caused by a program change? While we have a common

vocabulary for describing different types of source code changes, such as ‘refactoring’ and

‘crosscutting changes,’ there is a lack of common vocabulary for run-time behavior changes.

How can we categorize and describe run-time behavior changes? Is there also structure in

behavioral differences? Can we extend existing run-time behavior capturing techniques such

as dynamic invariants or path spectra? (3) We plan to investigate changes in requirement

models and architecture diagrams. Automatically checking consistency between different

abstractions of software changes may bridge the gap between how software architects plan

changes and how programmers implement source-level changes.

Actively Leveraging Historical Information Explicitly capturing the semantics of a

program delta will not only help programmers in their daily tasks but also enable software

engineering research to leverage historical information. Our goal is to avoid redundancies

in re-analyzing and re-testing changed programs. The envisioned analysis technique will

be more efficient than traditional program analyses by leveraging two types of information,

which are not actively used in software engineering research: (1) history-based approxima-

tion of a program’s behavior and (2) program delta semantics. For example, suppose that

there is 90% confidence that a variable foo never pointed to bar in the past revisions and

the code modification does not involve a direct assignment to foo; when time is limited for a

whole program analysis, our analysis algorithm will use historical knowledge about aliasing

relations and delta semantics to produce an approximated result.

History can help us learn which decisions are good and which decisions are bad. We see

tremendous potential in using change history to help programmers make better decisions.

First, inspired by our clone genealogy analysis, we plan to build a software economics model

and a refactoring reminder that can suggest to programmers when to refactor duplicated

171

code to maximize their return on refactoring investment. Second, we envision a tool that

suggests how to redesign software by identifying design decisions that were intended to be

encapsulated but were later inadvertently exposed to other modules.

Coping with Redundancies in Software Evolution There are many redundancies in

software development: redundant code edits, redundant bug reports and subsequent efforts

of triaging them, redundant efforts in deployment and configuration, etc. We believe that

such redundancies are exacerbated in collaborative software development, where one devel-

oper’s effort is not captured and reused by other developers. We would like to study in which

task contexts redundancies occur frequently, which types of redundancies are inherent, and

which types of redundancies can be avoided. Based on these studies, we will build software

engineering tools that actively capture developer efforts, recognize their redundancies, and

save the reusable efforts for later uses.

172

BIBLIOGRAPHY

[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules be-
tween sets of items in large databases. In SIGMOD ’93: Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, pages 207–216,
New York, NY, USA, 1993. ACM.

[2] Alex Aiken. Moss: A system for detecting software plagiarism. Stanford University,
See http://theory.stanford.edu/ãiken/moss/, 2005.

[3] Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining specifications. In POPL
’02: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 4–16, New York, NY, USA, 2002. ACM Press.

[4] Giuliano Antoniol, Gerardo Casazza, Massimiliano Di Penta, and Ettore Merlo. Mod-
eling clones evolution through time series. In ICSM ’01: Proceedings of the IEEE In-
ternational Conference on Software Maintenance, page 273, Washington, DC, USA,
2001. IEEE Computer Society.

[5] Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. An automatic approach
to identify class evolution discontinuities. In IWPSE ’04: Proceedings of the Principles
of Software Evolution, 7th International Workshop, pages 31–40, Washington, DC,
USA, 2004. IEEE Computer Society.

[6] Giuliano Antoniol, Umberto Villano, Ettore Merlo, and Massimiliano Di Penta. An-
alyzing cloning evolution in the Linux kernel. Information & Software Technology,
44(13):755–765, 2002.

[7] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. A differencing
algorithm for object-oriented programs. In ASE ’04: Proceedings of the 19th IEEE In-
ternational Conference on Automated Software Engineering, pages 2–13, Washington,
DC, USA, 2004. IEEE Computer Society.

[8] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. Efficient and
precise dynamic impact analysis using execute-after sequences. In ICSE ’05: Proceed-
ings of the 27th International Conference on Software Engineering, pages 432–441,
New York, NY, USA, 2005. ACM.

[9] Alberto Apostolico and Zvi Galil, editors. Pattern matching algorithms. Oxford
University Press, Oxford, UK, 1997.

173

[10] Darren C. Atkinson and William G. Griswold. Effective pattern matching of source
code using abstract syntax patterns. Software–Practice & Experience, 36(4):413–447,
2006.

[11] Lerina Aversano, Luigi Cerulo, and Massimiliano Di Penta. How clones are main-
tained: An empirical study. In CSMR ’07: Proceedings of the 11th European Con-
ference on Software Maintenance and Reengineering, pages 81–90, Washington, DC,
USA, 2007. IEEE Computer Society.

[12] Brenda S. Baker. A program for identifying duplicated code. Computing Science and
Statistics, 24:49–57, 1992.

[13] Brenda S. Baker and Udi Manber. Deducing similarities in Java sources from byte-
codes. In Proceedings of Usenix Annual Technical Conference, pages 179–190, 1998.

[14] Egon Balas and Manfred W. Padberg. Set Partitioning: A Survey. SIAM Review,
18:710–760, 1976.

[15] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas
Kontogiannis. Measuring clone based reengineering opportunities. In METRICS ’99:
Proceedings of the 6th International Symposium on Software Metrics, page 292, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[16] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas
Kontogiannis. Partial redesign of java software systems based on clone analysis. In
WCRE ’99: Proceedings of the Sixth Working Conference on Reverse Engineering,
page 326, Washington, DC, USA, 1999. IEEE Computer Society.

[17] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lagüe, and Kostas Kon-
togiannis. Advanced clone-analysis to support object-oriented system refactoring. In
WCRE ’00: Proceedings of the Seventh Working Conference on Reverse Engineering,
page 98, Washington, DC, USA, 2000. IEEE Computer Society.

[18] Mihai Balint, Radu Marinescu, and Tudor Girba. How developers copy. In ICPC ’06:
Proceedings of the 14th IEEE International Conference on Program Comprehension,
pages 56–68, Washington, DC, USA, 2006. IEEE Computer Society.

[19] Thomas Ball and Stephen G. Eick. Software visualization in the large. IEEE Com-
puter, 29(4):33–43, 1996.

[20] Thomas Ball, Jung min Kim, Adam A. Porter, and Harvey P. Siy. If your version
control system could talk. In ICSE ’97 Workshop on Process Modelling and Empirical
Studies of Software Engineering, May 1997.

174

[21] Elisa L. A. Baniassad and Gail C. Murphy. Conceptual module querying for software
reengineering. In ICSE ’98: Proceedings of the 20th International Conference on
Software Engineering, pages 64–73, Washington, DC, USA, 1998. IEEE Computer
Society.

[22] Elisa L. A. Baniassad, Gail C. Murphy, and Christa Schwanninger. Design pattern
rationale graphs: linking design to source. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages 352–362, Washington, DC,
USA, 2003. IEEE Computer Society.

[23] Hamid Abdul Basit and Stan Jarzabek. Detecting higher-level similarity patterns
in programs. In ESEC/FSE-13: Proceedings of the 10th European Software Engi-
neering Conference held jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 156–165, New York, NY, USA, 2005.
ACM.

[24] Hamid Abdul Basit, Damith C. Rajapakse, and Stan Jarzabek. Beyond templates: a
study of clones in the stl and some general implications. In ICSE ’05: Proceedings
of the 27th International Conference on Software Engineering, pages 451–459, New
York, NY, USA, 2005. ACM.

[25] Samuel Bates and Susan Horwitz. Incremental program testing using program de-
pendence graphs. In POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 384–396, New York, NY,
USA, 1993. ACM Press.

[26] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. Clone detection using abstract syntax trees. In ICSM ’98: Proceedings of the
International Conference on Software Maintenance, page 368, Washington, DC, USA,
1998. IEEE Computer Society.

[27] Kent Beck. extreme Programming explained, embrace change. Addison-Wesley Pro-
fessional, 2000.

[28] Laszlo A. Belady and M.M. Lehman. A Model of Large Program Development. IBM
Systems Journal, 15(3):225–252, 1976.

[29] Thomas Berlage and Andreas Genau. A framework for shared applications with a
replicated architecture. In UIST ’93: Proceedings of the 6th annual ACM symposium
on User interface software and technology, pages 249–257, New York, NY, USA, 1993.
ACM.

[30] Valdis Berzins. Software merge: semantics of combining changes to programs. ACM
Transactions on Programming Languages and Systems, 16(6):1875–1903, 1994.

175

[31] Jennifer Bevan and Jr. E. James Whitehead. Identification of software instabilities.
In WCRE ’03: Proceedings of the 10th Working Conference on Reverse Engineering,
page 134, Washington, DC, USA, 2003. IEEE Computer Society.

[32] Jennifer Bevan, Jr. E. James Whitehead, Sunghun Kim, and Michael Godfrey. Fa-
cilitating software evolution research with kenyon. In ESEC/FSE-13: Proceedings
of the 10th European Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages
177–186, New York, NY, USA, 2005. ACM.

[33] Dirk Beyer, Andreas Noack, and Claus Lewerentz. Efficient relational calculation for
software analysis. IEEE Transactions on Software Engineering, 31(2):137–149, 2005.

[34] Hugh Beyer and Karen Holtzblatt. Contextual design. Morgan Kaufmann, 1999.

[35] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. The concept assignment
problem in program understanding. In ICSE ’93: Proceedings of the 15th International
Conference on Software Engineering, pages 482–498, Los Alamitos, CA, USA, 1993.
IEEE Computer Society Press.

[36] David Binkley. Semantics guided regression test cost reduction. IEEE Transactions
on Software Engineering, 23(8):498–516, 1997.

[37] David Binkley, Susan Horwitz, and Thomas Reps. Program integration for languages
with procedure calls. ACM Transactions on Software Engineering and Methodology,
4(1):3–35, 1995.

[38] Barry W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of software
quality. Proceedings of the 2nd International Conference on Software Engineering,
pages 592–605, 1976.

[39] Marat Boshernitsan, Susan L. Graham, and Marti A. Hearst. Aligning development
tools with the way programmers think about code changes. In CHI ’07: Proceedings
of the SIGCHI conference on Human factors in computing systems, pages 567–576,
New York, NY, USA, 2007. ACM.

[40] Gilad Bracha and William Cook. Mixin-based inheritance. In OOPSLA/ECOOP ’90:
Proceedings of the European Conference on Object-Oriented Programming on Object-
Oriented Programming Systems, Languages, and Applications, pages 303–311, New
York, NY, USA, 1990. ACM.

[41] Silvia Breu and Thomas Zimmermann. Mining aspects from version history. In
International Conference on Automated Software Engineering, pages 221–230, 2006.

176

[42] Magiel Bruntink, Arie van Deursen, Tom Tourwe, and Remco van Engelen. An eval-
uation of clone detection techniques for identifying crosscutting concerns. In ICSM
’04: Proceedings of the 20th IEEE International Conference on Software Maintenance,
pages 200–209, Washington, DC, USA, 2004. IEEE Computer Society.

[43] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter Kniesel. To-
wards a taxonomy of software change: Research articles. Journal of Software Main-
tenance and Evolution: Research and Practice, 17(5):309–332, 2005.

[44] Elizabeth Burd and John Bailey. Evaluating clone detection tools for use during pre-
ventative maintenance. In SCAM ’02: Proceedings of the Second IEEE International
Workshop on Source Code Analysis and Manipulation, pages 36–43, Washington, DC,
USA, 2002. IEEE Computer Society.

[45] Scott Burson, Gordon B. Kotik, and Lawrence Z. Markosian. A program transforma-
tion approach to automating softwarere-engineering. In COMPSAC 90: Fourteenth
Annual International Computer Software and Applications Conference, pages 314–
322, 1990.

[46] Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. Identifying changed
source code lines from version repositories. In MSR ’07: Proceedings of the Fourth
International Workshop on Mining Software Repositories, page 14, Washington, DC,
USA, 2007. IEEE Computer Society.

[47] Craig Chambers, Jeffrey Dean, and David Grove. A framework for selective recompi-
lation in the presence of complex intermodule dependencies. In ICSE ’95: Proceedings
of the 17th International Conference on Software Engineering, pages 221–230, New
York, NY, USA, 1995. ACM.

[48] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. Change detection in hierarchically structured information. In SIGMOD ’96:
Proceedings of the 1996 ACM SIGMOD International Conference on Management of
Data, pages 493–504, New York, NY, USA, 1996. ACM.

[49] Annie Chen, Eric Chou, Joshua Wong, Andrew Y. Yao, Qing Zhang, Shao Zhang,
and Amir Michail. Cvssearch: Searching through source code using cvs comments.
In ICSM ’01: Proceedings of the IEEE International Conference on Software Mainte-
nance, page 364, Washington, DC, USA, 2001. IEEE Computer Society.

[50] Ophelia C. Chesley, Xiaoxia Ren, and Barbara G. Ryder. Crisp: A debugging tool
for java programs. In ICSM ’05: Proceedings of the 21st IEEE International Confer-
ence on Software Maintenance, pages 401–410, Washington, DC, USA, 2005. IEEE
Computer Society.

177

[51] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson R. Engler. An
empirical study of operating system errors. In SOSP, pages 73–88, 2001.

[52] Kingsum Chow and David Notkin. Semi-automatic update of applications in response
to library changes. In ICSM ’96: Proceedings of the 1996 International Conference
on Software Maintenance, page 359, Washington, DC, USA, 1996. IEEE Computer
Society.

[53] Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob Pitts, and Kevin
Wampler. A system for graph-based visualization of the evolution of software. In
SoftVis ’03: Proceedings of the 2003 ACM Symposium on Software Visualization,
pages 77–88, New York, NY, USA, 2003. ACM.

[54] Reidar Conradi and Bernhard Westfechtel. Version models for software configuration
management. ACM Computing Survey, 30(2):232–282, 1998.

[55] James R. Cordy. Comprehending reality ” practical barriers to industrial adoption of
software maintenance automation. In IWPC ’03: Proceedings of the 11th IEEE In-
ternational Workshop on Program Comprehension, page 196, Washington, DC, USA,
2003. IEEE Computer Society.

[56] James R. Cordy. The txl source transformation language. Science of Computer Pro-
gramming, 61(3):190–210, 2006.

[57] James R. Cordy, Thomas R. Dean, Andrew J. Malton, and Kevin A. Schneider. Source
transformation in software engineering using the txl transformation system. Journal
of Information and Software Technology, 44:827–837, 2002.

[58] Rylan Cottrell, Joseph J. C. Chang, Robert J. Walker, and Jörg Denzinger. Deter-
mining detailed structural correspondence for generalization tasks. In ESEC-FSE ’07:
Proceedings of the the 6th joint meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT symposium on The foundations of software engineering,
pages 165–174, New York, NY, USA, 2007. ACM.

[59] Davor Cubranic and Gail C. Murphy. Hipikat: recommending pertinent software de-
velopment artifacts. In ICSE ’03: Proceedings of the 25th International Conference on
Software Engineering, pages 408–418, Washington, DC, USA, 2003. IEEE Computer
Society.

[60] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient
method of computing static single assignment form. In POPL ’89: Proceedings of the
16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 25–35, New York, NY, USA, 1989. ACM Press.

178

[61] Barthélémy Dagenais, Silvia Breu, Frédéric Weigand Warr, and Martin P. Robillard.
Inferring structural patterns for concern traceability in evolving software. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM International Conference on Automated
Software Engineering, pages 254–263, New York, NY, USA, 2007. ACM.

[62] Barthélémy Dagenais and Martin P. Robillard. Recommending adaptive changes for
framework evolution. In ICSE ’08: Proceedings of the 30th International Conference
on Software Engineering, pages 481–490, New York, NY, USA, 2008. ACM.

[63] Michael L. Van de Vanter. The documentary structure of source code. Information
& Software Technology, 44(13):767–782, 2002.

[64] Robert DeLine, Amir Khella, Mary Czerwinski, and George Robertson. Towards
understanding programs through wear-based filtering. In SoftVis ’05: Proceedings of
the 2005 ACM Symposium on Software Visualization, pages 183–192, New York, NY,
USA, 2005. ACM Press.

[65] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings via
change metrics. In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pages 166–
177, New York, NY, USA, 2000. ACM.

[66] Marcus Denker, Tudor Gı̂rba, Adrian Lienhard, Oscar Nierstrasz, Lukas Renggli, and
Pascal Zumkehr. Encapsulating and exploiting change with changeboxes. In ICDL
’07: Proceedings of the 2007 International Conference on Dynamic Languages, pages
25–49, New York, NY, USA, 2007. ACM.

[67] Premkumar Devanbu. GENOA: a customizable language-and front-end independent
code analyzer. Proceedings of the 14th International Conference on Software Engi-
neering, pages 307–317, 1992.

[68] Premkumar Devanbu, Ronald J. Brachman, Peter G. Selfridge, and Bruce W. Ballard.
LaSSIE: a knowledge-based software information system. Communications of the
ACM, 34(5):34–49, 1991.

[69] Danny Dig and Ralph Johnson. The role of refactorings in api evolution. In ICSM
’05: Proceedings of the 21st IEEE International Conference on Software Maintenance,
pages 389–398, Washington, DC, USA, 2005. IEEE Computer Society.

[70] Danny Dig and Ralph Johnson. Automated detection of refactorings in evolving
components. In ECOOP ’06: Proceedings of European Conference on Object-Oriented
Programming, pages 404–428. Springer, 2006.

179

[71] Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N. Nguyen. Refactoring-aware
configuration management for object-oriented programs. In ICSE ’07: Proceedings of
the 29th International Conference on Software Engineering, pages 427–436, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[72] Pedro Domingos, Stanley Kok, Hoifung Poon, Matthew Richardson, and Parag Singla.
Unifying logical and statistical AI. In AAAI ’06: Proceedings of the Twenty-First
National Conference on Artificial Intelligence, Boston, MA, July, 2006.

[73] Stephen Drape, Oege de Moor, and Ganesh Sittampalam. Transforming the .net
intermediate language using path logic programming. In PPDP ’02: Proceedings
of the 4th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, pages 133–144, New York, NY, USA, 2002. ACM Press.

[74] Ekwa Duala-Ekoko and Martin P. Robillard. Tracking code clones in evolving soft-
ware. In ICSE ’07: Proceedings of the 29th International Conference on Software
Engineering, pages 158–167, Washington, DC, USA, 2007. IEEE Computer Society.

[75] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language independent
approach for detecting duplicated code. In ICSM ’99: Proceedings of the IEEE In-
ternational Conference on Software Maintenance, page 109, Washington, DC, USA,
1999. IEEE Computer Society.

[76] Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mira Mezini. Defining and
continuous checking of structural program dependencies. In ICSE ’08: Proceedings
of the 30th International Conference on Software Engineering, pages 391–400, New
York, NY, USA, 2008. ACM.

[77] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, and Audris Mockus.
Does code decay? Assessing the evidence from change management data. IEEE
Transactions on Software Engineering, 27(1):1–12, 2001.

[78] Stephen G. Eick, Todd L. Graves, Alan F. Karr, Audris Mockus, and Paul Schuster.
Visualizing software changes. IEEE Transactions on Software Engineering, 28(4):396–
412, 2002.

[79] Sebastian G. Elbaum, David Gable, and Gregg Rothermel. The impact of software
evolution on code coverage information. In ICSM, pages 170–179, 2001.

[80] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gor-
don Woodhull. Graphviz-Open Source Graph Drawing Tools. Graph Drawing, pages
483–485, 2001.

[81] Michael D. Ernst. Dynamically Discovering Likely Program Invariants. Ph.D. Disser-
atation, University of Washington, Seattle, Washington, August 2000.

180

[82] Martin Erwig and Deling Ren. A rule-based language for programming software
updates. In RULE ’02: Proceedings of the 2002 ACM SIGPLAN workshop on Rule-
based programming, pages 67–78, New York, NY, USA, 2002. ACM.

[83] Huw Evans, Malcolm Atkinson, Margaret Brown, Julie Cargill, Murray Crease, Steve
Draper, Phil Gray, and Richard Thomas. The pervasiveness of evolution in grumps
software. Software–Practice & Experience, 33(2):99–120, 2003.

[84] L. Feijs, R. Krikhaar, and R. Van Ommering. A relational approach to support
software architecture analysis. Software–Practice & Experience, 28(4):371–400, 1998.

[85] F. Fiorvanti, G. Migliarese, and P. Nesi. Reengineering analysis of object-oriented
systems via duplication analysis. In ICSE ’01: Proceedings of the 23rd International
Conference on Software Engineering, pages 577–586, Washington, DC, USA, 2001.
IEEE Computer Society.

[86] Michael Fischer, Johann Oberleitner, Jacek Ratzinger, and Harald Gall. Mining evo-
lution data of a product family. In MSR ’05: Proceedings of the 2005 International
Workshop on Mining Software Repositories, pages 1–5, New York, NY, USA, 2005.
ACM.

[87] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history
database from version control and bug tracking systems. In ICSM ’03: Proceed-
ings of the International Conference on Software Maintenance, page 23, Washington,
DC, USA, 2003. IEEE Computer Society.

[88] Marc E. Fiuczynski, Robert Grimm, Yvonne Coady, and David Walker. patch (1)
considered harmful. In HOTOS’05: Proceedings of the 10th conference on Hot Topics
in Operating Systems, pages 16–16, Berkeley, CA, USA, 2005. USENIX Association.

[89] Beat Fluri and Harald C. Gall. Classifying change types for qualifying change cou-
plings. In ICPC ’06: Proceedings of the 14th IEEE International Conference on
Program Comprehension, pages 35–45, Washington, DC, USA, 2006. IEEE Computer
Society.

[90] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald C. Gall. Change distilling—
tree differencing for fine-grained source code change extraction. IEEE Transactions
on Software Engineering, 33(11):18, November 2007.

[91] George Forman, Kave Eshghi, and Stephane Chiocchetti. Finding similar files in
large document repositories. In KDD ’05: Proceeding of the eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, pages 394–400,
New York, NY, USA, 2005. ACM Press.

181

[92] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, 2000.

[93] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based
on product release history. In ICSM ’98: Proceedings of the International Conference
on Software Maintenance, page 190, Washington, DC, USA, 1998. IEEE Computer
Society.

[94] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Professional, 1994.

[95] Reto Geiger, Beat Fluri, Harald C. Gall, and Martin Pinzger. Relation of code clones
and change couplings. In Proceedings of the 9th International Conference of Fun-
tamental Approaches to Software Engineering (FASE), Lecture Notes in Computer
Science, pages 411–425, Vienna, Austria, March 2006. Springer.

[96] Thomas Genssler and Volker Kuttruff. Source-to-Source Transformation in the Large,
volume 2789. Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2003.

[97] Daniel M. German, Peter C. Rigby, and Margaret-Anne Storey. Using evolutionary
annotations from change logs to enhance program comprehension. In MSR ’06: Pro-
ceedings of the 2006 International Workshop on Mining Software Repositories, pages
159–162, New York, NY, USA, 2006. ACM Press.

[98] Shahram Ghandeharizadeh, Richard Hull, and Dean Jacobs. Heraclitus: elevating
deltas to be first-class citizens in a database programming language. ACM Transac-
tions on Database Systems, 21(3):370–426, 1996.

[99] Tudor Gı̂rba and Stéphane Ducasse. Modeling history to analyze software evolution:
Research articles. Journal of Software Maintenance and Evolution: Research and
Practice, 18(3):207–236, 2006.

[100] Tudor Girba, Stéphane Ducasse, and Michele Lanza. Yesterday’s weather: Guiding
early reverse engineering efforts by summarizing the evolution of changes. In ICSM
’04: Proceedings of the 20th IEEE International Conference on Software Maintenance,
pages 40–49, Washington, DC, USA, 2004. IEEE Computer Society.

[101] Michael Godfrey, Xinyi Dong, Cory Kapser, and Lijie Zou. Four interesting ways
in which history can teach us about software. In MSR ’04: Proceedings of 2004
International Workshop on Mining Software Repositories, 2004.

[102] Michael Godfrey and Qiang Tu. Tracking structural evolution using origin analysis.
In IWPSE ’02: Proceedings of the International Workshop on Principles of Software
Evolution, pages 117–119, 2002.

182

[103] Michael W. Godfrey, Davor Svetinovic, and Qiang Tu. Evolution, growth, and cloning
in linux, a case study. In 2000 CASCON workshop on Detecting Duplicated and Near
Duplicated Structures in Large Software Systems, 2000.

[104] Nicolas Gold and Andrew Mohan. A framework for understanding conceptual changes
in evolving source code. In ICSM ’03: Proceedings of the International Conference
on Software Maintenance, page 431, Washington, DC, USA, 2003. IEEE Computer
Society.

[105] Simon Goldsmith, Robert O’Callahan, and Alex Aiken. Relational queries over pro-
gram traces. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN con-
ference on Object oriented programming systems languages and applications, pages
385–402, New York, NY, USA, 2005. ACM Press.

[106] Carsten Gorg and Peter Weisgerber. Detecting and visualizing refactorings from soft-
ware archives. In IWPC ’05: Proceedings of the 13th International Workshop on
Program Comprehension, pages 205–214, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[107] Carsten Görg and Peter Weißgerber. Error detection by refactoring reconstruction.
In MSR ’05: Proceedings of the 2005 international workshop on Mining software
repositories, pages 1–5, New York, NY, USA, 2005. ACM Press.

[108] Judith E. Grass and Yih-Farn Chen. The c++ information abstractor. In C++
Conference, pages 265–278, 1990.

[109] Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey Siy. Predicting fault incidence
using software change history. IEEE Transactions on Software Engineering, 26(7):653–
661, 2000.

[110] Todd L. Graves and Audris Mockus. Inferring change effort from configuration man-
agement databases. In METRICS ’98: Proceedings of the 5th International Sympo-
sium on Software Metrics, page 267, Washington, DC, USA, 1998. IEEE Computer
Society.

[111] W.G. Griswold. Coping with crosscutting software changes using information trans-
parency. In Reflection 2001: The Third International Conference on Metalevel Archi-
tectures and Separation of Crosscutting Concerns, pages 250–265. Springer, 2001.

[112] William G. Griswold. Program Restructuring as an Aid to Software Maintenance.
PhD thesis, University of Washington, 1991.

[113] William G. Griswold, Darren C. Atkinson, and Collin McCurdy. Fast, flexible syntac-
tic pattern matching and processing. In WPC ’96: Proceedings of the 4th International

183

Workshop on Program Comprehension, page 144, Washington, DC, USA, 1996. IEEE
Computer Society.

[114] Bjorn Gulla, Even-Andre Karlsson, and Dashing Yeh. Change-oriented version de-
scriptions in epos. Software Engineering Journal, 6(6):378–386, 1991.

[115] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest: Scalable source code
queries with datalog. In ECOOP’06: Proceedings of the 20th European Conference on
Object-Oriented Programming, volume 4067 of Lecture Notes in Computer Science,
pages 2–27, Berlin, Germany, 2006. Springer.

[116] W. Harrison, H. Ossher, S. Sutton, and P. Tarr. Concern modeling in the concern
manipulation environment. In Proceedings of the 2005 Workshop on Modeling and
Analysis of Concerns in Software, pages 1–5. ACM Press New York, NY, USA, 2005.

[117] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi. Re-
gression test selection for java software. In OOPSLA ’01: Proceedings of the 16th
ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages,
and Applications, pages 312–326, New York, NY, USA, 2001. ACM.

[118] Ahmed E. Hassan and Richard C. Holt. The chaos of software development. In
IWPSE ’03: Proceedings of the 6th International Workshop on Principles of Software
Evolution, page 84, Washington, DC, USA, 2003. IEEE Computer Society.

[119] Ahmed E. Hassan and Richard C. Holt. Predicting change propagation in software
systems. In ICSM ’04: Proceedings of the 20th IEEE International Conference on
Software Maintenance, pages 284–293, Washington, DC, USA, 2004. IEEE Computer
Society.

[120] Yasuhiro Hayase, Makoto Matsushita, and Katsuro Inoue. Revision control system
using delta script of syntax tree. In SCM ’05: Proceedings of the 12th International
Workshop on Software Configuration Management, pages 133–149, New York, NY,
USA, 2005. ACM Press.

[121] Paul Heckel. A technique for isolating differences between files. Communications of
the ACM, 21(4):264–268, 1978.

[122] Scott A. Hendrickson and Andre van der Hoek. Modeling product line architectures
through change sets and relationships. In ICSE ’07: Proceedings of the 29th Inter-
national Conference on Software Engineering, pages 189–198, Washington, DC, USA,
2007. IEEE Computer Society.

184

[123] Johannes Henkel and Amer Diwan. Catchup!: capturing and replaying refactorings to
support api evolution. In ICSE ’05: Proceedings of the 27th International Conference
on Software Engineering, pages 274–283, New York, NY, USA, 2005. ACM.

[124] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter.
An empirical study of global software development: distance and speed. In ICSE
’01: Proceedings of the 23rd International Conference on Software Engineering, pages
81–90, Washington, DC, USA, 2001. IEEE Computer Society.

[125] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Refactoring
support based on code clone analysis. In PROFES ’04: Proceedings of 5th Interna-
tional Conference on Product Focused Software Process Improvement, Kausai Science
City, Japan, April 5-8, 2004, pages 220–233, 2004.

[126] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Aries: refac-
toring support tool for code clone. In 3-WoSQ: Proceedings of the third workshop on
Software quality, pages 1–4, New York, NY, USA, 2005. ACM.

[127] Yoshiki Higo, Yasushi Ueda, Shinji Kusumoto, and Katsuro Inoue. Simultaneous
modification support based on code clone analysis. In APSEC ’07: Proceedings of the
14th Asia-Pacific Software Engineering Conference, pages 262–269, Washington, DC,
USA, 2007. IEEE Computer Society.

[128] Abram Hindle and Daniel M. German. Scql: a formal model and a query language
for source control repositories. In MSR ’05: Proceedings of the 2005 International
Workshop on Mining Software Repositories, pages 1–5, New York, NY, USA, 2005.
ACM.

[129] Reid Holmes and Gail C. Murphy. Using structural context to recommend source code
examples. In ICSE ’05: Proceedings of the 27th International Conference on Software
Engineering, pages 117–125, New York, NY, USA, 2005. ACM Press.

[130] R. Holt and J. Y. Pak. Gase: visualizing software evolution-in-the-large. In WCRE
’96: Proceedings of the 3rd Working Conference on Reverse Engineering, page 163,
Washington, DC, USA, 1996. IEEE Computer Society.

[131] Richard C. Holt. Structural manipulations of software architecture using tarski re-
lational algebra. In WCRE ’98: Proceedings of the Working Conference on Reverse
Engineering, page 210, Washington, DC, USA, 1998. IEEE Computer Society.

[132] Richard C. Holt. Software architecture abstraction and aggregation as algebraic ma-
nipulations. In CASCON ’99: Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative research, page 5. IBM Press, 1999.

185

[133] Susan Horwitz. Identifying the semantic and textual differences between two versions
of a program. In PLDI ’90: Proceedings of the ACM SIGPLAN 1990 conference on
Programming language design and implementation, pages 234–245, New York, NY,
USA, 1990. ACM.

[134] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating noninterfering versions of
programs. ACM Transactions on Programming Languages and Systems, 11(3):345–
387, 1989.

[135] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman
to Master. Addison-Wesley Professional, 2000.

[136] James J. Hunt and Walter F. Tichy. Extensible language-aware merging. In ICSM
’02: Proceedings of the International Conference on Software Maintenance (ICSM’02),
page 511, Washington, DC, USA, 2002. IEEE Computer Society.

[137] James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy. Delta algorithms: an empirical
analysis. ACM Transactions on Software Engineering and Methodology, 7(2):192–214,
1998.

[138] James W. Hunt and M.D. Mcilroy. An algorithm for differential file comparison.
Technical report, 1976.

[139] James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest
common subsequences. Communications of the ACM, 20(5):350–353, 1977.

[140] IClaudia-Lavinia Ignat and Moira C. Norrie. Operation-based versus State-based
Merging in Asynchronous Graphical Collaborative Editing. In Proceedings of the 6th
International Workshop on Collaborative Editing Systems, Chicago, November, 2004.

[141] Clemente Izurieta and James Bieman. The evolution of freebsd and linux. In IS-
ESE ’06: Proceedings of the 2006 ACM/IEEE International Symposium on Empirical
Software Engineering, pages 204–211, New York, NY, USA, 2006. ACM.

[142] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions
on Software Engineering Methodology, 11(2):256–290, 2002.

[143] Daniel Jackson and David A. Ladd. Semantic diff: A tool for summarizing the effects of
modifications. In ICSM ’94: Proceedings of the International Conference on Software
Maintenance, pages 243–252, Washington, DC, USA, 1994. IEEE Computer Society.

[144] Doug Janzen and Kris De Volder. Navigating and querying code without getting
lost. In International Conference on Aspect Oriented Software Development, pages
178–187, 2003.

186

[145] Stan Jarzabek and Li Shubiao. Eliminating redundancies with a ”composition with
adaptation” meta-programming technique. In ESEC/FSE-11: Proceedings of the 9th
European Software Engineering Conference held jointly with 11th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 237–246,
New York, NY, USA, 2003. ACM.

[146] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard:
Scalable and accurate tree-based detection of code clones. In ICSE ’07: Proceedings
of the 29th International Conference on Software Engineering, pages 96–105, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[147] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. Context-based detection of clone-
related bugs. In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 55–64, New York, NY, USA, 2007.
ACM.

[148] J. Howard Johnson. Identifying redundancy in source code using fingerprints. In
CASCON ’93: Proceedings of the 1993 conference of the Centre for Advanced Studies
on Collaborative research, pages 171–183. IBM Press, 1993.

[149] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: A multilinguistic
token-based code clone detection system for large scale source code. IEEE Transac-
tions on Software Engineering, 28(7):654–670, 2002.

[150] Cory Kapser and Michael W. Godfrey. Aiding comprehension of cloning through
categorization. In IWPSE ’04: Proceedings of the Principles of Software Evolution, 7th
International Workshop, pages 85–94, Washington, DC, USA, 2004. IEEE Computer
Society.

[151] Cory Kapser and Michael W. Godfrey. Improved tool support for the investigation
of duplication in software. In ICSM ’05: Proceedings of the 21st IEEE International
Conference on Software Maintenance, pages 305–314, Washington, DC, USA, 2005.
IEEE Computer Society.

[152] Cory Kapser and Michael W. Godfrey. ”cloning considered harmful” considered harm-
ful. In WCRE ’06: Proceedings of the 13th Working Conference on Reverse Engineer-
ing, pages 19–28, Washington, DC, USA, 2006. IEEE Computer Society.

[153] Yoshio Kataoka, David Notkin, Michael D. Ernst, and William G. Griswold. Auto-
mated support for program refactoring using invariants. ICSM, 00:736, 2001.

[154] Chris F. Kemerer and Sandra Slaughter. An empirical approach to studying software
evolution. IEEE Transactions on Software Engineering, 25(4):493–509, 1999.

187

[155] Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model for ides. In AOSD
’05: Proceedings of the 4th International Conference on Aspect-Oriented Software
Development, pages 159–168, New York, NY, USA, 2005. ACM Press.

[156] Roni Khardon. Learning horn expressions with logan-h. In ICML ’00: Proceedings of
the Seventeenth International Conference on Machine Learning, pages 471–478, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[157] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of aspectj. In ECOOP ’01: Proceedings of the
15th European Conference on Object-Oriented Programming, pages 327–353, London,
UK, 2001. Springer-Verlag.

[158] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In European
Conference on Object-oriented Programming, volume 1241, pages 220–242. Lecture
Notes in Computer Science 1241, 1997.

[159] Christoph Kiefer, Abraham Bernstein, and Jonas Tappolet. Mining software reposi-
tories with isparol and a software evolution ontology. In MSR ’07: Proceedings of the
Fourth International Workshop on Mining Software Repositories, page 10, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[160] Jung-Min Kim and Adam Porter. A history-based test prioritization technique for
regression testing in resource constrained environments. In ICSE ’02: Proceedings
of the 24th International Conference on Software Engineering, pages 119–129, New
York, NY, USA, 2002. ACM.

[161] Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin. An ethnographic
study of copy and paste programming practices in oopl. In ISESE ’04: Proceedings of
the 2004 International Symposium on Empirical Software Engineering, pages 83–92,
Washington, DC, USA, 2004. IEEE Computer Society.

[162] Miryung Kim and David Notkin. Using a clone genealogy extractor for understand-
ing and supporting evolution of code clones. In MSR ’05: Proceedings of the 2005
International Workshop on Mining Software Repositories, pages 1–5, New York, NY,
USA, 2005. ACM.

[163] Miryung Kim and David Notkin. Program element matching for multi-version pro-
gram analyses. In Proceedings of the International Workshop on Mining Software
Repositories, pages 58–64, 2006.

[164] Miryung Kim, David Notkin, and Dan Grossman. Automatic inference of structural
changes for matching across program versions. In ICSE ’07: Proceedings of the 29th

188

International Conference on Software Engineering, pages 333–343, Washington, DC,
USA, 2007. IEEE Computer Society.

[165] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An empirical study of
code clone genealogies. In ESEC/FSE-13: Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages 187–196, New York, NY, USA,
2005. ACM.

[166] Sunghun Kim and Michael D. Ernst. Which warnings should i fix first? In ESEC-FSE
’07: Proceedings of the the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on Foundations of Software Engi-
neering, pages 45–54, New York, NY, USA, 2007. ACM.

[167] Sunghun Kim, Kai Pan, and Jr. E. James Whitehead. When functions change their
names: Automatic detection of origin relationships. In WCRE ’05: Proceedings of the
12th Working Conference on Reverse Engineering, pages 143–152, Washington, DC,
USA, 2005. IEEE Computer Society.

[168] Sunghun Kim, E. James Whitehead, and Jennifer Bevan. Analysis of signature change
patterns. In MSR ’05: Proceedings of the 2005 International Workshop on Mining
Software Repositories, pages 1–5, New York, NY, USA, 2005. ACM.

[169] Günter Kniesel, Jan Hannemann, and Tobias Rho. A comparison of logic-based in-
frastructures for concern detection and extraction. In LATE ’07: Proceedings of the
3rd Workshop on Linking Aspect Technology and Evolution, page 6, New York, NY,
USA, 2007. ACM.

[170] Andrew J. Ko, Robert DeLine, and Gina Venolia. Information needs in collocated
software development teams. In International Conference on Software Engineering,
pages 344–353, 2007.

[171] Stanley Kok and Pedro Domingos. Learning the structure of markov logic networks.
In ICML ’05: Proceedings of the 22nd international conference on Machine learning,
pages 441–448, New York, NY, USA, 2005. ACM.

[172] Raghavan Komondoor and Susan Horwitz. Semantics-preserving procedure extrac-
tion. In POPL ’00: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 155–169, New York, NY, USA, 2000.
ACM Press.

[173] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in
source code. In SAS, pages 40–56, 2001.

189

[174] Raghavan Komondoor and Susan Horwitz. Effective, automatic procedure extraction.
In IWPC ’03: Proceedings of the 11th IEEE International Workshop on Program
Comprehension, page 33, Washington, DC, USA, 2003. IEEE Computer Society.

[175] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using abstract
syntax suffix trees. In WCRE ’06: Proceedings of the 13th Working Conference on
Reverse Engineering, pages 253–262, Washington, DC, USA, 2006. IEEE Computer
Society.

[176] Jens Krinke. Identifying similar code with program dependence graphs. In WCRE
’01: Proceedings of the Eighth Working Conference on Reverse Engineering, page 301,
Washington, DC, USA, 2001. IEEE Computer Society.

[177] Jens Krinke. A study of consistent and inconsistent changes to code clones. In WCRE
’07: Proceedings of the 14th Working Conference on Reverse Engineering, pages 170–
178, Washington, DC, USA, 2007. IEEE Computer Society.

[178] David Lacey and Oege de Moor. Imperative program transformation by rewriting. In
CC ’01: Proceedings of the 10th International Conference on Compiler Construction,
pages 52–68, London, UK, 2001. Springer-Verlag.

[179] David A. Ladd and J. Christopher Ramming. A*: A language for implementing
language processors. IEEE Transactions on Software Engineering, 21(11):894–901,
1995.

[180] Bruno Lague, Daniel Proulx, Jean Mayrand, Ettore M. Merlo, and John Hudepohl.
Assessing the benefits of incorporating function clone detection in a development pro-
cess. In ICSM ’97: Proceedings of the International Conference on Software Mainte-
nance, page 314, Washington, DC, USA, 1997. IEEE Computer Society.

[181] B. M. Lange and T. G. Moher. Some strategies of reuse in an object-oriented pro-
gramming environment. In CHI ’89: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 69–73, New York, NY, USA, 1989. ACM.

[182] Michele Lanza. The evolution matrix: recovering software evolution using software
visualization techniques. In IWPSE ’01: Proceedings of the 4th International Work-
shop on Principles of Software Evolution, pages 37–42, New York, NY, USA, 2001.
ACM.

[183] Michele Lanza and Stéphane Ducasse. Polymetric views-a lightweight visual approach
to reverse engineering. IEEE Transactions on Software Engineering, 29(9):782–795,
2003.

190

[184] Janusz Laski and Wojciech Szermer. Identification of program modifications and its
applications in software maintenance. In ICSM 1992: Proceedings of International
Conference on Software Maintenance, 1992.

[185] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models:
a study of developer work habits. In ICSE ’06: Proceedings of the 28th Interna-
tional Conference on Software Engineering, pages 492–501, New York, NY, USA,
2006. ACM.

[186] V. I. Levenstein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10, 10(8):707–710, 1966.

[187] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner: A tool
for finding copy-paste and related bugs in operating system code. In OSDI, pages
289–302, 2004.

[188] A. Lie, R. Conradi, T. M. Didriksen, and E.-A. Karlsson. Change oriented versioning
in a software engineering database. SIGSOFT Software Engineering Notes, 14(7):56–
65, 1989.

[189] Mark A. Linton. Implementing relational views of programs. In SDE 1: Proceedings
of the first ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pages 132–140, New York, NY, USA, 1984.
ACM.

[190] Ernst Lippe and Norbert van Oosterom. Operation-based merging. SIGSOFT Soft-
ware Engineering Notes, 17(5):78–87, 1992.

[191] Simone Livieri, Yoshiki Higo, Makoto Matsushita, and Katsuro Inoue. Analysis of
the linux kernel evolution using code clone coverage. In MSR ’07: Proceedings of the
Fourth International Workshop on Mining Software Repositories, page 22, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[192] Simone Livieri, Yoshiki Higo, Makoto Matushita, and Katsuro Inoue. Very-large
scale code clone analysis and visualization of open source programs using distributed
ccfinder: D-ccfinder. In ICSE ’07: Proceedings of the 29th International Conference on
Software Engineering, pages 106–115, Washington, DC, USA, 2007. IEEE Computer
Society.

[193] Benjamin Livshits and Thomas Zimmermann. Dynamine: finding common error pat-
terns by mining software revision histories. In ESEC/FSE-13: Proceedings of the 10th
European Software Engineering Conference held jointly with 13th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, pages 296–305, New
York, NY, USA, 2005. ACM.

191

[194] Angela Lozano, Michel Wermelinger, and Bashar Nuseibeh. Evaluating the harmful-
ness of cloning: A change based experiment. In MSR ’07: Proceedings of the Fourth
International Workshop on Mining Software Repositories, page 18, Washington, DC,
USA, 2007. IEEE Computer Society.

[195] Carine Lucas, Patrick Steyaert, and Kim Mens. Managing software evolution through
reuse contracts. In CSMR ’97: Proceedings of the 1st Euromicro Working Conference
on Software Maintenance and Reengineering (CSMR ’97), page 165, Washington, DC,
USA, 1997. IEEE Computer Society.

[196] Boris Magnusson, Ulf Asklund, and Sten Minör. Fine-grained revision control for
collaborative software development. In SIGSOFT ’93: Proceedings of the 1st ACM
SIGSOFT symposium on Foundations of Software Engineering, pages 33–41, New
York, NY, USA, 1993. ACM Press.

[197] Guido Malpohl, James J. Hunt, and Walter F. Tichy. Renaming detection. Automated
Software Engineering, 10(2):183–202, 2000.

[198] Udi Manber. Finding similar files in a large file system. In Proceedings of the USENIX
Winter 1994 Technical Conference, pages 1–10, San Fransisco, CA, USA, 17–21 1994.

[199] David Mandelin, Doug Kimelman, and Daniel Yellin. A bayesian approach to diagram
matching with application to architectural models. In ICSE ’06: Proceedings of the
28th International Conference on Software Engineering, pages 222–231, New York,
NY, USA, 2006. ACM.

[200] David Mandelin, Lin Xu, Rastislav Bod́ık, and Doug Kimelman. Jungloid mining:
helping to navigate the api jungle. In PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implementation, pages
48–61, New York, NY, USA, 2005. ACM.

[201] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application errors
and security flaws using pql: a program query language. In OOPSLA ’05: Proceedings
of the 20th annual ACM SIGPLAN conference on Object oriented programming, sys-
tems, languages, and applications, pages 365–383, New York, NY, USA, 2005. ACM.

[202] Jean Mayrand, Claude Leblanc, and Ettore Merlo. Experiment on the automatic
detection of function clones in a software system using metrics. In ICSM ’96: Pro-
ceedings of the 1996 International Conference on Software Maintenance, page 244,
Washington, DC, USA, 1996. IEEE Computer Society.

[203] Akhil Mehra, John Grundy, and John Hosking. A generic approach to supporting
diagram differencing and merging for collaborative design. In ASE ’05: Proceedings
of the 20th IEEE/ACM international Conference on Automated Software Engineering,
pages 204–213, New York, NY, USA, 2005. ACM.

192

[204] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt, and B. Natarajan.
Skoll: Distributed continuous quality assurance. In ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering, pages 459–468, Washington, DC,
USA, 2004. IEEE Computer Society.

[205] Kim Mens, Tom Mens, and Michel Wermelinger. Maintaining software through in-
tentional source-code views. In SEKE ’02: Proceedings of the 14th international
conference on Software engineering and knowledge engineering, pages 289–296, New
York, NY, USA, 2002. ACM.

[206] Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting software development
through declaratively codified programming patterns. Expert Systems With Appli-
cations, 23(4):405–413, 2002.

[207] Kim Mens, Roel Wuyts, and Theo D’Hondt. Declaratively codifying software ar-
chitectures using virtual software classifications. In TOOLS ’99: Proceedings of the
Technology of Object-Oriented Languages and Systems, page 33, Washington, DC,
USA, 1999. IEEE Computer Society.

[208] Tom Mens. A state-of-the-art survey on software merging. IEEE Transactions on
Software Engineering, 28(5):449–462, 2002.

[209] Tom Mens, Gabriele Taentzer, and Olga Runge. Detecting structural refactoring
conflicts using critical pair analysis. Electronic Notes in Theoretical Computer Science,
127(3):113–128, 2005.

[210] Tom Mens and Tom Tourwe. A declarative evolution framework for object-oriented
design patterns. In ICSM ’01: Proceedings of the IEEE International Conference
on Software Maintenance (ICSM’01), page 570, Washington, DC, USA, 2001. IEEE
Computer Society.

[211] Tom Mens and Tom Tourwe. A survey of software refactoring. IEEE Transactions
on Software Engineering, 30(2):126–139, 2004.

[212] Ettore Merlo, Giuliano Antoniol, Massimiliano Di Penta, and Vincenzo Fabio Rollo.
Linear complexity object-oriented similarity for clone detection and software evolution
analyses. In ICSM ’04: Proceedings of the 20th IEEE International Conference on
Software Maintenance, pages 412–416, Washington, DC, USA, 2004. IEEE Computer
Society.

[213] Amir Michail. Data mining library reuse patterns using generalized association rules.
In ICSE ’00: Proceedings of the 22nd international conference on Software engineer-
ing, pages 167–176, New York, NY, USA, 2000. ACM.

193

[214] Lilyana Mihalkova and Raymond J. Mooney. Bottom-up learning of markov logic
network structure. In ICML ’07: Proceedings of the 24th International Conference on
Machine Learning, pages 625–632, New York, NY, USA, 2007. ACM Press.

[215] Robert C. Miller and Brad A. Myers. Interactive simultaneous editing of multiple
text regions. In Proceedings of the General Track: 2002 USENIX Annual Technical
Conference, pages 161–174, Berkeley, CA, USA, 2001. USENIX Association.

[216] Florian Mitter. Tracking source code propagation in software system via release his-
tory data and code clone detection. Master’s thesis, Technical University of Vienna,
2006.

[217] Audris Mockus and James D. Herbsleb. Expertise browser: a quantitative approach to
identifying expertise. In ICSE ’02: Proceedings of the 24th International Conference
on Software Engineering, pages 503–512, New York, NY, USA, 2002. ACM Press.

[218] Audris Mockus and Lawrence G. Votta. Identifying reasons for software changes
using historic databases. In ICSM ’00: Proceedings of the International Conference
on Software Maintenance, page 120, Washington, DC, USA, 2000. IEEE Computer
Society.

[219] Audris Mockus and David M. Weiss. Globalization by chunking: A quantitative
approach. IEEE Software, 18(2):30–37, 2001.

[220] Stephen Muggleton and Cao Feng. Efficient induction of logic programs. In Proceed-
ings of the 1st Conference on Algorithmic Learning Theory, pages 368–381. Ohmsma,
Tokyo, Japan, 1990.

[221] Stephen Muggleton, Luc, and De Raedt. Raedt. inductive logic programming: Theory
and methods. Journal of Logic Programming, 19:629–679, 1994.

[222] Bjrn P. Munch, Jens otto Larsen, Bjrn Gulla, Reidar Conradi, and Even andre Karls-
son. Uniform versioning: The change-oriented model. In Proceedings of the 4th Inter-
national Workshop on Software Configuration Management (Preprint, pages 188–196,
1993.

[223] Jonathan P. Munson and Prasun Dewan. A flexible object merging framework. In
CSCW ’94: Proceedings of the 1994 ACM Conference on Computer Supported Coop-
erative Work, pages 231–242, New York, NY, USA, 1994. ACM.

[224] Andrzej S. Murawski. About the undecidability of program equivalence in finitary
languages with state. ACM Transactions on Computational Logic, 6(4):701–726, 2005.

194

[225] Gail C. Murphy, Mik Kersten, Martin P. Robillard, and Davor Cubranic. The emer-
gent structure of development task. In ECOOP ’05: Proceedings of the 19th European
Conference on Object-Oriented Programming, 2005.

[226] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion models: bridg-
ing the gap between source and high-level models. In SIGSOFT ’95: Proceedings of
the 3rd ACM SIGSOFT Symposium on Foundations of Software Engineering, pages
18–28, New York, NY, USA, 1995. ACM.

[227] Emerson R. Murphy-Hill, Philip J. Quitslund, and Andrew P. Black. Removing du-
plication from java.io: a case study using traits. In OOPSLA ’05: Companion to the
20th annual ACM SIGPLAN conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 282–291, New York, NY, USA, 2005. ACM.

[228] Eugene W. Myers. An o(ND) difference algorithm and its variations. Algorithmica,
1(2):251–266, 1986.

[229] Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures to pre-
dict system defect density. In ICSE ’05: Proceedings of the 27th International Con-
ference on Software Engineering, pages 284–292, New York, NY, USA, 2005. ACM.

[230] Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. Understanding source code
evolution using abstract syntax tree matching. In MSR’05, pages 2–6, 2005.

[231] George C. Necula. Translation validation for an optimizing compiler. In PLDI ’00:
Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language De-
sign and Implementation, pages 83–94, New York, NY, USA, 2000. ACM.

[232] Eric Nickell and Ian Smith. Extreme programming and software clones. In Interna-
tional Workshop on Detection of Software Clones, 2003.

[233] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̌rba. The story of moose: an agile
reengineering environment. SIGSOFT Software Engineering Notes, 30(5):1–10, 2005.

[234] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University
of Illinois, Urbana-Champaign, IL, USA, 1992.

[235] Alessandro Orso, Taweesup Apiwattanapong, and Mary Jean Harrold. Leveraging
field data for impact analysis and regression testing. In ESEC/FSE-11: Proceedings
of the 9th European Software Engineering Conference held jointly with 11th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages
128–137, New York, NY, USA, 2003. ACM Press.

195

[236] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. Scaling regression testing
to large software systems. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM
SIGSOFT twelfth International Symposium on Foundations of Software Engineering,
pages 241–251, New York, NY, USA, 2004. ACM.

[237] Andy Ozment and Stuart E. Schechter. Milk or wine: does software security improve
with age? In USENIX-SS’06: Proceedings of the 15th conference on USENIX Security
Symposium, pages 7–7, Berkeley, CA, USA, 2006. USENIX Association.

[238] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. Documenting
and automating collateral evolutions in linux device drivers. In Eurosys ’08: Proceed-
ings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems
2008, pages 247–260, New York, NY, USA, 2008. ACM.

[239] Yoann Padioleau, Julia L. Lawall, and Gilles Muller. Understanding collateral evolu-
tion in linux device drivers. SIGOPS Operating Systems Review, 40(4):59–71, 2006.

[240] Yoann Padioleau, Julia L. Lawall, and Gilles Muller. Smpl: A domain-specific lan-
guage for specifying collateral evolutions in linux device drivers. Electronic Notes
Theoretical Computer Science, 166:47–62, 2007.

[241] David Lorge Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, 1972.

[242] David Lorge Parnas. Software aging. In ICSE ’94: Proceedings of the 16th Interna-
tional Conference on Software Engineering, pages 279–287, Los Alamitos, CA, USA,
1994. IEEE Computer Society Press.

[243] Santanu Paul and Atul Prakash. A framework for source code search using program
patterns. IEEE Transactions on Software Engineering, 20(6):463–475, 1994.

[244] Ulf Pettersson and Stan Jarzabek. Industrial experience with building a web portal
product line using a lightweight, reactive approach. In ESEC/FSE-13: Proceedings
of the 10th European Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages
326–335, New York, NY, USA, 2005. ACM.

[245] Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza. Visualizing mul-
tiple evolution metrics. In SoftVis ’05: Proceedings of the 2005 ACM symposium on
Software visualization, pages 67–75, New York, NY, USA, 2005. ACM.

[246] Ranjith Purushothaman and Dewayne E. Perry. Toward understanding the rhetoric
of small source code changes. IEEE Transactions on Software Engineering, 31(6):511–
526, 2005.

196

[247] J. Ross Quinlan. Learning logical definitions from relations. Machine Learning,
5(3):239–266, 1990.

[248] Luc De Raedt and Luc Dehaspe. Clausal discovery. Machine Learning, 26(2-3):99–146,
1997.

[249] Shruti Raghavan, Rosanne Rohana, David Leon, Andy Podgurski, and Vinay Au-
gustine. Dex: A semantic-graph differencing tool for studying changes in large code
bases. In ICSM ’04: Proceedings of the 20th IEEE International Conference on Soft-
ware Maintenance, pages 188–197, Washington, DC, USA, 2004. IEEE Computer
Society.

[250] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. The VLDB Journal: Very Large Data Bases, 10(4):334–350, 2001.

[251] Damith C. Rajapakse and Stan Jarzabek. Using server pages to unify clones in web
applications: A trade-off analysis. In ICSE ’07: Proceedings of the 29th International
Conference on Software Engineering, pages 116–126, Washington, DC, USA, 2007.
IEEE Computer Society.

[252] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. Sieve: A
tool for automatically detecting variations across program versions. In ASE ’06:
Proceedings of the 21st IEEE/ACM International Conference on Automated Software
Engineering, pages 241–252, Washington, DC, USA, 2006. IEEE Computer Society.

[253] Steven P. Reiss. Tracking source locations. In ICSE ’08: Proceedings of the 30th
International Conference on Software Engineering, pages 11–20, New York, NY, USA,
2008. ACM.

[254] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. Chianti:
a tool for change impact analysis of java programs. In OOPSLA ’04: Proceedings of the
19th annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 432–448, New York, NY, USA, 2004. ACM.

[255] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The use of program
profiling for software maintenance with applications to the year 2000 problem. In
ESEC ’97/FSE-5: Proceedings of the 6th European Conference held jointly with the 5th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 432–449, New York, NY, USA, 1997. Springer-Verlag New York, Inc.

[256] Matthias Rieger, Stéphane Ducasse, and Michele Lanza. Insights into system-wide
code duplication. In WCRE ’04: Proceedings of the 11th Working Conference on
Reverse Engineering, pages 100–109, Washington, DC, USA, 2004. IEEE Computer
Society.

197

[257] Romain Robbes. Mining a change-based software repository. In MSR ’07: Proceed-
ings of the Fourth International Workshop on Mining Software Repositories, page 15,
Washington, DC, USA, 2007. IEEE Computer Society.

[258] Martin P. Robillard. Automatic generation of suggestions for program investigation.
In ESEC/FSE-13: Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 11–20, New York, NY, USA, 2005. ACM.

[259] Martin P. Robillard and Gail C. Murphy. Concern graphs: finding and describing
concerns using structural program dependencies. In ICSE ’02: Proceedings of the
24th International Conference on Software Engineering, pages 406–416, New York,
NY, USA, 2002. ACM.

[260] Martin P. Robillard and Gail C. Murphy. Feat: a tool for locating, describing, and
analyzing concerns in source code. In ICSE ’03: Proceedings of the 25th International
Conference on Software Engineering, pages 822–823, Washington, DC, USA, 2003.
IEEE Computer Society.

[261] Mary Beth Rosson and John M. Carroll. Active programming strategies in reuse. In
ECOOP ’93: Proceedings of the 7th European Conference on Object-Oriented Pro-
gramming, pages 4–20, London, UK, 1993. Springer-Verlag.

[262] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test selection
technique. ACM Transactions on Software Engineering and Methodology, 6(2):173–
210, 1997.

[263] Filip Van Rysselberghe and Serge Demeyer. Reconstruction of successful software
evolution using clone detection. In IWPSE ’03: Proceedings of the 6th International
Workshop on Principles of Software Evolution, page 126, Washington, DC, USA,
2003. IEEE Computer Society.

[264] Filip Van Rysselberghe and Serge Demeyer. Evaluating clone detection techniques
from a refactoring perspective. In ASE ’04: Proceedings of the 19th IEEE Interna-
tional Conference on Automated Software Engineering, pages 336–339, Washington,
DC, USA, 2004. IEEE Computer Society.

[265] Filip Van Rysselberghe and Serge Demeyer. Mining version control systems for
facs(frequently applied changes). In MSR ’04: 2004 Internationl Workshop on Mining
Software Repositories, 2004.

[266] Filip Van Rysselberghe and Serge Demeyer. Studying software evolution information
by visualizing the change history. In ICSM ’04: Proceedings of the 20th IEEE In-
ternational Conference on Software Maintenance, pages 328–337, Washington, DC,
USA, 2004. IEEE Computer Society.

198

[267] Filip Van Rysselberghe and Serge Demeyer. Studying versioning information to un-
derstand inheritance hierarchy changes. In MSR ’07: Proceedings of the Fourth Inter-
national Workshop on Mining Software Repositories, page 16, Washington, DC, USA,
2007. IEEE Computer Society.

[268] Vibha Sazawal. Connecting Software Design Principles to Source Code for Improved
Ease of Change. PhD thesis, University of Washington, 2005.

[269] Vibha Sazawal, Miryung Kim, and David Notkin. A study of evolution in the pres-
ence of source-derived partial design representations. In IWPSE ’04: Proceedings
of the Principles of Software Evolution, 7th International Workshop, pages 21–30,
Washington, DC, USA, 2004. IEEE Computer Society.

[270] Thorsten Schäfer, Jan Jonas, and Mira Mezini. Mining framework usage changes from
instantiation code. In ICSE ’08: Proceedings of the 30th International Conference on
Software Engineering, pages 471–480, New York, NY, USA, 2008. ACM.

[271] David Shepherd, Zachary P. Fry, Emily Hill, Lori Pollock, and K. Vijay-Shanker.
Using natural language program analysis to locate and understand action-oriented
concerns. In AOSD ’07: Proceedings of the 6th International Conference on Aspect-
Oriented Software Development, pages 212–224, New York, NY, USA, 2007. ACM.

[272] Saurabh Sinha and Mary Jean Harrold. Analysis and testing of programs with excep-
tion handling constructs. IEEE Transactions on Software Engineering, 26(9):849–871,
2000.

[273] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes induce
fixes? In MSR ’05: Proceedings of the 2005 international workshop on Mining software
repositories, pages 1–5, New York, NY, USA, 2005. ACM.

[274] Richard Snodgrass and Karen Shannon. Fine grained data management to achieve
evolution resilience in a software development environment. In SDE 4: Proceedings of
the fourth ACM SIGSOFT symposium on Software development environments, pages
144–156, New York, NY, USA, 1990. ACM Press.

[275] Amitabh Srivastava and Jay Thiagarajan. Effectively prioritizing tests in development
environment. In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, pages 97–106, New York, NY, USA,
2002. ACM.

[276] Maximilian Stoerzer, Barbara G. Ryder, Xiaoxia Ren, and Frank Tip. Finding failure-
inducing changes in java programs using change classification. In SIGSOFT ’06/FSE-
14: Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 57–68, New York, NY, USA, 2006. ACM.

199

[277] Margaret-Anne Storey, Casey Best, Jeff Michaud, Derek Rayside, Marin Litoiu, and
Mark Musen. Shrimp views: an interactive environment for information visualization
and navigation. In CHI ’02: Extended abstracts on Human factors in Computing
Systems, pages 520–521, New York, NY, USA, 2002. ACM Press.

[278] K.J. Sullivan, P. Chalasani, S. Jha, and V. Sazawal. Software Design as an Invest-
ment Activity: A Real Options Perspective in Real Options and Business Strategy:
Applications to Decision Making. Risk Books, November 1999.

[279] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton. N degrees of
separation: multi-dimensional separation of concerns. In ICSE ’99: Proceedings of the
21st International Conference on Software Engineering, pages 107–119, Los Alamitos,
CA, USA, 1999. IEEE Computer Society Press.

[280] Walter F. Tichy. The string-to-string correction problem with block moves. ACM
Transactions on Computer Systems, 2(4):309–321, 1984.

[281] Michael Toomim, Andrew Begel, and Susan L. Graham. Managing duplicated code
with linked editing. In VLHCC ’04: Proceedings of the 2004 IEEE Symposium on
Visual Languages - Human Centric Computing, pages 173–180, Washington, DC,
USA, 2004. IEEE Computer Society.

[282] Qiang Tu and Michael W. Godfrey. An integrated approach for studying architectural
evolution. In IWPC ’02: Proceedings of the 10th International Workshop on Program
Comprehension, page 127, Washington, DC, USA, 2002. IEEE Computer Society.

[283] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. On detection
of gapped code clones using gap locations. In Proc. of the Asia-Pacific Software
Engineering Conference, pages 327–336, 2002.

[284] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I.
Computer Science Press, 1988.

[285] Remco van Engelen. On the use of clone detection for identifying crosscutting concern
code. IEEE Transactions on Software Engineering, 31(10):804–818, 2005. Student
Member-Magiel Bruntink and Member-Arie van Deursen and Member-Tom Tourwe.

[286] Michael VanHilst and David Notkin. Decoupling change from design. In SIGSOFT
’96: Proceedings of the 4th ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 58–69, New York, NY, USA, 1996. ACM.

[287] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. JunGL: a scripting language for
refactoring. In Dieter Rombach and Mary Lou Soffa, editors, ICSE’06: Proceedings
of the 28th International Conference on Software Engineering, pages 172–181, New
York, NY, USA, 2006. ACM Press.

200

[288] E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and sys-
tems in StrategoXT-0.9. Domain-Specific Program Generation, 3016:216–238, 2004.

[289] Kris De Volder. Type-Oriented Logic Meta Programming. PhD thesis, Vrije Univer-
siteit Brussel, 1998.

[290] Vera Wahler, Dietmar Seipel, Jurgen Wolff v. Gudenberg, and Gregor Fischer. Clone
detection in source code by frequent itemset techniques. In SCAM ’04: Proceedings of
the Source Code Analysis and Manipulation, Fourth IEEE International Workshop,
pages 128–135, Washington, DC, USA, 2004. IEEE Computer Society.

[291] Andrew Walenstein, Nitin Jyoti, Junwei Li, Yun Yang, and Arun Lakhotia. Problems
creating task-relevant clone detection reference data. In WCRE ’03: Proceedings of
the 10th Working Conference on Reverse Engineering, page 285, Washington, DC,
USA, 2003. IEEE Computer Society.

[292] Jason T. L. Wang, Kaizhong Zhang, and Chung-Wei Chirn. The approximate graph
matching problem. In IEEE International Conference on Pattern Recognition, pages
284–288, 1994.

[293] Zheng Wang. Progressive profiling: a methodology based on profile propagation and
selective profile collection. PhD thesis, Harvard University, 2001. Adviser-Michael D.
Smith.

[294] Zheng Wang, Ken Pierce, and Scott McFarling. BMAT - a binary matching tool for
stale profile propagation. Journal of Instruction-Level Parallelism, 2, 2000.

[295] Peter Weissgerber and Stephan Diehl. Identifying refactorings from source-code
changes. In ASE ’06: Proceedings of the 21st IEEE/ACM International Conference
on Automated Software Engineering, pages 231–240, Washington, DC, USA, 2006.
IEEE Computer Society.

[296] Bernhard Westfechtel. Structure-oriented merging of revisions of software documents.
In Proceedings of the 3rd International Workshop on Software configuration manage-
ment, pages 68–79, 1991.

[297] Deborah L. Whitfield and Mary Lou Soffa. An approach for exploring code improv-
ing transformations. ACM Transactions on Programming Languages and Systems,
19(6):1053–1084, 1997.

[298] Jingwei Wu, Richard C. Holt, and Ahmed E. Hassan. Exploring software evolution
using spectrographs. In WCRE ’04: Proceedings of the 11th Working Conference
on Reverse Engineering, pages 80–89, Washington, DC, USA, 2004. IEEE Computer
Society.

201

[299] Sun Wu and Udi Manber. Agrep – a fast approximate pattern-matching tool. In Pro-
ceedings USENIX Winter 1992 Technical Conference, pages 153–162, San Francisco,
CA, 1992.

[300] Roy Wuyts. Declarative reasoning about the structure of object-oriented systems. In
TOOLS ’98: Proceedings of the Technology of Object-Oriented Languages and Sys-
tems, pages 112–124, 1998.

[301] Zhenchang Xing. Analyzing the evolutionary history of the logical design of object-
oriented software. IEEE Transactions on Software Engineering, 31(10):850–868, 2005.
Member-Eleni Stroulia.

[302] Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-oriented design
differencing. In ASE ’05: Proceedings of the 20th IEEE/ACM International Confer-
ence on Automated Software Engineering, pages 54–65, New York, NY, USA, 2005.
ACM.

[303] Tetsuo Yamamoto, Makoto Matsushita, Toshihiro Kamiya, and Katsuro Inoue. Mea-
suring similarity of large software systems based on source code correspondence. In
Proceedings of 2005 Product Focused Software Process Improvement, pages 530–544,
2005.

[304] Wuu Yang. Identifying syntactic differences between two programs. Software – Prac-
tice & Experience, 21(7):739–755, 1991.

[305] Wuu Yang, Susan Horwitz, and Thomas Reps. Detecting program components with
equivalent behaviors. Technical Report CS-TR-1989-840, University of Wisconsin,
Madison, 1989.

[306] Andrew Y. Yao. Cvssearch: Searching through source code using cvs comments. In
ICSM ’01: Proceedings of the IEEE International Conference on Software Mainte-
nance, page 364, Washington, DC, USA, 2001. IEEE Computer Society.

[307] Cemal Yilmaz, Arvind S. Krishna, Atif Memon, Adam Porter, Douglas C. Schmidt,
Aniruddha Gokhale, and Balachandran Natarajan. Main effects screening: a dis-
tributed continuous quality assurance process for monitoring performance degradation
in evolving software systems. In ICSE ’05: Proceedings of the 27th International Con-
ference on Software Engineering, pages 293–302, New York, NY, USA, 2005. ACM.

[308] Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark Chu-Carroll. Predict-
ing source code changes by mining change history. IEEE Transactions on Software
Engineering, 30(9):574–586, 2004.

202

[309] Andreas Zeller. Yesterday, my program worked. today, it does not. why? In
ESEC/FSE-7: Proceedings of the 7th European Software Engineering Conference held
jointly with the 7th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pages 253–267, London, UK, 1999. Springer-Verlag.

[310] Xiangyu Zhang and Rajiv Gupta. Whole execution traces. In MICRO 37: Proceedings
of the 37th annual International Symposium on Microarchitecture, pages 105–116,
Washington, DC, USA, 2004. IEEE Computer Society.

[311] Xiangyu Zhang and Rajiv Gupta. Matching execution histories of program versions.
In ESEC/FSE-13: Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 197–206, New York, NY, USA, 2005. ACM.

[312] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller. Mining
version histories to guide software changes. In ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering, pages 563–572, Washington, DC,
USA, 2004. IEEE Computer Society.

[313] Thomas Zimmermann and Peter Weißgerber. Preprocessing CVS data for fine-grained
analysis. In MSR ’04: Proceedings of 2004 International Workshop on Mining Soft-
ware Repositories, pages 2–6, 2004.

[314] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas Zeller. Mining
version histories to guide software changes. IEEE Transactions on Software Engineer-
ing, 31(6):429–445, 2005.

[315] Lijie Zou and Michael W. Godfrey. Detecting merging and splitting using origin
analysis. In WCRE ’03: Proceedings of the 10th Working Conference on Reverse
Engineering, page 146, Washington, DC, USA, 2003. IEEE Computer Society.

[316] Lijie Zou and Michael W. Godfrey. Using origin analysis to detect merging and split-
ting of source code entities. IEEE Transactions on Software Engineering, 31(2):166–
181, 2005.

203

Appendix A

COPY AND PASTE STUDY: EDIT LOG FORMAT

This chapter describes an edit log file format used by the logger and the replayer, which

we developed for studying copy and paste programming practices (Chapter 3). The logger

creates an XML file when an Eclipse IDE starts. It creates an initial document node for

each active editor in the Eclipse workbench and records its content snapshot. For each

editing command, it creates a command node with (1) its type, COPY, CUT, PASTE,

UNDO, REDO, or DELETE; (2) the file name of an edited document; (3) the range of

selected text; (4) the length and offset of text entry; (5) the content of inserted text and

selected text; and (6) a time stamp. For each keystroke, it creates a typing node with (1)

its type, TYPING or BACKSPACE; (2) the file name of an edited document; and (3) the

length, offset, and content of inserted text. When a programmer closes the Eclipse IDE,

the logger creates a final document node to save the editor’s final snapshot. A sample log

file is included below.

<e d i t l o g>

<i n i t i a l d o cumen t f i l e="/PolyGlot /com/xj/XJImpl.java">

XJImpl . java content .</ in i t i a l d o cumen t>

<command f i l e="/PolyGlot /ext/xj/ast/GeneratedMethodInstance.java" type="COPY">

<s e l e c t i o n end l in e="33" l ength="119" o f f s e t="893" s t a r t l i n e="32">

// pub l i c void s e r i a l i z e (PrintStream stream) throws IOException ;

pub l i c s t a t i c GeneratedMethodInstance SERIALIZE ;</ s e l e c t i o n>

<timestamp>Mon Aug 18 10 : 55 : 48 EDT 2003</timestamp>

</command>

<command f i l e="/PolyGlot /ext/xj/ast/GeneratedMethodInstance.java"

l ength="0" o f f s e t="1012" textLength="119" type="PASTE">

<s e l e c t i o n end l in e="33" l ength="0" o f f s e t="1012" s t a r t l i n e="34"></ s e l e c t i o n>

<timestamp>Mon Aug 18 10 : 55 : 49 EDT 2003</timestamp>

// pub l i c void s e r i a l i z e (PrintStream stream) throws IOException ;

pub l i c s t a t i c GeneratedMethodInstance SERIALIZE ;

204

</command>

<command f i l e="/PolyGlot /polyglot /ext/xj/ast/GeneratedMethodInstance.java"

l ength="19" o f f s e t="1060" textLength="0" type="DELETE">

<s e l e c t i o n end l in e="34" l ength="19" o f f s e t="1060" s t a r t l i n e="34">

throws IOException</ s e l e c t i o n>

<timestamp>Mon Aug 18 10 : 56 : 13 EDT 2003</timestamp>

</command>

<typ ing f i l e="/PolyGlot /ext/xj/ast/GeneratedMethodInstance.java"

l ength="0" o f f s e t="1058" t e x t l eng th="1" type="TYPING">t</ typ ing>

<typ ing f i l e="/PolyGlot /polyglot /ext/xj/ast/GeneratedMethodInstance.java"

l ength="1" o f f s e t="1045" t e x t l eng th="0" type="BACKSPACE "></ typ ing>

<f ina l document f i l e="/PolyGlot /polyglot /ext/jl/types/TypeSystemc .java">

. . . TypeSystemc . java content

</ f inal document>

</ e d i t l o g>

205

Appendix B

COPY AND PASTE STUDY: CODING SESSION ANALYSIS NOTE

This appendix contains an experimenter’s note excerpt for one of the coding sessions.

Date: Mon, August 18th

Time : Mon Aug 18 10:55:48 EDT 2003 Mon Aug 18 10:58:36 EDT 2003

Participant: **** ******

Task and Objective: Adding the functionality called INSERT AT END.

Direct Observation: No

Instrumented Observation: Yes

Statistics: Available

Intention: A programmer copied A and pasted as B as A and B are semantically parallel concerns.

Inside ****.java file, there are three functions. The system had two existing functions LOAD

LOCAL, SERIALIZE that are similar to INSERT AT END.

At Event 1: Inside public class GeneratedMethodInstance

// public static XMLNode load(String localFilename) throws IOException;

public static GeneratedMethodInstance LOAD LOCAL;

!!
//

!!!!!!!!!
public

!!!!!
void

!!!!!!!!!!!!!!!!!!!!!!
serialize(PrintStream

!!!!!!!!!
stream)

!!!!!!!
throws

!!!!!!!!!!!!!
IOException;

!!!!!!
public

!!!!!!!!
static

!!!!!!!!!!!!!!!!!!!!!!!!
GeneratedMethodInstance

!!!!!!!!!!!!
SERIALIZE;

!

// public void insertAtEnd(Element newElement);

public static GeneratedMethodInstance INSERT AT END;

At Event 53: Inside public static void initialize(XJTypeSystem ts)

assert(LOAD LOCAL == null);

Flags publicStatic = Flags.PUBLIC.Static();

GeneratedClassType root = GeneratedClassType.getRoot();

LOAD LOCAL =

new GeneratedMethodInstance(

ts,

206

root,

publicStatic,

root, //return type

"load", //name

Collections.singletonList(ts.String()), //arguments

Collections.singletonList(ts.IOException())); //Exceptions

!!!!!!!!!!
SERIALIZE

!!
=

!!!
new

!!!!!!!!!!!!!!!!!!!!!!!!!
GeneratedMethodInstance(

!!!
ts,

!!!!!
root,

!!!!!!!!!!!!!
Flags.PUBLIC,

!!!!!!!!!!!!!!!!!!
ts.Void(),

!!!!!!!!!!!
//return

!!!!!!
type

!

!!!!!!!!!!!!
"serialize",

!!!!!!!
//name

!

!!!
Collections.singletonList(ts.PrintStream()),

!!!!!!!!!!!!!
//arguments

!

!!!
Collections.singletonList(ts.IOException());

!!!!!!!!!!!!!!
//Exceptions

INSERT AT END =

new GeneratedMethodInstance(

ts,

root,

Flags.PUBLIC,

ts.Void(), //return type

"insertAtEnd", //name

Collections.singletonList(root), //arguments

Collections.singletonList(EMPTY LIST); //Exceptions

}

At Event 83: Inside GeneratedClassType.java: public static void initStatic(XJTypeSystem c

ts, Package gp)

assert(ts != null && gp != null);

assert(s root == null);

s ts = ts;

s package = gp;

//s allElemClasses = new ArrayList(15);

s root = new ElementClass(Position.COMPILER GENERATED);

s root.name = "XMLNode";

s rootnode =

207

ts.lang.nodeFactory().CanonicalTypeNode(

Position.COMPILER GENERATED,

s root);

GeneratedMethodInstance.initialize(ts);

s root.addMethod(GeneratedMethodInstance.LOAD LOCAL);

!!
s root.addMethod(GeneratedMethodInstance.SERIALIZE);

s root.addMethod(GeneratedMethodInstance. INSERT AT END);

}

208

Table B.1: Copy and paste statistics

Type SubType Count Avg Text Length

Operation 11

Copy 3 144.33

Cut 0

Delete 3 17

Paste 5 149.8

Redo 0

Undo 0

Typing 79 1.3544

SingleType 71 1

MutipleType 3 12

Backspace 5

209

Appendix C

COPY AND PASTE STUDY: AFFINITY DIAGRAMS

This chapter contains detailed sub parts of the affinity diagram in Figure 3.1. In these

diagrams, light-yellow post-its represent C&P instance notes. Green post-its represent se-

lected illustrating examples. Red post-its describe potential maintenance problems asso-

ciated with the particular C&P patterns. Purple, blue, and yellow post-its respectively

describe the first, second, and third level header-cards.

210

Reform
at

Intention

M
anual Refactoring

Using C&P

M
erging (catching

up) with a version
that had a renam

e
refactoring,

SG

After refatoring, copy
and paste is used to

catch up API
evolution

M
H5 - 698, M

H5 - 931

M
anual refactoring

using C&P
PC3

Reform
at assert

statem
ents

M
H3

Break long m
ethod

invocation sequence
with the anticipation
that it will be used in

the future
SG

1

Rem
em

ber

Rem
em

ber a long
constant nam

e
IM

arker.PRO
BLEM

…

EY1 5296

Reorder for
perform

ance

Boolean expression
ordering

A||B||C - > B||C||A

Reorder if statem
ent

ordering
M

H3

Reorder statem
ents

Relocate (m
ove)

M
ove if - statem

ent
outside of a block

EY3 - 715

M
ove a block from

the inside of if

statem
ent to the

outside
EY1 - 388m

, SG
2 - 998

Reorder statem
ents

M
ove code to m

atch
with the m

ental
m

odel of a program

structure
PK3

Pull up to a
container m

ethod
visitEdge, override

M
H3

Regroup and
organize constants

PK - 1

M
ove m

any classes
to a sub package

Reorder input
param

eters /

Program
m

ers still
rely on m

anual
refactoring despite
refactoring support
in the Eclipse IDE.

F
igure

C
.1:

A
ffi

nity
diagram

part
1:

program
m

ers’intentions
associated

w
ith

C
&

P

211

Sy
nt

ac
tic

 T
em

pl
at

e

De
cla

ra
tio

n
Sa

m
e

M
et

ho
d

Re
pe

tit
ive

 c
on

st

de
cla

ra
tio

ns

DO
5,

 E
Y3

 - 5
13

3

Sa
m

e
ob

je
ct

.s
am

e

m
et

ho
d

(d
iff

er
en

t
pa

ra
m

et
er

s)

EY
2 -

 88
4

Sa
m

e

ob
je

ct
.d

iff
er

en
t

m
et

ho
ds

 (d
iff

er
en

t
pa

ra
m

et
er

s)

RO
3 -

 8
01

, R
O

2
- 7

19

In
te

nt
io

n:
 R

eu
se

 a

st
ru

ct
ur

al
 te

m
pl

at
e

Ex
ce

pt
io

n
Ha

nd
lin

g

Th
ro

ws
 th

e
sa

m
e

ex

ce
pt

io
n

DO

1 -
 4

Co
nt

ro
l S

tru
ct

ur
e

try
 {

} c

at
ch

 ()
 {

} EY

3 -
 1

If
(A

) {

If
(B

) {

el
se

 if
 (

C
) …

If

(D
) {

If

(E
) {

LB
5

Sa
m

e
m

et
ho

ds

(d
iff

er
en

t
pa

ra
m

et
er

s)

Re
pe

tit
ive

 p
at

te
rn

 o
f

ca
tc

h
(..

..
e)

 {

e.
pr

in
tS

ta
ck

Tr
ac

e.
}

RO
2 -

 28
84

RO

3 -
 16

Pr
og

ra
m

m
er

s

m
an

ua
lly

 h
av

e
to

de

le
te

 u
nw

an
te

d

co
pi

ed
 c

od
e.

Pu
bl

ic
st

at
ic

di

ffe
re

nt
_r

et
ur

n_
ty

pe

sa
m

em
et

ho
dn

am
e

M
H4

 - 3
43

Re
pe

tit
ive

 c
la

ss

de
cla

ra
tio

ns

LB
3

F
ig

ur
e

C
.2

:
A
ffi

ni
ty

di
ag

ra
m

pa
rt

2:
us

in
g

co
pi

ed
co

de
as

a
sy

nt
ac

ti
c

te
m

pl
at

e

212

Sem
antic Tem

plate

Design Patterns
Control Structure

IStrategy
PK - 4

Sim
ilar iterators M

H
4 - 2235

LB - 5, M
H3 - 4328

Intention: Reuse a
structural tem

plate

Usage of a M
odule

(API Usage)

O
bject access

protocol
M

H4 - 3729, M
H4 -

3669, 3791, 4011,
4853, 5021

Im
plem

entation of a
M

odule

Thread
im

plem
entations

VC

Critical sections
VC

Com
plicated DO

M

object retrieval
SG

2 - 1499

Com
plied data

structure read
LB4 - 1

F
igure

C
.3:

A
ffi

nity
diagram

part
3:

using
copied

code
as

a
sem

antic
tem

plate

213

Co
de

 fr
ag

m
en

ts
 th

at

ar
e

co
pi

ed
 a

nd

pa
st

ed
 o

ve
r a

nd

ov
er

 o
n

m
ul

tip
le

pl

ac
es

Co
de

 fr
ag

m
en

ts
 th

at

ar
e

co
pi

ed
 a

nd

pa
st

ed
 o

ve
r a

nd

ov
er

 o
n

m
ul

tip
le

pl

ac
es

If(
lo

gA
llO

pe
ra

tio
n)

 {

…
} ;

RO
3 -

 14
42

Ad
di

ng
 fe

at
ur

es

Lo
gg

in
g

co
nc

er
ns

ge
tF

rie
nd

lyT
yp

e

co
nc

er
n

ha
s

be
en

co

pi
ed

 to
 m

ul
tip

le

pl
ac

es

Lo
gg

er
.p

rin
tln

(“
..”

);
EY

2 -
 78

8

Lo
g.

wr
ite

(“…
”)

RO
2

-
15

51

De
sig

n
de

cis
io

ns

F
ig

ur
e

C
.4

:
A
ffi

ni
ty

di
ag

ra
m

pa
rt

4:
w

hy
is

te
xt

co
pi

ed
an

d
pa

st
ed

re
pe

at
ed

ly
in

m
ul

ti
pl

e
pl

ac
es

?

214

Code fragm
ents that

are copied together

Trivial
O

bvious: ones
detected by
com

pilation

Code and its
com

m
ents are

copied together

Referenced fields
and m

ethods
LB1 - 1

Referenced
constants are copied

for backward
com

patibility
VC1

Design decisions

Non - Trivial: Callers

Callers
shutdownSender,

shutdownHeart
VC1

Callers
Am

biguityRem
over

and
XJAm

biguityRem
ove

r M
H3

Non - Trivial: Paired
O

perations

writeToFile,
openToFile, and

closeToFile

Critical section
behavior,

sym
m

etrical m
atch

pairs. VC

Program
m

er m
ay

forget to copy
related code

fragm
ents together.

F
igure

C
.5:

A
ffi

nity
diagram

part
5:

w
hy

are
blocks

oftext
copied

together?

215

Re
la

tio
ns

hi
p

be

tw
ee

n
co

pi
ed

 a
nd

pa

st
ed

 te
xt

Si
m

ila
r o

pe
ra

tio
n

bu
t

di
ffe

re
nt

 ta
rg

et
s

Si
m

ila
r o

pe
ra

tio
n

bu
t

di
ffe

re
nt

 s
ou

rc
es

Sa
m

e
so

ur
ce

 b
ut

ha

nd
le

s
di

ffe
re

nt

ty
pe

s
of

 e
ve

nt
s.

EY

1 -
 37

10

Pa
ire

d
re

tri
ev

al

SG
2 -

 14
99

Ite

ra
to

r f
or

m

ag
icN

od
e.

st
ar

t a
nd

m

ag
icN

od
e.

en
d

up
da

te
Fr

om
(C

la
ss

R
ea

de
r c

r)
an

d

up
da

te
Fr

om
(C

la
ss

c)

RO

1 -
 41

De
sig

n
de

cis
io

ns

Co
nc

er
ns

 th
at

cr

os
sc

ut
 in

 a
 s

im
ila

r
wa

y

Ca
lle

r o
f c

op
ie

d

m
et

ho
ds

VC

1

Co
m

bo
_n

ul
ls

an
d

co

m
bo

_u
se

d

In
he

rit
an

ce

Su
pe

rc
la

ss
 a

nd

Su
bc

la
ss

VC

1,
 L

B2
, M

H3
 -

 31
4

Si
bl

in
g

cla
ss

es
:

Si
ng

le
Cl

ick
,

Do
ub

le
Cl

ick
,

He
ar

tB
ea

t
TL

2,
 L

B2

NU
LL

_T
AR

G
ET

_U
N

KN
O

W
N_

AT
TR

NU

LL
_A

TT
RI

BU
TE

S_

UN
KN

O
W

N_
AT

T
R

SE
RI

AL
IZ

E
an

d

IN
SE

RT
_A

T_
EN

D

M
H1

 a
nd

 M
H2

Ex
tra

ct
in

g
he

ad

in
fo

rm
at

io
n

(li
ne

nu

m
be

r a
nd

 ta
gs

)
ar

e
th

e
sa

m
e

Si
m

ila
r o

pe
ra

tio
n

bu
t

di
ffe

re
nt

 re
tu

rn
 ty

pe
s

RO
1 -

 27
57

Ca
lle

r a
nd

 c
al

le
e

PK
4

Pa
ire

d
O

pe
ra

tio
ns

se
tT

ra
ce

 a
nd

ge

tT
ra

ce

DO
1

en
te

rC
rit

ica
lS

ec
tio

n

an
d

le

av
eC

rit
ica

lS
ec

tio
n

VC

1

O
pe

n
an

d
W

rit
e

(a

cc
es

sin
g

th
e

sa
m

e

da
ta

 s
tru

ct
ur

e
an

d

th
ro

ws
 th

e
sa

m
e

ex

ce
pt

io
n)

 E
Y2

 -
 67

8

ad
dM

et
ho

d(
) a

nd

ge
tC

la
ss

M
et

ho
d

RO

1 -
 27

27

F
ig

ur
e

C
.6

:
A
ffi

ni
ty

di
ag

ra
m

pa
rt

6:
w

ha
t

is
th

e
re

la
ti
on

sh
ip

be
tw

ee
n

co
pi

ed
an

d
pa

st
ed

te
xt

?

216

Short Term

Renam
e object and

variable nam
es right

after copy and paste

Renam
ing static

objects to avoid
sem

antic conflicts.
SG

2

M
aintenance

Consistent changes
on code with the

sam
e origin

Program
m

ers
refactor copied code
after m

any copying
and pasting

Long Term

Renam
e local

variables not to
cause conflict with

existing variable
nam

es
SG

2 - 1499, SG
1 - 960

Static m
ethod for

object retrieval is
factored out.

PK - 1

Expression that is
frequently copied
becom

es fields.
SG

1 - 1

O
bject frequently

declared on the fly
becom

es fields
SG

1

Duplicated code gets
refactored after copy

and paste m
ultiple

tim
es

EY1 - 3615, M
H5,

Ro2 - 2340

Consistent changes
after copy and paste

SG
2 - 1489, LB3 - 2,
EY1 - 3450,
EY1 - 3750

Single copy followed
by m

ultiple paste
events

Replace a variable
with constants.

PK - 3

Renam
e a variable

with different nam
es

EY - 1, EY3 - 2393

Renam
e types

EY1 - 1815, EY3 -
3599, RO

1 - 2714
“HashSet set”
replaced with

“HashM
ap m

ap”

Replace a m
ethod

nam
e

M
H3 - 1270

A tool can rem
ind of

program
m

ers which
code fragm

ents to
refactor.

F
igure

C
.7:

A
ffi

nity
diagram

part
7:

m
aintenance

tasks
for

copied
code

217

Appendix D

CLONE GENEALOGY STUDY: MODEL IN ALLOY CODE

module clonelineage

open std/ord

sig Text{}

fun similarhigh (t1:Text,t2:Text) {

t1=t2 // exactly the same

}

fun similar (t1:Text,t2:Text) {

#OrdPrevs(t1) = #OrdPrevs(t2) +1 || #OrdPrevs(t2) = #OrdPrevs(t1)+1 // similar

}

fun notsimilar (t1:Text, t2:Text) {

! similarhigh(t1,t2) && !similar(t1,t2) // not similar

}

//test functions

run similarhigh for 3

run similar for 3

run notsimilar for 3

sig Location{}

fun overlaphigh (o1:Location,o2:Location) {

o1=o2 // exactly the same location

}

fun overlap (o1:Location,o2:Location) {

#OrdPrevs(o1) = # OrdPrevs(o2) +1 || #OrdPrevs(o2) = #OrdPrevs(o1)+1 // partially overlap

}

fun notoverlap (o1:Location, o2:Location) {

! overlaphigh(o1,o2) &&

!overlap(o1,o2) // does not overlap at all

}

218

// test functions

run overlaphigh for 3

run overlap for 3

run notoverlap for 3

// code is identified with its text and its location

sig Code{

text: Text,

location: Location

}

// clone group is a set of code with the same text within a clone group,

// every code has a unique location.

sig Group{

group: set Code

}{

all c1,c2:Code | c1 in group && c2 in group => c1.text = c2.text

group > 1

all disj c1,c2:Code | c1 in group && c2 in group => c1.location!=c2.location

}

// clone relationship is defined between one clone group in a old version and

// one clone groiup in a new version.

sig Relationship {

new : Group,

old : Group

}{

new!=old

}

// clone genealogy is a graph which describes evolution of a code snippet. this graph

// is a direct graph where all nodes are connected by at least one edge if edges are present.

sig Genealogy {

nodes : set Group,

edges : set Relationship

}{

219

#nodes >0

#nodes>1 => (nodes = edges.new+edges.old)

}

fun testlineage () {

Genealogy= univ[Genealogy]

}

// evolution patterns

fun SAME (r:Relationship){

similarhigh(r.new.group.text,r.old.group.text)

all csn:Code | some cso:Code | csn in r.new.group =>

cso in r.old.group && overlaphigh(csn.location,cso.location)

all cso:Code | some csn:Code | cso in r.old.group =>

csn in r.new.group && overlaphigh(csn.location,cso.location)

}

//run SAME for 5

fun SHIFT (r:Relationship) {

similarhigh(r.new.group.text,r.old.group.text)

some csn:Code | some cso:Code | csn in r.new.group

&& cso in r.old.group && overlap(csn.location,cso.location)

}

//run SHIFT for 5

fun ADD (r:Relationship) {

(similarhigh(r.new.group.text, r.old.group.text) ||

similar(r.new.group.text,r.old.group.text))

some csn:Code | all cso:Code | cso in r.old.group =>

csn in r.new.group && notoverlap(csn.location,cso.location)

}

//run ADD for 5

fun SUBTRACT(r:Relationship) {

(similarhigh(r.new.group.text, r.old.group.text) ||

similar(r.new.group.text,r.old.group.text))

some cso:Code | all csn:Code | csn in r.new.group =>

220

cso in r.old.group && notoverlap(csn.location,cso.location)

}

//run SUBTRACT for 5

fun CONSISTENT(r:Relationship) {

similar(r.new.group.text,r.old.group.text)

all cso:Code | some csn:Code | cso in r.old.group => csn in r.new.group &&

(overlap(csn.location,cso.location) || overlaphigh(csn.location,cso.location))

}

//run CONSISTENT for 5

fun INCONSISTENT(r:Relationship) {

similar(r.new.group.text,r.old.group.text)

some cso:Code | all csn:Code | csn in r.new.group =>

cso in r.old.group && notoverlap(csn.location,cso.location)

}

//run INCONSISTENT for 5

assert ALL_EXHAUSTIVE {

all r:Relationship |

!notsimilar(r.new.group.text,r.old.group.text) =>

ADD(r)|| SHIFT(r) || SAME(r) || SUBTRACT(r) || CONSISTENT(r) || INCONSISTENT(r)

}

//check ALL_EXHAUSTIVE for 5

//proved true

assert SAME_IN_SHIFT {

all r:Relationship | SAME(r) => SHIFT(r)

}

//check SAME_IN_SHIFT for 5

assert SHIFT_IN_SAME {

all r:Relationship | SHIFT(r) => SAME(r)

}

//check SHIFT_IN_SAME for 5

221

fun SHIFT_AND_SAME (r:Relationship) {

SHIFT(r) && SAME(r)

}

//run SHIFT_AND_SAME for 5

assert INCONSISTENT_IN_SUBTRACT {

all r:Relationship | INCONSISTENT(r)

=> SUBTRACT(r)

}

//check INCONSISTENT_IN_SUBTRACT for 5

222

Appendix E

CLONE GENEALOGY STUDY: GENEALOGY DATA FORMAT

<genealogy age="12" enddate="0206222147 "

f a l s ePo s i t i v eRea son="" f a l s e p o s i t i v e="false" s t a r t d a t e="0204221819 ">

<sinknode c chg="false" c cpy="false" c new="true" createdReason="">

<locat ionmapping ng members="2" og members="1">

<n map from="0" index="0" s c o r e="100" />

<n map from="1" index="1" s c o r e="0" />

<o map from="0" index="0" s c o r e="100" />

</ locat ionmapping>

<group id="10" v e r s i onS t r i n g="0204221819 ">

<codesn ippet end co l="2" end l i n e="85"

f i l e="c:\dnsjava0204221819 \org\xbill\DNS\CERTRecord .java"

s t a r t c o l="2" s t a r t l i n e="82" />

<codesn ippet end co l="2" end l i n e="79"

f i l e="c:\dnsjava0204221819 \org\xbill\DNS\DSRecord .java"

s t a r t c o l="2" s t a r t l i n e="73" />

</group>

</ sinknode>

<ev o lu t i onpa t t e r n A="false" C="false" I="false" R="false" S="true" SH="false">

<newgroup>

<group id="10" v e r s i onS t r i n g="0204302236 ">

<codesn ippet end co l="2" end l i n e="85"

f i l e="c:\dnsjava0204302236 \org\xbill\DNS\CERTRecord .java"

s t a r t c o l="2" s t a r t l i n e="82" />

<codesn ippet end co l="2" end l i n e="79"

f i l e="c:\dnsjava0204302236 \org\xbill\DNS\DSRecord .java"

s t a r t c o l="2" s t a r t l i n e="73" />

</group>

</newgroup>

<oldgroup>

<group id="10" v e r s i onS t r i n g="0204221819 ">

223

<codesn ippet end co l="2" end l i n e="85"

f i l e="c:\dnsjava0204221819 \org\xbill\DNS\CERTRecord .java"

s t a r t c o l="2" s t a r t l i n e="82" />

<codesn ippet end co l="2" end l i n e="79"

f i l e="c:\dnsjava0204221819 \org\xbill\DNS\DSRecord.java"

s t a r t c o l="2" s t a r t l i n e="73" />

</group>

</ oldgroup>

<groupmapping l o c a t i o n s c o r e="100" newgroupid="10"

oldgroupid="10" t e x t s im i l a r i t y="100">

<locat ionmapping ng members="2" og members="2">

<n map from="0" index="0" s c o r e="100" />

<n map from="1" index="1" s c o r e="100" />

<o map from="0" index="0" s c o r e="100" />

<o map from="1" index="1" s c o r e="100" />

</ locat ionmapping>

</groupmapping>

</ evo lu t i onpa t t e r n>

<sourcenode age="12" d chg="true " d o ld="false" d rmv="false"

disappear ingReason="Diverged " factorReason="Header Prep " r e f a c t o r a b l e="false">

<locat ionmapping ng members="2" og members="2">

<n map from="0" index="0" s c o r e="100" />

<n map from="1" index="1" s c o r e="100" />

<o map from="0" index="0" s c o r e="100" />

<o map from="1" index="1" s c o r e="100" />

</ locat ionmapping>

<group id="9" v e r s i onS t r i n g="0206222147 ">

<codesn ippet end co l="2" end l i n e="85"

f i l e="c:\dnsjava0206222147 \org\xbill\DNS\CERTRecord .java"

s t a r t c o l="2" s t a r t l i n e="82" />

<codesn ippet end co l="2" end l i n e="79"

f i l e="c:\dnsjava0206222147 \org\xbill\DNS\DSRecord .java "

s t a r t c o l="2" s t a r t l i n e="73" />

</group>

</ sourcenode>

</ genealogy>

224

Appendix F

LSDIFF PREDICATES IN TYRUBA LANGUAGE

This chapter defines LSDiff predicates in Tyruba, typed logic programming languatge.

SEMIDET, DET, NONDET, and MULTI mean that the expected number of query results

is 0-n, 1, 0-n, and 1-n respectively.

package :: String

MODES

(F) IS NONDET

END

type :: String, String, String

MODES

(F,F,F) IS NONDET

END

field :: String, String, String

MODES

(F,F,F) IS NONDET

END

method :: String, String, String

MODES

(F,F,F) IS NONDET

END

return :: String, String

MODES

(F,F) IS NONDET

(B,F) IS SEMIDET

(F,B) IS NONDET

225

END

subtype :: String, String

MODES

(F,F) IS NONDET

(B,F) IS NONDET

(F,B) IS NONDET

END

accesses :: String, String

MODES

(F,F) IS NONDET

(B,F) IS NONDET

(F,B) IS NONDET

END

calls :: String, String

MODES

(F,F) IS NONDET

(B,F) IS NONDET

(F,B) IS NONDET

END

fieldoftype ::String, String

MODES

(F,F) IS NONDET

(B,F) IS SEMIDET

(F,B) IS NONDET

END

typeintype :: String, String

MODES

(F,F) IS NONDET

(B,F) IS SEMIDET

(F,B) IS NONDET

END

226

inheritedmethod :: String, String, String

MODES

(F,F,F) IS NONDET

END

inheritedfield :: String, String, String

MODES

(F,F,F) IS NONDET

END

227

Appendix G

JQUERY LOGIC QUERIES FOR GENERATING FACTBASES

1. package: “package(?X)”

2. type: “class(?X)” or “interface(?X)”

3. method: “method(?M)” or “constructor(?C)”

4. field: “field(?F)”

5. return: “returns(?C,?T)”

6. fieldoftype: “type(?F,?T)”

7. accesses: “accesses(?B,?F,?)”

8. calls: “calls(?B,?M,?)”

9. subtype: “subtype+(?Super,?Sub),class(?Sub)” or “subtype+(?Super,?Sub),interface(?Sub)”

10. inheritedfield: “inheritedField(?Sub,?SupF,?Sup)”

11. inheritedmethod: “inheritedMethod(?Sub,?SupM,?Sup)”

228

Appendix H

DEFAULT WINNOWING RULES

The following pre-defined rules winnow out some of the superfluous facts in ∆FB. These

rules are tautologies; thus they should not be output to the user.

deleted_type(i,n,g) ^ past_typeintype(i,t) => deleted_typeintype(i,t)

deleted_type(p,n,g) ^ past_subtype(p,s) => deleted_subtype(p,s)

deleted_type(s,n,g) ^ past_subtype(p,s) => deleted_subtype(p,s)

deleted_type(s,n,g) ^ past_inheritedfield(f,p,s) =>deleted_inheritedfield(f,p,s)

deleted_type(s,n,g) ^ past_inheritedmethod(f,p,s)=>deleted_inheritedmethod(f,p,s)

deleted_method(m,n,c) ^ past_return(m,t) => deleted_return(m,t)

deleted_method(m1,n,c) ^ past_calls(m1,m2) => deleted_calls(m1,m2)

deleted_method(m2,n,c) ^ past_calls(m1,m2) => deleted_calls(m1,m2)

deleted_field(f,n,c) ^ past_fieldoftype(f,t) => deleted_fieldoftype(f,t)

deleted_field(f,n,c) ^ past_accesses(f,m) => deleted_accesses(f,m)

deleted_method(m,n,c) ^ past_accesses(f,m) => deleted_accesses(f,m)

deleted_package(p) ^ past_type(t,n,p) => deleted_type(t,n,p)

deleted_type(t,n,g) ^ past_typeintype(i, t) ^ past_type(i, n1, g) => deleted_type(i, n1, g)

deleted_type(t,n,g) ^ past_method(m,mn,t) => deleted_method(m, mn, t)

deleted_type(t,n,g) ^ past_field(f,fn,t) => deleted_field(f, fn, t)

added_type(i,n,g) ^ current_typeintype(i,t) => added_typeintype(i,t)

added_type(p,n,g) ^ current_subtype(p,s) => added_subtype(p,s)

added_type(s,n,g) ^ current_subtype(p,s) => added_subtype(p,s)

added_type(s,n,g) ^ current_inheritedfield(f,p,s) =>added_inheritedfield(f,p,s)

added_type(s,n,g) ^ current_inheritedmethod(f,p,s)=>added_inheritedmethod(f,p,s)

added_method(m,n,c) ^ current_return(m,t) => added_return(m,t)

added_method(m1,n,c) ^ current_calls(m1,m2) => added_calls(m1,m2)

added_method(m2,n,c) ^ current_calls(m1,m2) => added_calls(m1,m2)

added_field(f,n,c) ^ current_fieldoftype(f,t) => added_fieldoftype(f,t)

added_field(f,n,c) ^ current_accesses(f,m) => added_accesses(f,m)

added_method(m,n,c) ^ current_accesses(f,m) => added_accesses(f,m)

229

added_package(p) ^ current_type(t,n,p) => added_type(t,n,p)

added_type(t,n,g) ^ current_typeintype(i, t) ^ current_type(i, n1, g) => added_type(i, n1, g)

added_type(t,n,g) ^ current_method(m,mn,t) => added_method(m, mn, t)

added_type(t,n,g) ^ current_field(f,fn,t) => added_field(f, fn, t)

230

Appendix I

FOCUS GROUP SCREENER QUESTIONNAIRE

Hello, my name is Miryung Kim and I am a Ph.D student at the University of Wash-

ington, currently working on a new program differencing tool. I would like to understand

current practices of using a program differencing tool and get comments and feedback on

my new differencing tool that represents code changes semantically and structurally. All of

your responses will be kept confidential.

1. How many years have you worked in software industry?

2. Do you have programming experience?

3. Are you familiar with the Java programming language?

4. If so, how many years of Java programming experience do you have?

5. Have you ever used diff (a program differencing tool that compares programs textually

at line-level)?

6. Have you ever used version control systems (CVS, SVN, or SourceDepot, etc)?

7. If you answered YES on Question 5 or 6, how often do you use these tools?

(a) more than 5 times a week

(b) 1-5 times a week

(c) less than once a week

(d) less than once a month

8. Have you ever participated in code review (inspection) meetings?

231

9. How often do you examine program changes done by other software engineers?

(a) more than 5 times a week

(b) 1-5 times a week

(c) less than once a week

(d) less than once a month

10. What is the size of code bases that you regularly work with?

(a) 10K-100K

(b) 100K-500K

(c) 500K+

11. Have you ever participated in focus groups?

The discussion will center on the current practices of code change reviews and your com-

ments on our new program differencing tool. The session will last approximately 60 minutes,

and refreshments will be served. In addition, you will receive a Starbucks gift card. Would

you be interested in attending this group?

232

Appendix J

FOCUS GROUP DISCUSSION GUIDE

1. Introduction 12:00-12:05 (5 minutes)

Greeting (Slide 1)

Purpose two reasons: (1) to gather insights into the current practice and (2) to

get your comments and feedback.

Focus group format (Slide 2)

Distribute name tags

Reminder—Your active participation is a key to the success of this focus group.

Agenda (Slide 3)

2. Discussion on the current practice 10 minutes, 12:05-12:15

Diff (Slide 4)

VCS is based on diff tools. (Slide 5)

Side-by-side views. Eclipse IDE and SVN

Most of you said that you have experience of using diff-based tools.

Can you please tell me in which task contexts do you use diff?

What do you like about diff?

What do you not like about diff?

3. LSDiff Presentation 12:15 - 12:20 (5 minutes)

Motivating scenarios (if necessary) (Slide 7)

233

Version control systems (Slide 8)

What we would like to have instead (Slide 9)

Algorithm overview (Slide 10)

Fact-base generation (Slide 11)

Compute the set-level difference (Slide 12)

Rule learning (Slide 13)

LSDiff output (Slide 14)

4. LSDiff Demo 12:20 - 12:25 (5 minutes) Pop up the Firefox browser. This looks like

a regular diff result. In the bottom, there are a set of files, either modified, added

or deleted. For each file, you can click on the file and see word-level differences. In

this output, added text is yellow and deleted text is red strike-through. We manually

augmented a HTML diff output using LSDiff output. LSDiff rules are complimentary

to diff output. Now, let’s come back to the top of the page. This is an overview

generated by the LSDiff rules. We translated first order logic rules into English sen-

tences over here. You can see statements like this. . . . Okay once you click on the

rule 4. You can see more details about which structural differences are explained by

this. For example. you can see that there many host fields are deleted. If you click

on it, you can see the regular textual diff output. The main difference is that there

is an annotation (a hyperlink back to the rule) which describes systematic changes.

LSDiff currently targets Java, but it is potentially language independent. It accounts

for renaming and moving. LSDiff is complementary to diff.

5. LSDiff Initial Evaluation (5 minutes) 12:25-12:30

Initially what’s your reaction?

What do you like about LSDiff?

What do you not like about LSDiff?

234

6. LSDiff Hands-on Trial (10 minutes) 12:30-12:40

Go to website URL.

You can ask questions.

7. LSDiff In-Depth Evaluation (15 minutes) 12:40-12:50

What do you like about LSDiff?

What do you dislike about LSDiff?

What do you see as the potential benefits of LSDiff?

In which context would you like to use this?

In which context would you like not to use this?

235

Appendix K

FOCUS GROUP TRANSCRIPT

M. Mediator

L. Liaison

P1. SDE

P2. Senior SDE

P3. Senior Principal SDE

P4. SDET

P5. SDET

(12:02 Introduction)

M. Hi, my name is Miryung Kim. I am a Ph.D student at the University of Washington

and I am doing research in software engineering. There are two things that I would like

to focus in today’s focus group. First, I would like to gather insights into how program-

mers understand code changes or in which kinds of situations programmers use program

differencing tools such as diff. Second, I built a new program differencing tool called Logical

Structural Diff (LSDiff). This tool allows a new way of thinking about code changes and

it is an automatic program differencing tool. So I would like to get your comments and

feedback on this program differencing tool (LSDiff).

So let me just start by explaining the format of this focus group. Focus groups are

often used in marketing research to test new concept or to get feedback on a new product

in an early stage of product development. We are recording audio as you may be already

aware of it. If you are uncomfortable with audio recording, you may leave the room. I will

guarantee that your comments will be kept anonymous throughout this research and after

we transcribe the audio tape, your identity will be kept confidential. Second, in a focus

group, there is no right or wrong answer. Whatever opinion or feedback you have is valid.

The way that we gather your feedback is through your quotes. So it is very important for

236

you to speak one at a time as clearly as possible.

(12:10 Finished Introduction)

M. First, we will have a discussion on the current practices of using diff or diff-based

version control systems. Over here at X company, I was told that you use Perforce (P4). I

am going to explain a little bit about how LSDiff works and then demonstrate some of its

output. Next we will have a short discussion on LSDiff. There will be a chance for about

10 minutes that you can use your own web browser to browse a sample LSDiff output. I

would like to finish this by leading a discussion on what you think about LSDiff and how it

can change the picture of software development.

I believe that most of you are familiar with diff. If you compare two versions of program

using diff, you get line-level textual differences per each file. For example, if you compare

two versions of a program, for each file, you can see this kind of line-level differences. The

point is not about how a tool represents the diff output either as side-by-side views, tree-

views, or some other UIs. The core of diff is that it represents textual line-level differences.

Because diff has been used as a basis for many version control systems such as CVS or

Subversion, this output is probably what you see very often in your version control system.

There might be some check-in comments, which describes changes at a high-level. It is often

easy to identify high-level intent from these check-in comments, but they do not always map

to code-level changes. Sometime like this case where the change consists of over 4000 lines

of code changes across 9 different files, it is difficult for human beings to understand what

programmers intended to do. I have several questions about the current practices of using

diff, and you can chime in and have your say.

M. In which task contexts, do you examine code changes? Based on the survey, I

understand that most of you look at code changes usually weekly and at minimum monthly

basis, or even daily sometimes.

P1. The one that comes up the most frequently is a code review.

M. A code review?

P1. I will say that that’s multiple times a day. After that, a lot of times when I’m

looking and troubleshooting then and trying to figure out what’s wrong with a piece of

code, usually I’d like to know some context about when it changed, cause when something

237

broke on a certain day, it is nice to find out about what changed at that time.

M. Before the code review meetings, do people usually go over code changes or . . . ?

P1. For us it’s not usually a review meeting. Someone makes changes and sends them

out so that everybody can see it. So no meetings.

M. So again. . .

P2. I was about to say that you know we usually get code reviews via email. So if you

don’t know the code, you can see the history. Diff may help you understand how the code

has changed.

P1. In troubleshooting context or what kinds of context?

P2. Yeah, usually in troubleshooting context.

P1. Yeah. It’s hard to change something without knowing how it evolved and it is in

the state that it is at.

M. Can someone tell me a little bit about what is troubleshooting? And what is the

scenario?

P3. Basically what they are saying here is that you need to see generational changes,

not just this file and that file, but how it has changed over time in the sense you know, as

you went through a series of change motivations, how the code changed.

P1. Sometimes, I am looking certain lines, and I am like, I want to know who changed

that line. In troubleshooting, what I’m talking about is you get an error and I think the

code should be doing this, and as you are going through, in this particular context, this

variable is not being set or they did not anticipate these situations. Is it that I got a bad

input, or that they are not handling correctly, or what? And so in that context, you are

kind of like, the only documentation you have is the code that you are staring at right there.

So you wanna know how it got to the state that it is at.

P3. So diff tool doesn’t do that, forcing source code to be annotated and to have

comments or something like that. A lot of people put remarks at the end of the line with

comments, or some sort of. This line got added because of that particular trouble ticket or

something. It is annoying for a person to manually (do that). Most diff tools that I have

experienced do not have a capacity like that.

M. Right.

238

P1. The reason that people put that kind of comments is like that, ’Yeah, this looks

convoluted and stupid.’ ’Don’t change this because if you do, the same type of bugs will

happen.’

M. So the common scenario is that you have some bugs, suddenly after the last two

months, it seems like a bug popped up. You need to go over the past history to figure out

which change might have led to this bug. Is that right?

P1. Yeah.

M. In this situation, what is very useful is an association to high-level change, right? A

ticket or a bug fix that relates to that particular source lines?

P1. And what other changes were made at the same time.

P3. If you undo a bug fix, it will easily reintroduce the bug that was previously fixed.

But without annotations, you don’t discover that except by having the bug show up again.

It’s kinda painful. The diff tools that I use, they are all file-oriented.

P3. They don’t have notions, which I think you are trying to address is that, they don’t

have semantic relationships between different files. I want to say, ’What did I change due

to this problem in our company terminology, a trouble ticket?’ It might have changed over

300 different files. I’d like to see not just one file but all 300 files that were included as part

of that. It is scaling up for a single source file to into spacing in which changes—correlated

change took place.

M. Actually I wanna dig a little deeper. You mentioned that, I think, there are two

related problems. You mentioned that it’s hard to understand what changed at the same

time using diff, right? What are the files that changed together?

P1. Yeah. It’s like one of the things that he said and I agree with is that, let’s say

that somebody refactored something and they took a big chunk of code and moved it from

this file to that file, and looking at this file, you have no idea about its history and how it

evolved. It evolved over here and then (it) got cut over here and pasted over here. So it’s

like you have no idea, and you have just lost all the contexts.

M. Yeah. . .

P3. Suppose that 2000 lines of code just disappeared, and you don’t know where it

went...

239

M. When refactoring happens, there’s a discontinuation in the evolution history, because

it is hard to trace code based on file names or using file granularity differencing tools.

M. I see.

M. Is there anything that you like about diff?

P3. Certainly, there are little changes that are hard for human beings to notice like

changing a character in a line. You can’t see that, but a tool can see that. That makes it

very easy for you to notice a stuff like that.

P1. And it is also nice that it can filter out white space changes, too. Because again,

you want to ignore those changes that have nothing to do with the context of the code. But

diff is a great tool, though.

P2. Diff does a good job at figuring out what changed. It is amazing actually. It does

a pretty good job of figuring out what you changed.

P1. P4 seems to be smart about language-level diffs. It’s not like a typical diff where it

is just a line-level. It can kind of see, especially when you are doing a merge, that’s when

diff really comes in handy in this respect. It figures out, ’This is a method encapsulated

here, not just a collection of lines,’ ’There’s actually logical cohesion here.’ It’s not perfect

about that and it would be nice if it does better.

M. It seems like having some sort of language semantics such as code elements—a class or

a method or a function—having that information is useful for merging code or understanding

code changes.

P2. Yeah, also suppose that you recognized a method also. Even despite IDEs, you may

want to group similar methods together, etc. A chunk of lines moved here to here. Diff

doesn’t help with that and if a tool was aware of that (that would be great), not just simple

methods added here and there.

(12:22 LSDiff Introduction)

M. Now let me go over and talk about my tool. The motivation of my tool is based on

looking at diff or check-in comments, it is difficult for human beings to understand why a set

of files changed together. It is especially difficult if the code changes involves renaming or

moving of code. In general, if you are looking for a bug that might have happened because

of inconsistent or incomplete changes, it is hard to identify missing changes by looking at

240

diff unless you read all of the differences. In the case of this refactoring example, to check

whether this refactoring was complete or not, you have to read over 4000 lines of code. Most

people do not have time to do that.

This is like what I would like to have. This kinds of high-level change descriptions. This

is what developers would see; English translation of logic rules that our tool finds. So for

example, by looking at this first line, I know that all draw methods take an additional int

parameter. No matter how many lines have changed due to this API extension, I am going

to represent such change as one rule. The other one is like there is some sort of refactoring

happened, all port fields in the class of ImplementationService got deleted except NameService

class. By generating hypotheses about systematic changes and evaluating the hypotheses,

we can also find exceptions that violate its general change patterns. What our tool outputs

is concise high-level change descriptions where you can easily note missed changes and,

unlike English descriptions, it has explicit structure that code elements can relate back to

the code changes.

P3. In this case where you see ’all’, tell me if this tool does, it would be really useful if

9 out of 10 got changed, but one got forgotten. It doesn’t know it got certainly forgotten,

but with a high probability that this instance is kinda against the other ones. In fact, it is

a missing change.

M. Yes, exactly. As you will see later in my tool demonstration, this tool does exactly

what you said. My tool gives you the confidence about 9 out of 10 places changed this way;

however, one place violated that systematic change patterns. My tool tells you explicitly

where the exception is.

M. So now, I am going to briefly go over the algorithm. Basically, like any regular

differencing tools, it takes two versions of a program, it automatically finds logic rules and

facts that together explain structural differences between two versions of a program. We do

this in three steps. We first use a program analysis tool to represent code as a set of facts

in a database. For example, there is a class GM that extends Car class, that means (that)

there is a type GM, there is Car, and there is an inheritance relationship between Car and GM.

And suppose that there is a method GM.run. We also identify data accesses such as reading

or writing fields or variables and method calls between different methods. Basically, we

241

represent a program as a set of code elements and their structural dependencies.

P3. You used the term ’program.’ Are you defining this as a context of a program?

What do you mean by a program here? A ’program’ is ambiguous. Is it a temporary term

you are using here? In this case, you are equating a program as a class?

M. Oh, no, no,, no. I was just showing you one class. What I mean by a program

is. . . (Interrupted)

P3. A same class can be used by thirty different programs. What constitutes a program

in a traditional sense?

M. So, in this case, if it is a Java program, then all the classes and all the packages. We

analyze everything. Usually there’s a unique identifier for each (class or package).

P3. You mean a program as a class with a main in it? Is it your definition of a program?

M. No every source code, except libraries. Basically we do a source code analysis. We

reverse engineer . . . (Interrupted)

P1. Basically what we call as modules or packages.

M. Right. . .

P3. You mean a set of directories that you get pointed to. Is that what you are saying?

P4. (Chimes in) I don’t think it really needs a definition.

P3. I am just trying to understand the scope of this tool.

P1. It sounds like it is a common repository.

M. So for example, if you say a revision 200 and a revision 201, I am going to pull out

all the source code from the source repository for those two versions.

P3. Oh, you walk through the entire repository to. . .

M. Yeah, it is not that difficult because you can analyze the differences incrementally.

Suppose that you represent a program as a set of facts and (represent) the other version as

a set of facts. We difference those facts using a set difference operator. So you can see what

are the deleted methods and what are the dependencies between modules that were added

or deleted. And in the step 3, I am not going to go into details, but the idea is that we

generate hypotheses about high-level changes as logic rules. We systematically generate all

of them, we evaluate them and accept the ones with high support and accuracy. So the set of

fact-level differences is reduced to a set of logic rules that imply the (fact-level) differences.

242

So for example, what this example means is that in the old version, all the methods that

called SQL.exec method now deleted calls to DB.connect. We learn this kinds of rules. This is

a machine learning algorithm that automatically infers rules from a set of database facts. So

suppose that the SQL library that you were using had a risk of SQL injection bug. So the

management or somebody requested to remove all calls to this library and replace with the

SafeSQL. This will be represented as a concise rule, ’all places that called SQL.exec now added

calls to SafeSQL.exec except one.’ So you can explicitly note where the exception happened.

Or the other common case is that when you try to add a feature, it may involve scattered

changes across a program. For example, when the change involves adding setHost methods

to every subclass of Service class except NameService class. Again if we identify exceptions to

general change patterns, you can spot inconsistent or incomplete changes more easily. Now

I am going to show a sample output of my tool that was augmented with . . . As you know,

logic rules are not always easy to understand. But they can be always directly translated

to English descriptions.

(12:30 Showing example output of LSDiff) There is a project called Carol. It has re-

visions. This is similar to what you may see in a typical version control system. It has a

check-in message and it says, ’Common methods go into an abstract class, easy to main-

tain/fix.’ What you see in the bottom is similar to what you will see in most version control

systems. There are all the files that were either deleted or added, and if you click on one of

the files, you can see line-level or word-level differences. Red strike-through means that they

were deleted. Yellow-highlighted parts mean that they were added. This UI is not what I

chose. I augmented an existing HTML diff output. Please don’t criticize on the colors and

particular choices of highlights. I just augmented my results on it. What is different from

the existing diff output is that there is an overview about code changes. This is about over

4000 lines of code changes and it is very difficult to read. You can see the inferred rules. The

first rule says, ’By this change six classes inherit many methods from the AbstractRegistry

class.’ Let’s read another rule, the rule number four over here, ’All host fields in the classes

that implement NameService class got deleted.’

P1. A lot of times, people will make corresponding changes. Does this handle configu-

ration files?

243

M. It doesn’t, but you’re right.

P1. Especially when there are tight couplings between semantics and configuration.

P3. Can you diff those types of files?

M. Right right.

M. This example doesn’t have config files, but you can still get basic diff results out of

config files.

P3. These things are all predetermined? Are you hard-coding patterns? or Are you

discovering them?

M. Discovering them. We systematically search and pick the rules that have high sup-

port.

P3. You could do this with pre-discovered rules...

P1. It does understand constructs like methods, parameters, etc., right?

M. Right.

(12:36 Discussion)

M. What do you like about the tool?

P4. This seems like a repository view. It helps with understanding differences. I was

thinking more about individual file changes. Could you do this for class-level differences?

Some changes are not that big, some here some there.

M. The example I showed you had lots of changes. If there were just a few changes, you

might not be able to group them as a higher order pattern.

M. You can run this on any two versions, any version pair. It’s more or less like diff.

P5. This looks great for big architectural changes but I’m wondering what it would give

you if you had lots of random changes.

P3. It’ll look for relationships that don’t exist.

M. If there are no structural changes, you’ll just see diff. This doesn’t replace diff, it

complements it.

P2. Does it make any sense to try to—does it use type information?

M. It uses type information.

P2. So the facts do contain types also.

M. Yes.

244

P3. Would you notice all ints being turned to longs?

M. Yes.

P3. There goes to my scoping question. All the ints go to longs in a particular class, or

a method, or a package? These are different scopes. What type of scopes do you recognize?

M. All scopes that you mentioned.

P4. Who was your customer? Who did you think your customer would be?

M. I’m here to get that answer from you. Let’s defer that a little bit.

(... missed some stuff here ...)

P1. I think, everyone with a large code base and individual developers who don’t have

time to go in and become intimately familiar with the code, and Different developers working

on the same code base.

M. So you think it’s more useful for looking at code you’re not familiar with?

P1. Yeah, getting more context about the evolution of the code.

P3. It it lets you do things that would be so tough to do with diff that you don’t even

try. There is a big opportunity here that you don’t cover—recognizing that refactoring

should occur. All this code inherits from the same super-class. You should recognize that

and suggest it.

P1. I actually disagree. I think this is the right scope. You want to recognize what went

on, not to suggest what to do. One of the questions that came up earlier is that ’Did they

forget this?’ This tool isn’t trying to infer. . . (Interrupted)

P3. You missed my point. My point isn’t to say not to build this tool but you should

build an additional tool which has the opposite of this functionality.

P1. I don’t think that’s a tractable problem though.

P4. I would definitely disagree.

P1. I don’t think this is in the scope.

P3. She (the mediator) pruned the search tree to do this in a reasonable level. I think

similar efforts are required in the other tool.

M. I understand what you are saying. There’s a huge body of literature about pro-

gram transformation or recommendation tools. I think that’s not exactly the scope of our

discussion today. I will be happy to talk more about those tools.

245

P3. This is a different tool.

M. Yeah, they are targeting different goals. They have different purposes.

M. So I wanna dig a little deeper. You said that this tool can be used for all cases that

people use a regular diff for.

P1. I disagree with that.

P1. Diff is a specialized tool for what it does. There are sometimes that you wanna

look at two files. I guess you could say that. You have to know something about what the

file is saying. In this case, you’ve taken for example Java, and we know some of the syntax

of Java, and we know how it fits, and what it is saying, etc. If you were looking at natural

language descriptions, you cannot do that. But I am thinking text files and configuration

files, there’s a lot of other types of files where diff makes sense but this wouldn’t make any

sense at all.

P3. Is your intent to make diff obsolete? Nobody ever uses diff anymore? I don’t know

whether that’s the goal here.

M. No. I am not trying to replace diff.

P3. You said that in the degenerate case you fall back to diff-like behavior. For example,

if somebody gives you a new programming language that you did not know the context of,

you basically fall down to diff, line-level comparison, is that true?

M. You mentioned about language dependency. This tool has two components. One is a

language dependent component, which is a program analysis component that extracts facts.

The later rule-inference component is language independent. You can potentially imagine

using this tool for other languages like Perl, Python, you know C or any other language. I

think that’s a separate issue. I think what P1 was saying, you can correct me if I am wrong,

that configuration files often do not have this kind of structure to extract.

P1. Yeah, well actually that’s something else though. This has two things. It gives you

the information about, it has some some awareness of, what the file has in it. A Java file

and it is organized with these structures. You can’t do that with configuration files. In

fact I think this would be one of things that could be a great improvement. Most of the

programs we do, it is not strictly in Java, but they are Java plus SQL plus XML. It would

be beneficial if it could do that.

246

P1. We’re talking about where this wouldn’t be used.

M. Right.

P1. It wouldn’t be used in case where if you were just working with one file. That won’t

make a lot of sense cause there again, unless the same change happens multiple times in

the same file. In case where if you don’t have rules about the structure of the file, it is not

going to add anything that is helpful.

P2. This and diff has a very little overlap actually. Because this is a different level of

abstraction, so this differencing is contextual. It is much more complementary to diff. So

it gives you condensed information.

M. Can you tell me a little bit about in which cases that this complements diff well? So

you may imagine yourself using it?

P2. I guess it is much a higher level of abstraction so it gives you context. You may start

with the summary of changes and dive down to details using a tool like diff. Diff will print

out details and this will give you overall things. It is complementary in different levels. I

like the acronym Logical Structural Diff.

P5. I would like to use it with the XXXXXX SDK. I was writing tests for PR1 and now

we are jumping to PR2. There were changes in the SDK. We don’t know what exactly they

are. If we could run that between PR1 and PR2, (Interrupted)

P5. The XXXXXX SDK . . .

M. I am not fully understanding the context, but you are . . .

P5. I write tests for the new XXXXXX SDK.

M. Is it a framework?

P5. Yeah, it’s an E-commerce platform SDK. They released a PR1 and now a PR2. we

wrote all our tests against PR1 and now we have to move them to PR2. How do we figure

out those differences?

P1. That’s a good usage case.

P5. I used to know their stuffs. But now their members of the classes are gone, so things

are retyped or whatever, I need to find out all that.

M. So you are saying that, the component you depended on made a migration to the

next milestone or release, and you want to understand what’s the difference between them.

247

P1. Specifically with testing, this is where this can be really powerful. Because you can

see and this is what you are saying that, you can see generic types of changes, you don’t

have to go by line by line, ’Oh, these are the types of changes that we made, and we can

make tests for those types of changes.’ This will make the tester’s time much more efficient.

L. Particularly, the project that you were working on, a lot of changes are crosscutting;

for example, we encrypted a market place ID for all our APIs for security reasons, those

kinds of crosscutting concerns, if you know it, that will be great before you dive in and

figure out how much work you actually need to do. So for scoping perspective, it is really

useful, too.

P2. Maybe there’s something simpler than this (LSDiff). Maybe just saying ’This field

got deleted’ would be useful. . . Even ’This field got deleted and that field got deleted’ is still

a useful summary. It does not need to know anything more than a structure. Even those

things too with lots of changes, it will be still useful.

P1. Are you saying that you can do that without knowing the structure?

P2. I am saying that a part of this process is knowing systematic changes not just one

change.

M. To answer your question, if there are systematic changes, we summarize it. If there

were no systematic changes, we just output as is.

P2. I’m saying this might be useful on its own.

(12:52 Hands-on Demo)

M. If you have a browser, you can type this URL and then you can see the same output

yourself.

P1. This is cool. I’d use it if we had one.

L. I didn’t hear anyone say that they wouldn’t use it

P5. This is a definitely winner tool.

P4. This is definitely good for code reviews. If you look at it, compare to looking at

line changes and overall file changes, this gives you a lot more context behind the actual

change. Oh, instead of looking at some guy replaced this variable and that variable. . .

P1. And then when you click through to drill down, you know what you’re looking at.

I am looking at who deleted this.

248

P2. You know what to expect. You can minimize the time that you are looking at code

changes.

P1. This ’except’ thing is great, because there’s always a situation that you are thinking,

’Why is this one different?’

M. Where do you think the exception might be useful?

P1. I think a lot of times you’re going to have 50 and 50. These 4 were changed and

these 4 weren’t. It just gives you more context. It just tells you that this thing is different

for some reason. As I said before, you can’t infer the intent of a programmer, but this is

pretty close.

If I’m going to assume that this was a correct change, it might be interesting for me to

look at the exceptions and contrast with those. Then I would understand better why these

ones need to change. It’s just more context.

M. Probably something to communicate. You might ask developers why they did not

change this.

P1. Oh, you may see things in this package changed this way but things in this other

package did not change this way. It may be related to business logic changes that the regular

tools are not able to pick up.

P4. This looks very good for platform testing. Being able to see how people are using

the platform. Suppose that I made a platform change and some guy is adapting to my

platform change. I can definitely see easily whether other people are using my platform the

way I want it.

P1. Third party situations, such as open source projects.

P1. If I’m following a code base, I’d like to read the change list that went through, or

you can read something like this, to see how it’s changed. This will give you more structure

information.

M. Knowing what kinds of dependencies were added and deleted, and whether they are

really invoking my service or not. That’s sort of things that you are looking for?

P2. In services you deal with interfaces more, though I guess you can extend this to

handle service definitions like add and remove arguments, etc.

M. So you’re talking about API migration. The service has a new API.

249

P2. I don’t think this will work with service definitions and migration. It’s more

decoupled. . . What I am saying is that this will work with library usage changes, but not

service definitions or migrations.

M. What you’re saying is that the service is not statically determined. It’s dynamically

loaded, and the service depends on the loaded data. So it’s not easy to see the dependencies.

P2. Yeah, you have to process the interface definitions.

P1. Yeah, and it is not explicitly in the code base. It isn’t brought in as a dependency

at a compile time.

P4. I noticed one of the file had replaced a variable with a method. I didn’t notice a

statement about it.

P1. That’s a standard idiom change.

M. The reason why it’s not showing up is that there are rules that say if you intro a

new method, all the places where you invoke the new method, we are currently suppressing

that—everything implied by that new class is obvious.

P1. It is a standard idiom in Java.

M. You’ll see it as a refactoring but I don’t have a hyperlink in every line.

P4. It’d be good to see that I replaced port with getPort() in every class or whether

there are exceptions.

P4. Yeah, I am thinking from QA perspectives.

250

VITA

Miryung Kim is from Seoul, Korea. She attended Seoul Science High School for gifted

students and earned her bachelor’s degree in Division of Computer Science, Department of

Electrical Engineering and Computer Science at the Korea Advanced Institute of Science

and Technology (KAIST) in 2001. She graduated as the top of all science and engineering

undergraduate students in KAIST and received an award from the Secretary of Ministry of

Science and Technology of Korea in 2001.

She will be working as an assistant professor at the University of Texas at Austin start-

ing from January, 2009. Her research interests are software evolution, mining software

repositories, and human aspects of software development.

