a9 United States

US 20080294909A1

a2y Patent Application Publication o) Pub. No.: US 2008/0294909 A1

Ostrovsky et al. 43) Pub. Date: Nov. 27, 2008
(54) METHOD FOR PRIVATE KEYWORD (86) PCT No.: PCT/US2006/007184
SEARCH ON STREAMING DATA
§ 371 (e)(D),
(2), (4) Date: Aug. 6,2008

(75) Inventors: Rafail Ostrovsky, Los Angeles, CA
(US); William E. Skeith, ITI, Los
Angeles, CA (US)

Correspondence Address:
Vista IP Law Group LLP
2040 MAIN STREET, 9TH FLOOR

IRVINE, CA 92614 (US)
(73) Assignee: THE REGENTS OF THE
UNIVERSITY OF

CALIFORNIA, Oakland, CA (US)

(21) Appl. No.: 11/816,849

(22) PCT Filed: Feb. 28, 2006

25b r} ’
([

E(+)
W, E(»)
W; E(+)
Wi E()
Ws E(+)
Ws E(+)
W E(+)
Ws B(+)
Wo
Wa

40a

r)

(60)

D

(52)
&7

Related U.S. Application Data

Provisional application No. 60/657,602, filed on Mar.
1, 2005.

Publication Classification

Int. Cl1.
GO6F 11/30 (2006.01)

US.CL i 713/189
ABSTRACT

A method for private keyword searching on streaming data
such that the searching does not reveal what keywords are
being searched for and does not reveal whether any such
keywords have been located nor which documents in the data
stream are saved.

15a 10 15¢

E(DOC,), FVx

E(0)

E(DOC,), FVx E(0)

US 2008/0294909 A1

Patent Application Publication Nov. 27,2008 Sheet 1 of 4
5 0
25b 300 20 15 15a 10 15¢

W, E(») \J

Wa E(»)

Ws E(»)

Wy E(+) DOC,

Ws E(-) - s

W6 E(*)) 2 Ws X

W5 E(*) Ws Wy Wi

Ws E() — W W W

Wo E()

Wa E(+)

35
40a 40¢ /\) 40d
E(DOCy), FVy E(0) E(DOCy), FVy E(0)
FIG. 1

001 010 001 010 010 100 010 100 100 001 010...}/—\j05a
010 001 010 100 100 010 100 001 010 100 010.. }/\/305b
100 010 100 010 100 100 010 001 100 010 010...}/\/3050
111 001 111 100 010 010 100 100 010 11i 010...}/\/310

FIG. 3

Patent Application Publication

200

Nov. 27,2008 Sheet 2 of 4

START

210

2

Provide buffer
initialized to E(0)’s

v

<

220

Provide dictionary

N

225

US 2008/0294909 A1

230

-

More —_— b

Docs?

Send buffer for
decryption

Y

Receive document

v

Append collision
detection string

v

250/\/
260/\/
270%

Assign an E(0) to V

Write FV*DOC
to buffer y timés
randomly

280\/‘

290/\/

Look up word in
dictionary

295

Y

297/\/

V += cipher-text

FIG. 2

END

%

240

Patent Application Publication

410

420

430

V op= cipher-text

480 V

FIG. 4

Nov. 27,2008 Sheet 3 of 4 US 2008/0294909 A1
400 START
/-\ Assign an E(0) to V
4
/\ Receive document
Append collision
detection string 440
) i (\/
N Write FV¥DOC
More »| to buffer y times
435 Words? randomly
Y
A
470 Look up word in Send buffer for
\Va dictionary decryption
(/\450
’ N
475 Y
END
' N
460

Patent Application Publication Nov. 27,2008 Sheet 4 of 4 US 2008/0294909 A1

. D D D i
sé\/ 3 2 : r_;> F
k=8 =0 k=5
515
d 530 525 510 520 535

{ E(O) | E@© | E©) | By | B©) | E(0) | E@© | E0) | E®©)
4
a

Diag. 1

40a 40d 40¢

Q D1§ D1l§ DIl

{ E(S)*Dy | E(0) E(0) |E@G)*Dy | E(SFD:i| E© E(0) E(0) E(0)

Dy ‘\ Dy Dy

35a 40a 40

40c
@ Da § - Dsl § Dyl

E(5y*D1 | E(0) E@ | E(G)*D E(S)*Dli> -1‘3(0) E(0) E(©) E(O)Wi
Diag. 3 |

/\ Dy Dy Dy 7

35b
35a 40a 40b 40d 40e 40g
@ DS DilS A Do 2
g
E(13)* | E(8Y*Ds | E(0) | E(5)*Dy | E(5)y*D1 E(@©) | E@8)*D; E(0) ‘ E(0)
D*Ds
Diag. 4 ‘
—t X D; D, ’ Dy Ds J)
35b 0~
40a

US 2008/0294909 Al

METHOD FOR PRIVATE KEYWORD
SEARCH ON STREAMING DATA

REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Patent Application No. 60/657,602 (“the *602 Provisional
Application”), filed Mar. 1, 2005, titled “Private keyword
search on streaming data”. The contents of the *602 Provi-
sional Application is incorporated by reference as if set forth
fully herein.

FIELD OF THE INVENTION

[0002] The present invention relates generally to keyword
criteria searching on streaming data, and more particularly to
a method for private keyword searching on streaming data
such that the searching does not reveal what keywords are
being searched for and does not reveal whether any such
keywords have been located or whether the corresponding
documents have been retained. A primary use of the invention
is in tracking terrorist-related activity on the Internet, without
the potential terrorists knowing what is being tracked, but the
invention may be used for other privacy-preserving data-
mining applications as well.

BACKGROUND OF THE INVENTION

[0003] Many applications require collection and searching
of large amounts of data. A timely example (though not the
only one) is that the intelligence community is interested in
collecting relevant information from vast amounts of stream-
ing data, such as packet traffic on network routers, on-line
news feeds, on-line chat rooms, message boards, on-line
search requests, and potentially terrorist-related websites.
With such vast amounts of data, it is virtually impossible to
store it all. Therefore, typically the streaming data is filtered
from multiple data streams using search criteria in an online
environment, wherein most of the data is filtered out as irrel-
evant, leaving a much smaller amount of relevant data to be
processed. The relevant data is retained based on the search
criteria that have identified the data as potentially relevant.
The relevant data is then transferred to a classified/secured
environment for private analysis. However, this method can-
not necessarily keep the search criteria private/classified.
[0004] Preferably the search criteria is classified, because
otherwise adversaries could simply avoid using terms within
the search criteria, and thus prevent their communications
from being identified and analyzed. Therefore, another cur-
rent practice is to collect all streaming data at issue into a
secured environment, and then filter out the unwanted/irrel-
evant data within the secured environment, leaving the rel-
evant data for further analysis within the secured environ-
ment. However, this approach is extremely burdensome in
terms of the time and storage required, and further involves a
risk that the data transfer of such a vast amount of data into the
secured environment will be interrupted, causing further
delay and potentially even data loss or data corruption.
[0005] Therefore, it is desirable for a method that allows
searching and filtering of streaming data in a non-secured
and/or distributed environment, in such a manner that the
search criteria as well as the results of the searching and
filtering remain classified (i.e., hidden even from the person
who’s machine may be executing a program embodying the
invention), even when the relevant data is transferred from the
non-secured environment to the secured environment. Such a

Nov. 27,2008

method would be particularly useful if capable of being
executed in a distributed environment, because the searching
and filtering could then be outsourced publicly to multiple,
even non-trusted computers and locations, resulting in virtu-
ally limitless resources. The method would be further desir-
able if it could be implemented with a computer program
having a size independent of the data stream size.

SUMMARY OF THE INVENTION

[0006] The present invention allows searching and filtering
of streaming data in a distributed, non-secured environment,
in such a manner that the search criteria as well as the results
of the searching and filtering remain private, even when rel-
evant data is transferred from the non-secured environment to
a secured environment. Several methods are used to provably
ensure to a high and acceptable degree of certainty that all
relevant documents are “retained,” and all irrelevant docu-
ments are “discarded.” The proofs are set forth in the 602
Provisional Application, and/or are otherwise known or
capable of determination by those of ordinary skill in the art.
We describe how, given a secret criteria, we create a program
consisting of a Pubic-Key Encryption and an initial encrypted
buffer. Given the Public-key and the encrypted buffer, any
collection of documents, one at a time, can be written into the
buffer using the Public-Key (such that only documents satis-
fying the secret criteria are retained).

[0007] Then, given the buffer and the secret key (for the
aforementioned Public-Key encryption), the totality of
matching documents can be recovered precisely, provided
that the total size of matching documents written to the buffer
(or a specific linear function of this size) does not exceed the
allotted buffer space. The program size is usually propor-
tional to the dictionary size, but we have one construction
wherein the program size is even smaller than the dictionary
size. In either case, the program size does not depend on the
data stream size.

[0008] The method is accomplished by taking advantage of
the properties of homomorphic probabilistic encryption
schemes, as explained more fully herein. Such schemes are
well-known. Briefly, a homomorphic encryption scheme has
the property that the encryption of plain-text x plus the
encryption of plain-text y is equal to the encryption of (x+y).
In other words, the encryption map preserves some algebraic
structure of the plain-text set in the cipher-text set. This idea
can be written as E(xX)+E(y)=E (x+y), but since modern cryp-
tosystems are probabilistic, the precise relation is actually
expressed as D (E(x)+E(y)) x+y, where D represents the
Decryption function. The above example illustrates an addi-
tively homomorphic cryptosystem. We say a cryptosystem is
additively homomorphic if the plain-text set is an additive
group of integers, even if the cipher-text set is not. For
example, even though the cipher-text set in the well-known
Pallier cryptosystem is a multiplicative group of integers, the
system uses multiplication of cipher-texts to reflect addition
of plain-texts. So since the plain-text set is an additive group
of integers, we say the Pallier cryptosystem is additively
homomorphic.

[0009] Not all homomorphic cryptosystems are additively
homomorphic. That is, the operator on the plain-text set in the
above equation is not necessarily an addition operator for all
homomorphic encryption systems. It could be any abstract
algebraic operation, and so the equation is written in a more
general sense as D (E(x) opl E(y))=xop2 y, where opl and
op2 are the respective algebraic operators. In other words, the

US 2008/0294909 Al

encryption scheme has associated therewith a first operation
and a second operation such that when the first operation is
performed on an encryption of a first plain-text and an encryp-
tion of a second plain-text to produce a first result, and the
second operation is performed on the first plain-text and the
second plain-text to produce a second result, a decryption of
the first result yields a value equal to the second result. Fur-
thermore, as is the case with the Pallier cryptosystem, the
operation (0p2) on the plain-text set need not be the same as
the operation (op1) on the cipher-text set. However, we use
addition (as in the example above) throughout this application
for clarity and simplicity in our exposition.

[0010] A probabilistic encryption scheme is one such that
there are many different ways to encrypt a single plain-text
value. We refer to a CPA-secure encryption scheme as a
probabilistic scheme such that for any two plain-texts (of
equal size), encryptions of the first are indistinguishable from
encryptions of the second to an adversary without the private
key, even if many encryptions of the two plain-texts are
already known to the adversary. For example, in such a
scheme, an encryption of the number 0, represented herein by
E(0), and an encryption of the number 1, represented herein
by E(1), are virtually impossible for an adversary to tell apart
from each other without the private key, even if many cipher-
texts other than the given cipher-texts are known by the adver-
sary to be an E(0) or an E(1) respectively. The Pallier cryp-
tosystem is CPA-secure under a standard computational
assumption, and our preferred method of implementation of
our invention is to use the Pallier cryptosystem.

[0011] A general and perhaps slightly abstract view of the
invention is that the invention applies to streaming data con-
taining discrete tokens from a set of known tokens where the
tokens are stored in a data source that can be searched. For
simplicity, the invention is described in terms of documents
(discrete portions of the streaming data) containing words
(the tokens) from a language (the set of known tokens), where
the words are stored in a dictionary (the data source that can
be searched). Each document has a unique number associated
with it, calculated based on its actual contents, and in general
we represent that value of a document as DOC, and the value
of a specific document X as DOC,. This concept is well-
known and achievable using various publicly available algo-
rithms. In the case of most text-based documents, the numeric
value of a document will simply be its binary representation
as a string of ASCII characters. Practically, the present inven-
tionis expected to be used on electronic data, and all such data
has an internal numeric representation (usually in binary) on
the machine(s) where the data exists. So any electronic docu-
ment has such a value, and we use DOC to refer to the value.
DOC may also conceptually be visualized simply as the docu-
ment itself, instead of as a value of the document.

[0012] The present invention uses a dictionary containing
all of the words (or a desired subset) in the language at issue.
The dictionary is provided by a source from the secured
environment (hereafter referred to as a “private source” or a
“classified source”). We refer to a private source that has
access to the decryption key as a key-holder. We refer to
anyone else as an adversary. Each word in the dictionary has
associated therewith a corresponding cipher-text, which is
either an E(0) or an E(1). The words of interest (i.e., relevant
words) have an E(1) associated with them, while the words
not of interest (i.e., irrelevant words) have an E(0) associated
with them. Each E(0) in the dictionary is unique as compared

Nov. 27,2008

to all other E(0)’s in the dictionary, and each E(1) in the
dictionary is unique as compared to all other E(1)’s in the
dictionary.

[0013] As a document is received, the document is parsed
such that each word in the document is looked up in the
dictionary. Ifthe document has keywords matching the search
criteria, then an encryption of the document itself is pro-
duced. Otherwise, an encryption of the identity element is
produced. But the adversary cannot know whether the docu-
ment has the matching keyword criteria, because both match-
ing and non-matching documents are processed in exactly the
same manner. It is simply the values of the cipher-texts which
control whether the encryption created is that of the document
itself or that of the identity element. In both cases, the result-
ing encryption is written to a buffer for later decryption as
further described herein. “Written” in this sense refers to
mixing the resulting encryption into the buffer with whatever
contents are already there, and in the case of our primary
example this means adding encryptions.

[0014] The above process is repeated for each document,
and at various times the buffer is sent to a secured environ-
ment for decryption and analysis. This process may occur at
many nodes on a non-secured distributed network such as the
Internet. As will be apparent, and as explained more fully
herein, once the key-holder decrypts the buffers in the secured
environment, the key-holder ends up with the relevant docu-
ments. Other considerations such as efficiency, overflow
detection and handling, use of Boolean expressions in the
search criteria, eliminating the probability of error using per-
fect hash functions, avoiding and detecting collisions in the
buffer slots, and the actual decryption methods are discussed
more fully herein and/or in the *602 Provisional Application.

[0015] Although the methods of the invention will be
known by any adversary who can obtain a copy of a computer
program implementing the present invention (or by any
adversary who simply reads this patent application), we have
proved as set forth in the *602 Provisional Application that
such an adversary could still provably never reverse engineer
the program to determine what the keyword search criteria are
or what documents have been identified as containing the
keyword search criteria or are saved in the buffer. This is true
even if the adversary obtains a program embodying the inven-
tion and the buffer full of data (before it is sent to a secured
environment and thus is still encrypted). So there is no risk of
exposure even if such a computer program and the collected
data fall into enemy hands.

[0016] The methods described above and to be described
more fully herein, allow the searching and filtering to be
performed publicly on a distributed network, without an
adversary being able to determine what words are being
searched for and what documents have been saved in a buffer
as relevant. This is so because although the adversary might
see the dictionary of words and corresponding cipher-texts,
and therefore know that the subset of words being searched
for is within the dictionary, there is no way for the adversary
to determine which words have an E(0) associated with them,
and which words have an E(1) associated with them, and
hence no way for the adversary to know which words within
the dictionary are being searched for. Furthermore, each
document is written to the bufter either as an encryption of the
document itself, or as an encryption of the identity element,
but which of these two operations took place cannot be known

US 2008/0294909 Al

to the adversary. So there is no way for the adversary to
determine which documents have been saved as relevant, and
which have not been.

[0017] Although the invention may be used to track terror-
ist-related activity on the Internet, such as by running on a
search engine host to track IP addresses of computers that
search for potentially terrorist-related information, the inven-
tion also has many other practical uses, because it may be
used on any streaming data in an environment where it is
desired to keep the search criteria and the search results
private. One example is a company can perform an audit of'its
own data without massive data transter and without having to
take physical custody of its computers into an analytical
environment. Another example is that using a list of names as
a source of keywords, a private search of alias names can be
performed without revealing the searcher’s knowledge of the
aliases. Medical records could be searched for certain condi-
tions while maintaining patient privacy. Airline ticket data
and other market-competitive consumer data could be com-
pared by consumers without the sellers knowing the search
criteria. Printer or fax documents could be keyword searched
so that suspicious documents could “send an alarm” (i.e.,
notify the key-holder upon decryption). User on-line search
requests through GOOGLE or other search sites could be
tracked for criminal activity. These are just a few representa-
tive examples, and many other uses of the invention are pos-
sible, whenever the search criteria must remain hidden.

[0018] In one embodiment of the present invention, the
method comprises: initializing an encryption variable to a
value being an encryption of the identity element under a
homomorphic and probabilistic CPA-secure encryption
scheme; receiving a document comprising a plurality of docu-
ment words; looking up each of the plurality of document
words in a dictionary of known words, each of the known
words being either a keyword or an irrelevant word, each of
the irrelevant words having associated therewith a corre-
spondingly unique cipher-text having a value that is an
encryption of the identity element, and each of the keywords
having associated therewith a correspondingly unique cipher-
text having a value that is an encryption of a non-identity
element; for each of the plurality of document words found
during the lookup step, performing an operation associated
with the encryption scheme on a first operand and a second
operand, the first operand being the cipher-text corresponding
to the found document word and the second operand being the
encryption variable, each time changing the value of the
encryption variable to be the result of the operation, so that the
encryption variable ends with a final value; multiplying the
final value of the encryption variable by the document to
produce an encrypted document (or creating the encrypted
document by bit-wise encrypting it using the final value of the
encryption variable to represent 1, and the initial value of the
encryption variable to represent 0); and writing the encrypted
document to a first slot in a buffer comprising a plurality of
slots, each having been initialized to contain an encryption of
the identity element prior to the encrypted document being
written. The above process could be repeated on each docu-
ment in a stream of documents.

[0019] The encryption scheme could be additively homo-
morphic, in which case the identity element could be 0 and the
non-identity element could be 1. The encryption scheme
could be a public key encryption scheme, and could be the
Pallier encryption scheme. After the document has been pro-
cessed in this manner, it can be decrypted, ideally in a secured

Nov. 27,2008

environment, and typically using an algebraic operation of
the encryption scheme and a secret decryption key.

[0020] As part of the decryption, a value of the document is
determined, and if the value is zero then the document is
discarded, otherwise it is determined if the document is a
collision of two or more documents, and if so then it is
discarded, otherwise it is saved as a matching document. The
encrypted document preferably is written to gamma slots in
the buffer chosen randomly, gamma being an integer param-
eter chosen to produce an acceptable probability of data loss,
which is exponentially small as a function of gamma. Also
preferably, the document has a collision detection string asso-
ciated with it (e.g., appended to it). Also preferably, each time
the encrypted document (with its appended collision detec-
tion string) is written to one of the slots in the buffer, the
encryption variable is written to the same slot. In one embodi-
ment, the collision detection string consists of a series of k
bits, partitioned into k/3 triples of bits, each triple consisting
of'a single bit randomly set to a 1 and the two other bits set to
a 0 (or vice versa).

[0021] Inanother embodiment of the present invention, the
encryption scheme is an additively homomorphic probabilis-
tic CPA-secure encryption scheme. The Pallier encryption
scheme is preferred. Each keyword in the dictionary has a
corresponding cipher-text associated with it that has a corre-
spondingly unique value that is an E(1), and each of the
irrelevant words has a corresponding cipher-text associated
with it that has a correspondingly unique value that is an E(0).
Each slot in the buffer is initialized to an E(0). A stream of
documents is received (typically in a non-secured environ-
ment), and for each document, an E(0) is assigned to the
encryption variable. Then, each word in the document is
looked up in the dictionary, and if the word is found, then its
corresponding cipher-text is plus-equaled to the encryption
variable. After all the words in the document have been pro-
cessed in this manner, the final value (which we refer to as
FV) of the encryption variable is “multiplied” by the docu-
ment DOC to produce an encrypted document, which is then
added to one of the slots in the buffer. Preferably, the
encrypted document is added to gamma slots in the buffer
chosen randomly, gamma being an integer parameter chosen
to produce an acceptable probability of data loss that is expo-
nentially small as a function of gamma.

[0022] Note that we do not assume a ring structure (i.e. an
addition and multiplication operation) on the cipher-text set,
or even that the cipher-text set consists of integers. That is,
“multiplication” of FV by DOC is performed by adding FV to
itself DOC times. This notion of “multiplication” is very
well-known and is standard in modern algebra texts. This can
be efficiently implemented provided only that the operation
of the cipher-text set has an efficient implementation. In the
preferred embodiment described herein, the multiplication
can be accomplished by actual integer multiplication modulo
a large number. In a preferred embodiment, the FV itself, is
also stored in the slot with FV*DOC, and DOC has an addi-
tional variable appended thereto referred to as a collision
detection string (discussed more fully herein).

[0023] When each document has a corresponding unique
collision detection string appended to it, each encrypted
document is actually an encryption of the document with its
collision detection string appended to it. FV for each docu-
ment is also written to each slot along with the encrypted
document. A preferred embodiment of the collision detection
string is that for each document, it consists of a correspond-

US 2008/0294909 Al

ingly unique series of k bits, partitioned into k/3 triples ot bits,
and each triple of bits consists of a single bit randomly set to
a 1 and the two other bits set to a 0 (or vice versa).

[0024] Once all of the documents have been processed, the
buffer is sent to a secured environment for decryption using a
secret decryption key. Preferably, each encrypted document
has a corresponding size, and a linear function of a sum of the
sizes of all of the encrypted documents that are not E(0)’s
does not exceed an allocated buffer size.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG.1 is a diagram presenting a visualization of the
primary data structures involved in carrying out the present
invention, and the relationship between them, namely a docu-
ment, the dictionary, and the buffer.

[0026] FIG. 2 is a flowchart showing a method of the
present invention applied to a stream of multiple documents.
[0027] FIG. 3illustrates collision detection strings in accor-
dance with the present invention.

[0028] FIG. 4 is a flowchart showing a method of the
present invention applied to a single document.

[0029] FIG. 5 illustrates how documents are stored in a
buffer in accordance with the present invention, such that
irrelevant documents do not affect the contents of the buffer.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0030] With the Background and Summary sections of the
application in mind, the invention will now be described in
detail, in association with the accompanying drawings. Turn-
ing to FIG. 1, a diagram is shown presenting a visualization of
the primary data structures involved in carrying out the
present invention, and the relationship between them. These
are a document 10 having multiple words 15, a dictionary 20
containing words 25 and corresponding cipher-texts 30,and a
buffer 35. FIG. 1 shows dictionary 20 as an array of ordered
pairs, but this is not required. The specific data structure may
be a data tree or other suitable structure. The specific cipher-
text 30 associated with a particular word 25 is represented as
E(*), to mean that the cipher-text is either an E(0) or an E(1),
but nothing else. The dictionary 20 is created in a secured
environment, so the creator can associate E(1)’s with the
relevant words, and E(0)’s with the irrelevant words.

[0031] The example in FIG. 1 shows that DOC, 10 has
words W, (3 times), W,, W, and W, that are in the dictionary
20.DOC, 10 also has 3 words W that are not in the dictionary.
As will become apparent, it is not required that all words in
the document 10 be in the dictionary 20. All that is required is
that the relevant words are in the dictionary 20 and have an
E(1) as their corresponding cipher-text 30. Once the method
of the present invention is performed on DOC, 10 as
described herein, DOC_ 10 is encrypted and written to the
buffer 35, preferably y (gamma) times at random, along with
a final calculated value (FV,) for DOC, that is a final value of
an encryption variable V as described herein. For simplicity,
FIG. 1 shows this as E(DOC,), FV, being written to buffer 35
two times, to slots 40a and 40c¢ of the bufter 35. E(DOC,) will
be an E(0) if there were no hits, or an E(# of hits)*DOC if
there were hits. This is explained more fully herein. The other
slots 405 and 404 are shown as E(0)’s, because that’s how they
were initialized.

[0032] Turning now to FIG. 2, a flowchart shows a method
of privately searching for keyword criteria, applied to a

Nov. 27,2008

stream of multiple documents. Concurrently, we will refer to
FIG. 5 in appropriate steps to present a visualization of the
method. FIG. 5 shows 4 diagrams (Diag. 1 through Diag. 4),
each diagram being a pair of buffers 354 and 355. Within each
diagram, the buffer 354 and the buffer 355 represent the exact
same buffer, but the upper representation 35a shows a visual
representation of the encrypted content whereas the lower
representation 356 shows a visual representation of what the
decrypted content would be.

[0033] The process as shown in FIG. 2 begins at step 200.
Atstep 210, a buffer 35 is provided having each slot 40 therein
initialized to an E(0). “Providing” the buffer 35 refers simply
to the buffer 35 being available in the described condition,
whether it was created by the current user, obtained from an
independent source, or simply is available for use to carry out
the methods described herein. Typically, the buffer 35 will be
initialized in a secured environment. FIG. 5, Diag. 1, shows
the initialized buffer 35a as an E(0) in each slot 40 of buffer
35a, and as nothing in each slot of buffer 355.

[0034] At step 220, the dictionary 20 is provided, in a
format as described in connection with FIG. 1. “Providing”
the dictionary 20 likewise refers simply to the dictionary 20
being available, whether it was created by the current user,
obtained from an independent source, or simply is available
for use to carry out the methods described herein. Typically,
the dictionary 20 will be initialized in a secured environment.
The dictionary 20 has words 25 each being either a keyword
or an irrelevant word, and each of the keywords has its cor-
responding cipher-text 30 set to a correspondingly unique
value that is an E(1) under an additively homomorphic proba-
bilistic CPA-secure encryption scheme. Each of the irrelevant
words has its corresponding cipher-text 30 set to a corre-
spondingly unique value that is an E(0) under the encryption
scheme. With the dictionary 20 available, and the buffer 35
initialized, the process of searching documents then begins.

[0035] Atstep 225, the question is asked as to whether there
are anymore documents to be searched. This question seems
necessary because the exact number of documents in the data
stream 505 (FIG. 5) being searched is typically not known. If
no more documents are in the data stream 505, then the
process transfers to step 230, which is to transfer the buffer 35
to a secured environment for decryption of the encrypted
documents, and the process then ends at step 240. Of course,
this question would not be answered in the negative initially,
unless no documents at all were searched, in which case the
buffer would be sent back in its initialized state and then
decrypted to the contents shown in diagram 1 of FIG. 5, i.e.,
nothing. So presuming there are more documents in the data
stream 505, the process would then transfer to step 250, where
the next document in the stream 505 is received. In FIG. 5, the
document is D, 510, and as shown by arrow 515 it will be
received into filter program F 520 that will process the docu-
ment in accordance with the present invention, ultimately
writing the document to the buffer as seen by arrow 535.
Document D, 510 is shown with the notation k=5 to indicate
that it has 5 of the keywords being searched for. Of course,
that is not known until the process is complete, but for illus-
tration purposes, it is helpful to label it as such.

[0036] At step 260, a unique collision detection string 305
(FIG. 3) is appended to the document 10. This step is not
required, but is preferred to allow for more accurate results,
and is described in more detail herein. At step 270, a value that
is an E(0) is assigned to an encryption variable which we call
V. “Assigning” this E(0) value refers simply to the value being

US 2008/0294909 Al

available, whether it was created by the current user, obtained
from an independent source, or simply is available for use to
carry out the methods described herein. The value will be
provided by a key-holder in the case where the encryption
scheme is not a public key system, or it may be created by the
user himself'in the case where the encryption scheme is public
key. In either case itis no problem that an adversary knows the
specific value is indeed an E(0). In fact, with multiple users
across a distributed network, the key-holder may provide the
exact same E(0) to them all, or different E(0)’s. It makes no
difference. All that matters is that it is an E(0).

[0037] Now that the document 10 has been received, it is
parsed to look up all of its words 15 to see if they meet the
keyword criteria. This begins at step 275, where it is asked
whether any more words 15 exist in the document 10. This
question seems necessary because the exact number of words
15 in the document 10 are typically not known. If no more
words 15 are in the document 10, then the process transfers to
step 280, which is to write FV*DOC to the buffer 35, and the
process then returns to step 225 to check for more documents.
The writing step is described more fully herein. Of course,
here too, this question would not be answered in the negative
initially, unless no words 15 were in the document 10, in
which case the FV*DOC would be an E(0), decrypted to a 0
which is interpreted as irrelevant.

[0038] So presuming there are more words 15 in the docu-
ment 10, the process would then transfer to step 290, where
the next word 15 is looked up in the dictionary 20. This step
presumes that the “words™ are discrete recognizable tokens
within the “language” at issue. For example, most human
languages include a space delimiter in their written form. For
some languages, however, the “words” may not include
simple delimiters. In such cases, the invention still works, and
simply must implement the set of rules for parsing the given
language. Using the example shown in FIG. 1, and presuming
we are on the word 15¢ labeled W, then the lookup would fail
(because W, is not in the dictionary), the query at step 295
would be answered in the negative, and so the process would
return to step 275 to check for the next word 15. In that case,
effectively the word 15¢ is simply ignored. Optionally, an
E(0) could be added to V in this instance as well. This repre-
sents the adversary’s limited knowledge stemming from the
fact that the dictionary 20 is public, and so the adversary can
always know that the words being searched for are in the
dictionary. Practically, this is not a concern because the dic-
tionary will be relatively large. If, on the other hand, we were
on the word 154 labeled W, the lookup would yield a match
for word 255. Thus, the query at step 295 would be answered
in the affirmative, and so the process would continue to step
297.

[0039] At step 297, the cipher-text 30 that is an E(*) corre-
sponding to the word 256 found in the dictionary 20, is
plus-equaled to V. Plus-equaling is taking the contents of the
second operand (here the E(*)), adding it to the first operand
(here V), and storing the result in the first operand (here V).
This phrase is common in C++ programming and would be
expressed in C++ as V+=E(*). The process then returns to
step 275 to check for the next word 15. As can be seen in FIG.
2, the process loops until there are no more words 15, and
each time a successful lookup occurs, the value of V is
changed by plus-equaling the corresponding E(*) to V. After
all words 15 have been looked up, the process then transfers
to step 280, and the value of V is now the final value which we
refer to as FV. At step 280, FV*DOC is calculated to produce

Nov. 27,2008

an encrypted document which is then written to the buffer.
The writing step preferably also writes the actual value FV to
each slot in which DOC_ is written, as shown in FIG. 1, so that
the encrypted document (FV,*DOC,) could then be
decrypted (with the secret key) by dividing by FV to resultin
DOC.,.

[0040] In a preferred embodiment, as will be the case for
many cryptosystems, the process of adding an element to
itself some integral number of times as in the formula
“FV*DOC” is always invertible. However, this is not the case
in general. For example, it may be that 2*X=Y always has a
plurality of solutions for a single, fixed valueY. In such a case,
we must revert to a more primitive form for creating potential
encryptions of a document, such as using the value FV to
create a “bit-wise encryption” of DOC. That is, encrypt DOC
one bit at a time, using FV to encrypt a 1, and using our initial
encryption of 0 (E(0)) for the 0 bits. Furthermore, if the order
of our non-identity element (which we have labeled 1) is
small (less than the number of keywords), we randomize and
repeat the process of selecting FV to ensure correctness.
However, this process will demand much more storage than
our preferred embodiment, and as such is not explained in
great detail here, although it is thoroughly described in IACR
Cryptology ePrint Archive Report 2005/242 http://eprint.iacr.
org/2005/242, which is hereby incorporated herein by refer-
ence.

[0041] Based on the homomorphic encryption scheme, and
the design of the dictionary, the encrypted document
(FV*DOC) will be either an E(0) (if no keywords were found
in the document), or E(x)*DOC, where x is the number of
keywords that were found in the document. Referring to FI1G.
5, this is shown in diagram 2 which shows D, 510 being
written to buffer 35a as E(5)*D,, because D, 510 had 5
keywords as indicated by k=5 in D, 510. Note that the corre-
sponding slots 40a, 404, and 40¢ in buffer 355 in diagram 2
show simply D,, because that is what would exist in those
slots upon decryption.

[0042] FIG. 5 shows D, being written to 3 separate slots
40a, 40d, 40¢ of buffer 35. This represents D; 510 being
written to v (gamma) slots 40 in the buffer 35, the slots 40
chosen randomly, gamma being an integer parameter (which
we refer to as a correctness parameter) chosen to produce an
acceptable probability of data loss which is exponentially
small as a function of gamma. The details of how to choose
gamma are explained in the *602 Provisional Application, but
suffice it to say that we increase the probability of a matching
document surviving (i.e., being in at least 1 slot with no other
matching documents) by adding the document to gamma
slots 40 in the buffer 35 randomly, and preferably we make the
buffer size (i.e., the number of slots) proportional to
2*gamma*m, where m is the upper bound of the number of
documents 10 we wish to store. So we may choose gamma
based on m and the percent of correctness we desire. Each slot
40 of the buffer 35 is preferably of size ¢, where c is the size
of'each document to be stored in the buffer 35. This descrip-
tion presumes that documents of size less than ¢ will be
padded, and documents of size greater than ¢ will be trun-
cated. However, larger documents could also be broken up
into sub-documents, and then FV could be multiplied by each
of'the sub-documents and stored into the buffer in contiguous
slots. The basic format of the buffer would remain the same,
except the contiguous slots in this case would be considered a
single slot for certain processing.

US 2008/0294909 Al

[0043] We can guarantee that if there is a matching docu-
ment that survives, then it can be recovered during the decryp-
tion of the buffer 35. For best guarantees, the randomness
should be “true” randomness. Sources could be mouse move-
ment, random keystrokes, a Geiger counter, or any other
suitable source of randomness. Also, pseudo-random func-
tions could be applied to the collected randomness to produce
very large strings of random data, thereby reducing the
amount of randomness that needs to be collected from the
user or other source.

[0044] The above process continues for each document in
the data stream 505, as shown by the transfer of control from
step 280 back to step 225. Continuing with the example
shown in FIG. 5, we have thus far processed only document
D 510 having 5 keywords, and thus the buffer (35a, 35b) has
contents as shown in Diag. 2. The next document in the stream
505 is document D, 525 having 0 keywords, as indicated by
the k=0 in document D, 525. Thus, after document D, 525 is
processed, at step 280 the value of FV would be an E(0), and
the value of the encrypted document FV*DOC would there-
fore also be an E(0). Based on the homomorphic encryption
scheme, when document D, 525 is written to the gamma
random slots (slots 40a, 40c, and 40g as seen in Diag. 3 in
FIG. 5), the slots are unaffected as to their decryptions. That
is, although the buffer contents are re-written (i.e. re-en-
crypted) their decryption contents do not change. This is
because based on the homomorphic scheme, adding E(0)’s
into the buffer has the effect of adding 0’s to the plain-text.
Thus, as seen in Diag. 3, slot 404 still has an E(5)*D, (i.e. the
encrypted D,) which would decrypt to D,, and slots 40¢ and
40g, which were E(0)’s from initialization, will still be E(0)’s
and thus will decrypt to O (an indication of no document being
there).

[0045] Now, continuing still with the example shown in
FIG. 5, we have thus far processed documents D, 510 having
5 keywords, and D, 525 having zero keywords, and thus the
buffer (354, 35b) has contents as shown in Diag. 3. The next
document in the stream 505 is document D; 530 having 8
keywords, as indicated by the k=8 in document D5 530. Thus,
after document D5 530 is processed, at step 280 the value of
FV would be an E(8), and the value of FV*DOC would
therefore be E(8)*D;. Based on the homomorphic encryption
scheme, when document D; 530 is written to the gamma
random slots (slots 40a, 405, and 40g as seen in Diag. 4 in
FIG. 5), the previous E(0) slots (406 and 40g) become E(8)
*D,, which decrypt to D;, and slot 40a becomes an E(13)
*D, *Dj;, which is indicated in slot 40a of buffer 356 as “X” to
represent that a collision has occurred (and would be detected
as described herein), so the “document” in slot 40a would be
disregarded. Thus, as seen in Diag. 4, slots 404 and 40e would
be decrypted to D, , and slots 405 and 40g would be decrypted
to D5, both D, and D; having thus survived.

[0046] When there are no more documents, the query at
step 225 is answered in the negative, and so control passes to
step 230 at which time the buffer is sent to a secured environ-
ment for decryption. The process then ends at step 240. Of
course, a new data stream 505 may then be processed, and the
process would begin all over at step 200. The entire process,
as described herein, may be performed by multiple public
sources on multiple data streams, each source then transfer-
ring its buffer of data to the secured environment for decryp-
tion upon completion of processing the data stream. It should
be noted that the query at step 225 may also be arbitrary in that
the process can instead stop after a certain number of docu-

Nov. 27,2008

ments have been processed, or after a certain amount of time
has elapsed, or based on some other condition, so long as the
condition is not based on the contents of the documents.
[0047] Significantly, an examination of FIG. 2 reveals that
the only decisions involve whether there are any more docu-
ments (step 225), whether there are any more words within a
document (step 275), or whether a word is found in the
dictionary (step 295). No decisions are made based on the
value of the words in the dictionary. In other words, all of the
other steps in the process appear as, and indeed are imple-
mented as “straight-line” code. This is what we mean when
we say that the process cannot be reverse engineered by an
adversary to determine what data is being searched for, or
what the results of the search are.

[0048] Turning now to FIG. 4, a flowchart illustrates a
method of the present invention applied to a single document.
Much of the discussion with respect to FIG. 2 applies here as
well, and will not be repeated. The method begins at step 400.
At step 410, the encryption variable V is initialized to a value
being an encryption of an identity element under a homomor-
phic and probabilistic CPA-secure encryption scheme (which
we will still represent here by E(0), even though the number
0 might not be the identity element). Here, “initializing”
refers simply to V being set to E(0), whether it was done so by
the current user, an independent source, or in some other
manner. The process then proceeds to step 420, where a
document comprising a plurality of words is received. At step
430, a unique collision detection string is appended to the
document. This step is not required, but is preferred to allow
for more accurate results, and is described in more detail
herein,

[0049] Now that the document has been received, it is
parsed to look up all of its words to see if they meet the
keyword criteria. This begins at step 435, where it is asked
whether any more words exist in the document. If no more
words are in the document, then the process transfers to step
440 where FV*DOC is written to the buffer, and then at step
450 the buffer is sent to a secured environment for decryption.
The process then ends at step 460. Of course, presuming a
stream of data, a new document may then be processed, and
the process would begin all over at step 410. The entire
process, as described herein, may be performed by multiple
public sources on multiple data streams, each source then
transferring its buffer of data to the secured environment for
decryption upon completion of processing the data stream.
[0050] So presuming there are more words in the docu-
ment, the process would then transfer to step 470, where the
next word is looked up in the dictionary of known words. As
previously explained, each of the known words is either a
keyword or an irrelevant word, and each of the irrelevant
words has associated therewith a correspondingly unique
cipher-text having a value that is an E(0), while each of the
keywords has associated therewith a correspondingly unique
cipher-texthaving a value thatis an E(1). Here, remember that
we are using E(0) to represent the identity element, even ifthe
identity element is not actually the number 0. Likewise, we
are using E(1) to represent a non-identity element, even if the
non-identity element is not actually the number 1.

[0051] After the word is looked up at step 470, the question
is asked at step 475 if the word was found in the dictionary. If
not, then the word is effectively ignored, as shown by the
process returning to step 435 to process the next word. If,
however, the word is found, then the process proceeds to step
480, where the cipher-text corresponding to the found word is

US 2008/0294909 Al

the op-equaled to V. Here, op-equaled is used to represent a
general operation (op) associated with the encryption
scheme, as supposed to a specific operation such as addition
in which case the function would be referred to as plus-
equaled. After the op-equaling of the cipher-text to V, the
process returns to step 435 to look up the next word. The
lookup process (steps 470, 475, and if applicable 480) con-
tinues for each word in the document, such that each time step
480 is executed the value of 'V changes, ending in a final value
we have called FV.

[0052] When there are no more words, the process transfers
to step 440 where the final value of the encryption variable
(FV) is multiplied by the document (DOC) to produce an
encrypted document (FV*DOC) which is then written to the
buffer, all slots in the buffer having been already initialized to
E(0) before the write operation. Alternatively at step 440, the
encrypted document could be created by bit-wise encrypting
DOC using FV to represent 1 and the initial value of V to
represent 0. Preferably, DOC is written to y (gamma) random
slots in the buffer, gamma being an integer parameter (the
correctness parameter) chosen to produce an acceptable prob-
ability of data loss which is exponentially small as a function
of gamma. Here too, preferably the actual value FV is written
to each slot in which DOC is written, so that the encrypted
document (FV*DOC) could then be decrypted (with the
secret key) by dividing by FV to result in DOC.

[0053] At step 450 the buffer is then sent to a secured
environment for decryption. Of course, in a stream of docu-
ments, the process could be repeated by transferring control
from step 440 to step 410. But FIG. 4 was intended to illus-
trate the process on just a single document, for simplification.
The process then ends at step 460.

[0054] We will now turn to a discussion of the collision
detection string 305 (FIG. 3), and how it is used during
decryption to determine if a buffer slot has a legitimate match-
ing document as opposed to garbage caused by a collision of
documents. Recall that collisions are possible, and in fact
likely, based on the writing steps which write each DOC to
gamma random bufter slots. However, as proved in the *602
Provisional Application, despite such collisions, the methods
of the present invention still yield acceptable results in terms
of the probability that all matching documents will survive.
[0055] Inourpreferred embodiment, the collision detection
string 305 consists of a series of k bits, partitioned into k/3
triples of bits, each triple of bits consisting of a single bit
randomly set to a 1 and the two other bits set to a O (or vice
versa, which would yield the equivalent result). Here, k obvi-
ously is an integer divisible by 3. Recall that each DOC has a
unique collision detection string 305 appended to it. Thus, in
the embodiments using collision detection strings 305, when
we refer to DOC being written to the buffer this also includes
the collision detection string for that DOC. In FIG. 1, for
example, where slot 40a shows E(DOC,),FV,, the DOC,
includes the collision detection string 305.

[0056] When the buffer is decrypted, (e.g., one document at
a time), if a decrypted value of the document is zero then the
document is not a matching document (because FV*DOC
will be an E(0)). If the decrypted value of the document is not
zero, then it is either a good document or it is a collision. A
non-zero document is good if exactly 1 bit in each of the k/3
triples of bits is a 1. Otherwise, a collision has occurred. The
reason for this is because if two documents are written on top
of each other in a slot, then their corresponding collision
detection strings will be combined, resulting in a new bit-

Nov. 27,2008

string that has an extremely low probability of remaining in
the format of the original collision detection strings (i.e., a
single bit in each triple set to a 1 and the two other bits set to
a 0). For example, FIG. 3 shows three separate collision
detection strings 305a, 3055, and 305c¢, representing the col-
lision detection strings of three separate documents written to
the same slot. The resulting collision detection string 310
would exist upon decryption. It can be seen that the length of
the collision detection string 305 can be set to exponentially
decrease the odds of failing to detect a collision. As the length
is increased, the odds of failing to detect a collision are
exponentially decreased.

[0057] In some instances, the key-holder likely would be
able to detect a collision without using the collision detection
string, because adding binary representations of documents
would look like garbage, and be unrecognizable. This would
be the case, for example, if the document were in the English
language. However, even in such a case it is desirable to have
the collision detection strings because the collisions could be
identified and discarded automatically without requiring
human intervention. So while using the collision detection
strings mathematically proves a very strong sense of correct-
ness, it also is a convenience for the key-holder.

[0058] We will now briefly discuss the concept of overflow
detection. Overflow detection and handling is discussed more
fully in the 602 Provisional Application. Overflow is a con-
dition in which too many matching documents have been
written to the buffer, so that the probability of all matching
documents surviving is not acceptable. We can calculate an
overflow detection value based on a known size of the buffer
and an upper bound on the number of matching documents
written to the buffer. One such upper bound can be computed
by storing the sum of all the final values of encryption vari-
ables, which will be an encryption of the total number of
keywords found in the stream. If the calculated upper bound
of matching documents exceeds the buffer’s designed capac-
ity, then overflow is possible. If an accurate estimate for the
average number of keywords per matching documentis avail-
able, then a more accurate detection value can be calculated.
In the example above, the computed upper bound can be
divided by the average number of keywords per matching
document to predict overflow if that number exceeds the
designed buffer capacity.

[0059] Ifthe condition of overflow is determined, then this
could be acted upon dynamically to make decisions such as
sending the buffer for decryption, or stopping receipt of the
streaming data. However, this is potentially risky in that doing
so might reveal information about the keywords and/or the
number of matching documents. Overflow can also be
detected during decryption based on the number of collisions.
[0060] One additional concept is that we can extend our
query types using the BGN cryptosystem, which is homomor-
phic over polynomials of total degree two. That is, the encryp-
tion scheme allows computing polynomials of total degree
two on cipher-texts. The basic methods remain the same, but
there is an additional operation performed to obtain FV.
Instead of only a single encryption variable (V), two Vs are
used. Also, two sets of cipher-texts are associated with the
dictionary, one set to be used with the first V, and the other set
to be used with the second V. The second set of cipher-texts
still has E(0)’s for irrelevant words, and E(1)’s for keywords.
In this method, each of the two Vs is initialized to E(0), and if
a word is found in the dictionary, then one corresponding
cipher-text is op-equaled to the first V, and the other is op-

US 2008/0294909 Al

equaled to the second V. When the two FV’s are determined,
they are combined to produce an encryption of the first FV
multiplied by the second FV using a means provided by the
encryption scheme (e.g., the bilinear map of the BGN
scheme) to produce one new FV, used as described previously
to encrypt DOC. This is described more fully in the *602
Provisional application.

[0061] While the invention is susceptible to various modi-
fications, and alternative forms, specific examples thereof
have been shown in the drawings and are herein described in
detail. It should be understood, however, that the invention is
not to be limited to the particular forms or methods disclosed,
but to the contrary, the invention is to cover all modifications,
equivalents and alternatives falling within the spirit and scope
of the appended claims. As an example, though the methods
have been shown and described using a specific sequence of
steps, it should be apparent to those of ordinary skill in the art
that the specific sequences are not necessarily required. One
specific example is that appending the collision detection
string to a document and assigning an E(0) to V are not
sequence dependent on each other, and thus either can be
performed before or after the other.

1. A method of privately searching for keyword criteria in
a document, the method comprising:

a) initializing an encryption variable to a value being an
encryption of an identity element under a homomorphic
and probabilistic CPA-secure encryption scheme;

b) receiving a document comprising a plurality of docu-
ment words;

¢) looking up each of the plurality of document words in a
dictionary of known words, each of the known words
being either a keyword or an irrelevant word, each of the
irrelevant words having associated therewith a corre-
spondingly unique cipher-text having a value that is an
encryption of the identity element under the encryption
scheme, and each of the keywords having associated
therewith a correspondingly unique cipher-text having a
value that is an encryption of a non-identity element
under the encryption scheme;

d) for each of the plurality of document words found during
the lookup step, performing an operation associated
with the encryption scheme on a first operand and a
second operand, the first operand being the cipher-text
corresponding to the found document word and the sec-
ond operand being the encryption variable, each time
changing the value of the encryption variable to be the
result of the operation, the encryption variable ending
with a final value;

e) encrypting the document using the encryption variable;

f) writing the encrypted document to a first slot in a buffer
comprising a plurality of slots, each of the plurality of
slots having been initialized to contain an encryption of
the identity element prior to the encrypted document
being written to the first slot.

2. The method of claim 1, wherein the encryption scheme
is additively homomorphic, and the identity element is O and
the non-identity element is 1.

3. The method of claim 1, wherein the encryption scheme
comprises a Pallier encryption scheme or a public key encryp-
tion scheme.

4. (canceled)

5. The method of claim 1, further comprising sending the
buffer to a secured environment for decrypting the encrypted
document.

Nov. 27,2008

6. The method of claim 1, wherein if a decrypted value of
the document is zero then the document is not a matching
document, and if the decrypted value of the document is not
zero and is not a collision of two or more documents, then the
decrypted value of the document is the document.

7. The method of claim 1, further comprising writing the
encrypted document to gamma slots in the buffer chosen
randomly, wherein gamma is an integer parameter chosen to
produce an acceptable probability of data loss, and said prob-
ability is exponentially small as a function of gamma.

8. The method of claim 7, wherein the document has asso-
ciated therewith a collision detection string, and wherein each
time the encrypted document is written to one of the plurality
of'slots in the buffer, the encryption variable is written to the
same slot and the collision detection string is written to the
same slot.

9. The method of claim 8, wherein the collision detection
string consists of a series of k bits, partitioned into k/3 triples
of bits, each triple of bits consisting of a single bit randomly
set to a 1 and the two other bits set to a 0.

10. The method of claim 1 further comprising repeating
steps a) through f) for each of a plurality of documents
received in a stream of documents.

11. (canceled)

12. (canceled)

13. The method of claim 1, wherein encrypting the docu-
ment comprises bit-wise encrypting the document using the
final value of the encryption variable to represent the non-
identity element and using the initial value of the encryption
variable to represent the identity element.

14. A method of privately searching for keyword criteria on
streaming data, the method comprising:

providing a dictionary of words each being either a key-

word or an irrelevant word, each of the keywords having
associated therewith a corresponding cipher-text having
a correspondingly unique value that is an encryption of
the number one under an additively homomorphic
probabilistic CPA-secure encryption scheme, and each
of the irrelevant words having associated therewith a
corresponding cipher-text having a correspondingly
unique value that is an encryption of the number zero
under the encryption scheme;

providing a buffer with each slot therein initialized to con-

tain an encryption of the number zero;

receiving a plurality of documents each comprising a plu-

rality of words;

for each of the plurality of documents, performing the

following:

a) assign an initial value that is an encryption of the number

zero to an encryption variable;

b) look up each of the plurality of words in the dictionary;

c) for each of the plurality of words found in the dictionary,

plus-equal the corresponding cipher-text to the encryp-
tion variable;

d) after sub-step c), encrypting the document using the

encryption variable;

e) add the encrypted document to one of the slots in the

buffer.

15. The method of claim 14, wherein sub-step e) further
comprises adding the encrypted document to gamma slots in
the buffer chosen randomly, wherein gamma is an integer
parameter chosen to produce an acceptable probability of
data loss, and the probability is exponentially small as a
function of gamma.

US 2008/0294909 Al

16. The method of claim 15, further comprising appending
a correspondingly unique collision detection string to each of
the plurality of documents, and wherein each time one of the
encrypted documents including its corresponding collision
detection string is added to one of the slots in the buffer, the
encryption variable is written to the same slot.

17. The method of claim 16, wherein each of the collision
detection strings consists of a unique corresponding series of
k bits, partitioned into k/3 triples of bits, and each triple of bits
in each of the collision detection strings consists of a single bit
randomly set to a 1 and the two other bits set to a 0.

18. (canceled)

19. The method of claim 16, further comprising sending the
buffer to a secured environment for decrypting.

20. The method of claim 19, wherein the plurality of docu-
ments are received as streaming data in a non-secured envi-
ronment, and the decryption is performed in a secured envi-
ronment using a secret decryption key.

21. The method of claim 19, wherein each of the collision
detection strings consists of a series of k bits, partitioned into
k/3 triples of bits, each triple of bits consisting of a single bit
randomly set to a 1 and the two other bits set to a 0.

22. The method of claim 14, wherein encrypting the docu-
ment comprises multiplying the encryption variable by the
document to produce the encrypted document.

23. The method of claim 14, wherein the encryption
scheme allows computing polynomials of total degree two on
cipher-texts, each of the keywords has associated therewith a
second corresponding cipher-text having a correspondingly
unique value that is an encryption of the number one, and each
of the irrelevant words has associated therewith a second
corresponding cipher-text having a correspondingly unique
value that is an encryption of the number zero, step a) further
comprises assigning a value that is an encryption of the num-
ber zero to a second encryption variable, step ¢) further com-
prises plus-equaling the second corresponding cipher-text to
the second encryption variable; and step d) further comprises
combining the second encryption variable with the encryp-

Nov. 27,2008

tion variable to produce an encryption of their product using
a means provided by the encryption scheme, and storing the
result in the encryption variable before multiplying the
encryption variable by the document to produce the encrypted
document.

24. A method of privately searching for keyword criteria in
a document, the method comprising:

a) receiving a document comprising a plurality of tokens;

b) computing for each of the plurality of tokens a corre-

sponding cipher-text;

¢) combining the plurality of cipher-texts to compute a final

encryption variable;

d) encrypting the document under a secure encryption

scheme using the final encryption variable; and

e) writing the encrypted document to a buffer comprising a

plurality of slots.

25. The method of claim 24, wherein the encryption
scheme is additively homomorphic.

26. (canceled)

27. The method of claim 24, further comprising writing the
encrypted document to gamma slots in the buffer chosen
randomly, wherein gamma is an integer parameter chosen to
produce an acceptable probability of data loss, and said prob-
ability is exponentially small as a function of gamma.

28. The method of claim 27, wherein the document has
associated therewith a collision detection string, and wherein
each time the encrypted document is written to one of the slots
in the buffer, the collision detection string is written to the
same slot.

29. The method of claim 28, wherein the collision detection
string consists of a series of k bits, partitioned into k/3 triples
of bits, each triple of bits consisting of a single bit randomly
set to a 1 and the two other bits set to a 0.

30. The method of claim 24 further comprising repeating
steps a) through e) for each of a plurality of documents
received in a stream of documents.

sk sk sk sk sk

